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Abstract
The Phase–II sub-regional model presented in this report is an improvement upon the Phase–I
model developed in Sykes et al. (2004). Although the Phase–I sub-regional flow system case
study provided valuable insight into the behaviour of flow domains characterized by complex,
3-dimensional, curve-planar fracture zones, a number of modelling scenarios relevant to a deep
geologic repository and the impact of long-term climate change were considered a logical
extension of the program. Boundary conditions, matrix and fracture zone parameters were
modified and a statistical model of fracture zone permeability was developed, providing a depth
varying probability density function (PDF).

Mean life expectancy (MLE) is shown to be an excellent tool for determining the most relevant
and dominant geosphere parameters and processes that influence groundwater flow system
characteristics in fractured, crystalline rock settings typical of the Canadian Shield. Mean life
expectancy represents the average time for any subsurface location to discharge to the
biosphere, while honouring both advective and diffusive dispersion processes (unlike particle
tracking which can only honour advection). Since life expectancy is characterized by a probability
density function, its mean may not represent earliest arrival or least dose, and hence, must be
used with this caveat in mind.

The presence of brines at depth is shown to enhance the stability of deep groundwater flow
systems since denser pore fluids at depth essentially reduce the topographic gradient (and
driving forces) by requiring a greater energy potential to displace them. Mean life expectancy
increases with increasing brine density at depth. It should be noted that the presence of brines at
depth have a greater influence on the MLE of fluids in fractures than they do on fluids in the
matrix.

MLE was used to assess the impact of fracture zone permeability, width, and porosity on travel
time. The most significant of these is permeability, followed by width, and finally porosity.
Decreasing fracture zone permeability can significantly increase MLE by several orders of
magnitude at depth. The effects of fracture zone permeability assumptions on flow and transport
are significant. Using a fracture zone permeability characteristic of near surface conditions at
depth can significantly reduce the MLE, even in the adjacent matrix domain, especially if this
higher permeability is used for fracture zones at depth.

For the cold-based (NN2008) and warm-based (NN2778) climate scenarios, sub-regional
simulations illustrated that meltwater produced underneath the ice sheet is able to penetrate
deeper in the warm-based scenario. This is primarily due to the absence of permafrost, which in
the case of NN2008, acts to seal the near surface and greatly reduces, by several orders of
magnitude, the hydraulic connection with the fracture zone network.
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1. INTRODUCTION

As part of the Nuclear Waste Management Organization (NWMO) Technical Program, activities
have been undertaken to further the understanding of groundwater flow system evolution and
dynamics within Canadian Shield settings. In conducting such studies, a principal focus has been
on developing field and numerical geoscience tools and methods to assess groundwater flow
system dynamics during the Quaternary (2–0 Ma). In this capacity, numerical methods are being
pursued to:

i) serve as a systematic framework to assemble and test descriptive conceptual geosphere
models derived from integration of multi-disciplinary data sets;

ii) improve the fidelity with which site characterisation data may be input and realised within
numerical simulations;

iii) develop methodologies to assess and quantify robustness in numerical flow and transport
predictions as a consequence of site characterisation uncertainty typical of large Shield
flow systems; and

iv) to improve the utility of numerical codes to allow transfer of vetted site characterisation
models to Safety Assessment, thereby improving Safety Case transparency.

This study further demonstrates the application of the flow and transport code FRAC3DVS
through its application in a case study of Shield groundwater flow system evolution as affected by
long-term climate change, and represents a logical extension of work completed during previous
modelling activities, which included preliminary sensitivity analyses of deep-seated groundwater
flow within a hypothetical regional domain, and the Phase–I sub-regional flow domain as
described by Sykes et al. (2003, 2004).

1.1 BACKGROUND

The NWMO’s Technical Program is developing various tools and methods, as well as multiple
geoscientific lines-of-reasoning, to convey a sense of understanding of Shield flow system
evolution as it affects the siting and safety case of a Deep Geologic Repository. Specific aspects
include the development of probabilistic 3-dimensional curve-planar field constrained Fracture
Zone Network (FZN) models (Srivastava, 2002), the simulation of climate driven Laurentide
glacial ice-sheet history including the influence of permafrost (Peltier, 2002, 2003a), the
paleohydrogeologic assessment of WRA Lac du Bonnet batholith fracture infill mineralogy
relevant to fracture fluid evolution and redox front migration (Gascoyne et al., 2004), the
hydrogeochemical characterisation of deep-seated crystalline flow domains affected by long-term
climate change (Frape et al., 2004), and application of virtual reality technology for
multi-disciplinary data integration and communication of a site-specific conceptual geosphere
model(s) (Cotesta and Kaiser, 2004). These developments provide a basis for:

i) further demonstrating modelling approaches that are commensurate with and take into
account realistic observations and uncertainties arising from field characterisation studies;

ii) illustrating aspects of gradual and/or episodic flow system response to cyclic climate
change/glacial events;
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iii) providing an illustrative example to site characterisation programs as to site-specific flow
system attributes most influencing confidence in predicted outcomes; and

iv) demonstrating to broader audiences alternative geoscience lines-of-evidence regarding
flow domain stability at nominal repository depths that contribute to confidence in the
repository Safety Case.

1.1.1 Regional Case Study

The regional groundwater flow system case study considered a typical 5700 km2 Shield
watershed in which groundwater flow to a depth of 1500 m was simulated (Sykes et al., 2003).
These numerical simulations or flow system scenarios were purposely designed to illustrate the
influence of:

i) variable groundwater salinity distributions;
ii) spatially variable permeability fields;
iii) assumed flow system dimensionality; and
iv) residual glacial over-pressures, on groundwater flow paths, flow rates and residence

times.

This case study provides insight into Shield flow systems, which as a consequence of glacial
cycles may remain in a transient state and that flow system dimensionality coupled with
salinity/permeability distributions creates a deep-seated, sluggish flow system in which solute
transport may be diffusion dominated (Sykes et al., 2003). These modelling results further
provide a basis to query historical concepts of regional Shield groundwater flow and to explore
the applicability of flow boundaries assigned to internal sub-regional flow domains, at scales
relevant to repository siting.

1.1.2 Phase–I Sub-Regional Case Study

The sub-regional groundwater flow system case study undertook a detailed flow analysis of an
84 km2 portion of the regional Shield watershed (Sykes et al., 2004). Surface water features and
a Digital Elevation Model (DEM) were applied in a GIS framework to delineate the sub-watershed
and to populate a FRAC3DVS model grid. One realization of a complex, 3-dimensional,
geostatistical Fracture Zone Network (FZN) model, constrained by measured surface lineaments,
was superimposed onto a 600 000 element flow domain mesh. A methodology was developed to
assign orthogonal fracture faces (between adjacent finite element blocks) to best represent the
over 540 irregular, fracture zones within the sub-region (Srivastava, 2002). These fracture zones
were assigned a fixed hydraulic conductivity and the rock mass between the discontinuities was
assigned a range of depth-dependent hydraulic conductivities considered representative of
sparsely and moderately fractured rock of the Shield. All simulations indicated that estimated
Darcy velocities within the bulk rock mass at depths below 600 m were indicative of
diffusion-dominant transport regimes. Interconnectivity of permeable fracture zones at depth was
required to create discrete pathways for advective flow.
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1.2 SCOPE AND OBJECTIVES

Although the Phase–I sub-regional flow system case study provided valuable insight into the
behaviour of flow domains characterized by complex, 3-dimensional, curve-planar fracture zones,
a number of modelling scenarios relevant to a deep geologic repository and the impact of
long-term climate change were considered a logical extension of the program.

This study addresses the following additional scenarios:

i) the incorporation of multiple realizations (up to 100) of the FZN models, each constrained
to measured surface lineaments,

ii) an investigation into the role of variable-density groundwaters (salinity),
iii) the exploration of the impact of more realistic, spatially-correlated, permeability fields in

the fracture zones and matrix continua,
iv) the inclusion of transient analyses governed by the time history of pore pressure

responses associated with glacial cycles.

The goal of undertaking such modelling tasks is to illustrate whether the flow system at repository
depth remains stagnant and diffusion-dominated regardless of the uncertainty in fracture zone
geometry, interconnectivity, flow and transport parameters, as well as the domain being subjected
to extreme changes in boundary conditions associated with glaciation. Insight modelling is also
undertaken to explore whether glacial, oxygenated waters could migrate to typical repository
depth as a result of significant changes in surface boundary conditions associated with future and
past glaciation events.

1.2.1 Paleoclimate

Based on the work of Peltier (2002, 2003a), it is clear that to credibly address the long-term
safety of a deep geologic repository, long-term climate change and in particular a glaciation
scenario, must be incorporated into performance assessment modelling activities. In addition, by
simulating flow system responses to the last Laurentide (North American) glacial episode, insight
is gained into the role of significant past stresses (mechanical, thermal and hydrological) on
determining the nature of present flow system conditions, and by extension, the likely impact of
similar, future boundary condition changes on long-term flow system stability. The Laurentide
glacial episode was characterized by the following:

i) occurred over a 120 000 year time period,
ii) included at least three cycles of glacial advance and retreat, with maximum ice thickness

over a typical Northern Ontario Shield site reaching nearly 3 km,
iii) included extensive periods of transient, peri-glacial conditions during which permafrost

could impact the subsurface to several hundreds of metres, and
iv) was accompanied by significant basal meltwater production near the end of the glacial

episode.
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1.2.2 FRAC3DVS and FRAC3DVS-OPG

To undertake the Phase–II modelling activities, the following improvements to FRAC3DVS have
been undertaken since 2004:

i) the treatment of flow system/water compressibility;
ii) the treatment of variably dense groundwater distributions in fracture and matrix continua;
iii) the improvement of execution time by upgrading the solver in FRAC3DVS to

accommodate faster solution techniques;
iv) the implementation of multi-grid and asynchronous time stepping techniques to improve

model applicability for various scale flow and transport simulations;
v) the implementation of a methodology to facilitate multiple realisations of probabilistic

curve-planar FZN models; and
vi) the implementation of an approach to allow assignment of field constrained permeability

fields based on both parameter and spatial distribution uncertainty.

While FRAC3DVS is used for all modelling tasks in this report, FRAC3DVS-OPG is to be used for
all current and future modelling tasks beginning August 2007. FRAC3DVS-OPG is currently
being developed as a branch of HydroGeoSphere (which itself was developed from FRAC3DVS),
but excluding the surface water flow and transport components. This approach has allowed
FRAC3DVS-OPG to benefit from code developments and improvements made to
HydroGeoSphere at the University of Waterloo. Development during 2005/2006 has included:

i) the implementation of backward-in-time (BIT) and mean life expectancy (MLE) algorithms
for computing groundwater age, especially important for diffusion dominated flow
systems, characteristic of Shield environments;

ii) the implementation of variable and uncertain fracture zone widths, fracture zone porosity,
and spatially variable fracture zone permeability;

iii) the implementation of a simplified vertical one-dimensional hydro-mechanical coupling as
described by Neuzil (2003)

iv) the implementation of temperature and thermo-haline processes, and subsequent
coupling of temperature, density, and viscosity terms;

v) the development and implementation of a data interchange standard from
FRAC3DVS-OPG to GoCAD; and

vi) the development of a platform independent build environment using Python and SCons to
compile the FRAC3DVS-OPG source code for execution on Microsoft Windows operating
systems (32-bit and 64-bit), and Linux based operating systems using various optimizing
Fortran95 compilers.
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2. PHASE–II SUB-REGIONAL MODEL DEVELOPMENT

The Phase–II sub-regional model development is based on the Phase–I model developed in
Sykes et al. (2004). As part of the continuing refinement of the sub-regional model, the modelling
domain, various model parameters, and boundary conditions were modified from the Phase–I
work. The following sections describe the changes made to the Phase–I model as well as the
spatial extents, boundary conditions, and parameters used for the Phase–II model.

2.1 MODELLING DOMAIN

Due to the choice of Dirichlet boundary conditions for the top surface, and the use of a DEM
which was quantized to integer elevation values, a stair-step effect was noticed when plotting the
Darcy flux. The relatively abrupt step change in elevation from one plateau to the next lead to
seepage faces forming along contour lines (see Figure 1). This modelling outcome is due to
artifacts in the DEM, and is not related to any physical groundwater phenomenon.

A new DEM was constructed using the following GIS vector data: contour lines, rivers, wetlands,
and lakes. The paper NTS maps for the area were used to define elevations for the wetlands and
lakes based on their position relative to nearby contours, as well as their hydrologic relationship to
connected rivers, lakes, and wetland features within the same contour interval. River elevations
were then linearly interpolated along their length, honouring any contour which crossed the
rivers, as well as the elevations which were previously specified for lakes and wetlands.

The eastern extent of the Phase–I sub-regional modelling domain was defined along a divide
described by a river. A number of the generated FZN fractures also follow rivers, leading to the
situation where a fracture could be partially inside the modelling domain, and partially outside the
domain, thereby violating its connectedness. The sub-regional modelling domain was extended
laterally to surface water divides along topographic highs for the eastern and western portions of
the modelling domain. The large river to the south would remain, as would the topographic divide
to the north. Figure 2 shows the expanded sub-regional modelling domain outlined in black, with
the aerial photograph draped over the new DEM.

ArcView GIS 3.2a was used to create a triangular irregular network (TIN) using the contour lines,
lakes, wetlands, and sloping rivers for the revised modelling boundary plus a 1 km buffer. From
the TIN, a 10 m square DEM ASCII grid was created. Since some of the FZN fractures extend
beyond the revised modelling boundary and 1 km buffer, a 20 m square DEM was generated
using the NRCAN 1:250 000 DEM converted to a Lambert Conformal Conic projection. Both
DEMs are used when calculating the elevation of fractures; any triangular fracture face vertices
within the modelling boundary (and buffer) use the TIN derived DEM, while all other vertices use
the NRCAN derived DEM.

2.2 SURFACE BOUNDARY CONDITIONS

The Dirichlet surface boundary condition that was previously applied to the entire top surface of
the model was subsequently applied only at nodes that were within lakes or wetlands, or within
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Figure 1: Vertical Darcy flux at ground surface for Case 1, 2, and 3 of the Phase–I sub-
regional model

36 m of a river (approximately 50
√

2
2 , where a grid block is 50 m per side). This ensured that rivers

would be continuous while considering the grid discretization. A recharge boundary condition
was applied to the top surface of the model at a rate of 1.0 mm/year.

The vertical surface Darcy flux is shown in Figure 3. As can be clearly seen, the anomalous
banding evident in Figure 1 has been eliminated and the resulting surface discharge coincides
with actual locations of water features such as wetlands, lakes or rivers.
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Figure 2: Expanded sub-regional modelling domain (black line) and aerial photo draped on
the TIN derived DEM

Figure 3: Vertical Darcy flux at ground surface for Phase–II sub-regional model
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2.3 MATRIX PROPERTIES

The Phase–I sub-regional hydraulic conductivities were based on the original regional scale
modelling of 10 vertical layers (Sykes et al., 2003). Due to the need to account for variations in
hydraulic conductivity due to changes in fluid density and viscosity within the Phase–II model,
permeabilities are used instead. The matrix permeabilities listed in Table 1 provide a smoother
permeability transition from layer to layer, exponentially decreasing with increasing depth from
ground surface, and accounting for the presence of Moderately Fractured Rock (MFR) near
surface, and Sparsely Fractured Rock (SFR) at depth. The distribution of anisotropy ratios in
Table 1 are those used in the conceptual model of Stevenson et al. (1996). The permeability
relationships with depth are:

kH = 10−14.5−4.5(1−e−0.002469d ) (1)

kV =


10kH , for d ≤ 300 m;
[0.09(400− d) + 1]kH , for 300 < d ≤ 400 m;
kH , for d > 400 m.

(2)

where kH is horizontal permeability; kV is the vertical permeability; and d is the average depth
below ground surface for a given layer. Both the horizontal and vertical permeabilities as a
function of depth from ground surface are plotted in Figure 4.
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Figure 4: Horizontal and vertical matrix permeabilities as a function of depth for the Phase–
II sub-regional model
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A matrix porosity of 0.003 was chosen based on the work of Stevenson et al. (1996). Matrix and
fracture properties for solute transport include a longitudinal dispersivity of 50 m, a transverse
horizontal dispersivity of 5 m and a transverse vertical dispersivity of 0.5 m. A matrix bulk density
of 2642.05 kg/m3 (2650 kg/m3 × (1− 0.003)) is also used.

2.4 FRACTURE ZONE GEOMETRY

In the Phase–I sub-regional model case study of Sykes et al. (2004), aerial photography served
as the basis for developing the fracture zone network model. A surface lineament analysis was
conducted by Srivastava (2002) to define the major fracture features. These fracture features are
mainly coincident with surface drainage features that exhibit linearity. Additional surface
lineaments were created to account for the extension of existing major lineaments, and to
increase the fracture density in areas where overburden cover obscured the surface lineaments.
The resulting surface fracture features are shown in Figure 5. The fracture generation procedure
is based on the lineament and fracture statistics for the Lac du Bonnet region of the Whiteshell
Research Area and preserves the fracture zone orientation, fracture zone length, and area
density distribution statistics. It represents both sensible and geomechanically plausible fracture
behaviour (Srivastava, 2002).

Table 1: Sub-Regional Phase–II model matrix permeability by layer and depth

Layer Depth Average Anisotropy Permeability [m2]
[m] Depth [m] Ratio kV :kH kH kV

19 0–10 5 10 1.0× 10−13† 1.0× 10−12

18 10–30 20 10 1.0× 10−14† 1.0× 10−13

17 30–70 50 10 9.5× 10−16 9.5× 10−15

16 70–150 110 10 2.7× 10−16 2.7× 10−15

15 150–250 200 10 5.6× 10−17 5.6× 10−16

14 250–350 300 10 1.4× 10−17 1.4× 10−16

13 350–450 400 1 4.7× 10−18 4.7× 10−18

12 450–550 500 1 2.0× 10−18 2.0× 10−18

11 550–625 587.5 1 1.1× 10−18 1.1× 10−18

10 625–675 650 1 8.0× 10−19 8.0× 10−19

9 675–725 700 1 6.3× 10−19 6.3× 10−19

8 725–775 750 1 5.1× 10−19 5.1× 10−19

7 775–825 800 1 4.2× 10−19 4.2× 10−19

6 825–875 850 1 3.6× 10−19 3.6× 10−19

5 875–950 912.5 1 3.0× 10−19 3.0× 10−19

4 950–1050 1000 1 2.4× 10−19 2.4× 10−19

3 1050–1200 1125 1 1.9× 10−19 1.9× 10−19

2 1200–1400 1300 1 1.5× 10−19 1.5× 10−19

1 1400–1600 1500 1 1.3× 10−19 1.3× 10−19

Note: †Permeability manually set.
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Figure 5: Phase–I sub-regional model with water features and fractures that intersect
ground surface

To create 3-dimensional curve-planar fracture zones, the surface lineaments shown in Figure 5
are propagated to depth until one of the following conditions are met:

• the fracture zone’s down-dip width reaches the prescribed length to width ratio;
• the fracture zone truncates against an existing fracture zone; or
• the fracture zone reaches the edge or bottom of the modelled domain.

A network of 548 discrete curve-planar fractures representing fracture zones was generated by
Srivastava (2002) for the Phase–I sub-regional domain. The generated network is one stochastic
realization of many possible fracture zone networks that could be generated for the sub-regional
domain. Fracture network density decreases with increasing depth; minor fracture features are
shallower than major fracture features. The resulting fracture network model contains a high
degree of realism that honours many geological, statistical, and geomechanical constraints
(Srivastava, 2002).

Since the Phase–II sub-regional model was extended both eastward and westward, the boundary
of the generated fracture zone network also needs to be extended. A visual comparison of the
Phase–I and Phase–II modelling extents, DEM boundary, and fracture zone network model
generation boundaries is shown in Figure 6. Due to the stochastic nature of the fracture
generation procedure (for both surface lineaments and fracture zone propagation to depth),
multiple fracture zone network realizations can be produced to investigate the role of fracture
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zone geometry on various performance measures of interest. A total of 100 equally probable
fracture zone networks were generated by Srivastava for use within the Phase–II sub-regional
model.

2.5 FRACTURE ZONE PERMEABILITY

Fracture zone permeabilities (or conductivity), which were constant in the Phase–I work, are now
defined on both a stochastic and a depth dependent basis. A plot of fracture zone permeability
versus depth for the Whiteshell Research Area (Stevenson et al., 1996) and the Finnish Olkiluoto
site (Hellä et al., 2004; Vaittinen et al., 2003) representing fracture zones is shown in Figure 7. As
can be seen, it can be quite difficult to determine a depth trend from the wide permeability scatter
in the data.

A depth trend was noticeable when rank statistics were used to calculate the 5th, 25th, 50th, 75th,
and 95th percentiles. A total of eight depth ranges r of 50 m, 100 m, 150 m, 200 m, 250 m, 300 m,
350 m, and 400 m were selected. Percentiles were calculated for all permeability values within
r/2 metres of a specified depth d . Permeability percentile plots for r = 100 m and r = 200 m are
shown in Figure 8 and Figure 9 respectively.

The various percentile curves can be quite “noisy”, although they do get smoother when selecting
a larger r or depth range. Figure 9 was used as the basis for calculating cubic splines to best fit
the various percentiles. The splines were interactively fit using Microsoft Excel™ for visualization,
writing the necessary spline routines in Visual Basic for Applications (VBA) and linking the VBA
code to the Excel spreadsheet. The resulting splines and the percentile curves from Figure 9 are
shown in Figure 10.

Once the percentile cubic spline curves were created, another cubic spline interpolation was
required to determine intermediate percentile values for a given depth. An additional spline curve
representing the 1.4th percentile was necessary in order to ensure that the cumulative density
function (CDF) was always increasing, and it’s slope was always greater than zero. The slope or
first derivative of a CDF is the probability density function (PDF). The final CDF for fracture
permeability is shown in Figure 11, while the PDF is shown in Figure 12. A 3-dimensional view of
the PDF is shown in Figure 13. Although the CDF is quite smooth, the locations chosen for the
cubic splines in Figure 10 greatly influenced the shape of the PDF. Multi-modal as well as
negative values for the PDF were discovered during the creation of the CDF. As a result, the
locations of the cubic splines were somewhat influenced by the PDF, thereby ensuring that the
PDF was unimodal throughout the entire depth range of interest. The PDF for fracture
permeabilities at depths below 700 m are nearly identical, primarily due to the lack of supporting
fracture permeability data. Figure 13 clearly shows the depth dependent nature of the fracture
permeability, in that the greatest expectation (PDF peaks) varies from approximately 10−13 m2 to
10−16 m2.

A random fracture permeability variate can be calculated from the depth dependent PDF by using
the inverse CDF (see Figure 14). Given a depth and a uniform random variate, the log10
permeability random variate can be calculated by bi-linearly interpolating the inverse CDF
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Figure 7: Fracture zone log10 permeability data for the Finnish Olkiluoto site and the White-
shell Research Area (WRA)
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Figure 9: Log10 permeability percentiles with depth for a 200 m depth range
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Figure 11: Cumulative density function for log10 of fracture permeability
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Figure 13: 3-D view of the probability density function for log10 of fracture permeability

surface. The fracture permeability kF is therefore calculated as:

kF = 10CDF (d ,U[0,100])−1
(3)

where d is the depth; U[0, 100] is a uniform random variate between 0 and 100; and CDF ()−1 is
the inverse CDF. A correlated random fracture permeability field can then be calculated using a
correlated random uniform variate field.

2.6 FRACTURE ZONE WIDTH

In the Phase–I model, fracture zone width was represented as a constant width of 1.0 m. Since a
probability density function for fracture zone width is also desired, the WRA data in Figure 7 from
Stevenson et al. (1996), where the fracture interval width is indicated for each estimated fracture
zone permeability, was plotted as a histogram and a minimum error log-normal probability
distribution was developed:

FX (x) =
1

xσ
√

2π
e−

1
2

(
ln(x/m)

σ

)2

(4)

where σ = 0.482 89 and m = 3.268 41. The log-normal PDF and WRA fracture width histogram
are shown in Figure 15.
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Figure 14: Inverse cumulative density function for log10 of fracture permeability
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Figure 15: Fracture zone width histogram and log–normal PDF
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2.7 FRACTURE ZONE POROSITY

A fracture zone porosity can be calculated from the fracture zone permeability and a given
fracture frequency (Bear, 1988; Chen et al., 1999; Snow, 1968, 1969). The bulk fracture zone
permeability tensor and bulk fracture zone porosity are defined as:

kbulk
Fij

=
n∑

i=1

kF ,i (I− ni ⊗ ni ) + (1− φF )kMij (5)

φ
bulk
F = φF + (1− φF )φ (6)

where kF ,i is the single fracture permeability in direction i [L2]; I is the identity matrix [/]; ni is the
unit vector normal to fracture plane i [/]; φF is the volumetric fracture fraction [/]; kMij is the
porous matrix permeability tensor [L2]; and φ is the porous matrix porosity [/]. kF ,i and φF are
then defined as:

kF ,i =
γi a3

i
12

(7)

φF =
n∑

i=1

γiai (8)

where γi is the fracture density in direction i [fractures/L]; and ai is the fracture aperture in
direction i [L]. For the case of three sets of orthogonal fractures with identical apertures and
fracture spacing, kbulk

Fij
and φbulk

F become:

kbulk
Fij

=
γ a3

6
+ (1− 3γa)kMij (9)

φ
bulk
F = 3γa + (1− 3γa)φ (10)

Hence, given a fracture permeability from Equation (3), a fracture aperture, a, can be calculated
using Equation (9), and then substituted into Equation (10) to determine the fracture zone
porosity.
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3. METHODOLOGY

3.1 DENSITY DEPENDENT FLOW AND TRANSPORT

The physical properties of groundwater in a Shield environment can vary by greater than 25 % for
density and by one order of magnitude for viscosity, although the relationship between fluid
properties and TDS, temperature, or pressure is not yet completely understood. Density and
viscosity changes may retard or enhance fluid flow or contaminant transport driven by other
mechanisms: flow and transport is dependent on fluid density and viscosity as well as media
properties such as permeability, porosity, and dispersivity. Thus, variations in fluid density and
viscosity may have significant impacts on the flow system with consequences for various relevant
processes (Adams and Bachu, 2002).

3.1.1 Characterizing Brine Solutions

The relationship between TDS, solution density, and mass fraction in characterizing solutes in
water is as follows:

ρ =
M
V

(11a)

TDS =
m
V

(11b)

X =
m
M

(11c)

where ρ is the solution density, M is the mass of solution, V is the volume of solution, m is the
mass of solute (salts such as NaCl or CaCl2), and X is the mass fraction. By combining these
equations, a new relationship for TDS can be determined as:

TDS = m · 1
V

= XM · ρ

M
= Xρ (12)

Adams and Bachu (2002) present a study of brine density and viscosity for the Alberta Basin,
consisting primarily of Na-Cl waters. The data and analyses of their paper can be used to
illustrate the relationship between brine concentration given as mass fraction and fluid density.
Figure 7 in their paper presents a plot of brine density versus mass fraction for 4854 formation
water analyses and is presented as Figure 16 below.

We see that a mass fraction of 0.25 matches a density of approximately 1200 kg/m3 or 1.2 kg/L.
Using Equation (12) results in a TDS of 300 kg/m3 = 300 g/L = 300 000 mg/L.

3.1.2 Governing Equations

The equations governing density-dependent flow and transport are the Darcy equation, the
continuity equation for the fluid, the continuity equation for the solute, and the constitutive
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Figure 16: Figure 7 from Adams and Bachu (2002) showing brine density versus mass
fraction for 4854 formation water analyses

equation relating fluid density to concentration (Frind, 1982). The general Darcy equation for
density-dependent flow is:

qi = −
kij

µ

(
∂p
∂xj

+ ρgηj

)
(13)

where qi is the flux in the i th direction, kij is the permeability tensor, µ is the dynamic viscosity, p
is the pressure, ρ is the density, and ηj = 1 for the vertical direction (z) while ηj = 0 for the
horizontal directions (x , y ). The general Darcy equation can be re-written in terms of equivalent
fresh water head, defined as h = p/ρ0g + z:

qi = −
kij

µg

(
∂h
∂xj

+ ρr ηj

)
(14)

where ρr is the relative density given as (ρ/ρ0 − 1) and ρ0 is the reference (freshwater) density.
For an elastic solution (fluid), its density is a function of fluid pressure and solute concentration:

ρ = ρ0[1 + cw (p − p0) + γC] (15)

where ρ0 represents the freshwater density at reference pressure p0, cw is the compressibility of
water, γ is a constant derived from the maximum density of the fluid, ρmax , and is defined as
γ = (ρmax/ρ0 − 1), and C is the relative concentration.
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Viscosity (µ) is a function of concentration under isothermal conditions. It is reasonable to
assume a linear relationship with C as far as the maximum change in viscosity is insignificant in
isothermal conditions.

µ = µ0(1 + γµC) (16)

where µ0 is the viscosity of pure water, and γµ = (µmax/µ0 − 1). The general Darcy equation for
visco-elastic solutions is then given as the following:

qi = −
kij

µ0g
· 1

1 + γµC
·
(

∂h
∂xj

+ [cw (p − p0) + γC]ηj

)
(17)

By applying the continuity principle, the groundwater flow equation can be derived for
visco-elastic solutions:

∂

∂xi

[
K 0

ij ·
1

1 + γµC

(
∂h
∂xj

+ [cw (p − p0) + γC]ηj

)]
= Ss

∂h
∂ t

(18)

where K 0
ij = kij/µ0g and Ss is the specific storage. The solute continuity equation is written in

terms of the relative concentration as:

∂

∂xi

(
φDij

∂C
∂xj

)
− ∂

∂xi
(qiC) = θ

∂C
∂ t

(19)

where the Darcy flux qi is computed by solving Equation (18), φ is the porosity, and Dij is the
hydrodynamic dispersion tensor as defined by Bear (1988):

φDij = (αl − αt )
qiqj

|q|
+ αt |q|δij + φ τ Dfree δij (20)

where αl and αt are the longitudinal and transverse dispersivities, respectively, |q| is the
magnitude of the Darcy flux, τ is the tortuosity, Dfree is the free-solution diffusion coefficient and
δij is the Kronecker delta. The product τDfree represents an effective diffusion coefficient.

Note that the density-dependent flow and transport problem is nonlinear because the solution of
Equation (18) (flow equation) requires fluid densities which depend on the solute concentration
from Equation (19), and the solution for Equation (19) requires the Darcy flux calculated from
Equation (18).

3.1.3 Numerical Implementation

Equation (18) can be re-written by using a differential operator as:

L(h) =
∂

∂xi

[
K 0

ij ·
1

1 + γµC

(
∂h
∂xj

+ [cw (p − p0) + γC]ηj

)]
− Ss

∂h
∂ t

= 0 (21)
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The Galerkin finite element formulation using a trial solution ĥ =
∑

j
wjhj (where wj is a shape

function) was applied to Equation (21) over the solution domain Ω.∫
Ω

L(ĥ)widΩ = 0 (22)

and the discrete equation for Equation (21) can be derived as:

n∑
j=1

hj

{∑
e

∫
Ωe

(
K 0

kl
∂wi
∂xk

∂wj
∂xl

)
· 1

1+γµ C̄
· dΩe

}
+

n∑
j=1

∂hj
∂ t

{∑
e

∫
Ωe Ssδiw ′j dΩe

}
+∑

Ωe

∫
Ωe K 0

zz [cw (p̄ − p0) + γC̄] ∂wi
∂z ·

1
1+γµ C̄

dΩe −
∑
e

∫
δΩe qnwid(δΩe) = 0

(23)

where
∑
e

indicates summation over the elements joining at node j , Ωe and δΩ are the elemental

domain and the elemental boundary, respectively, p̄ and C̄ are the average elemental fluid
pressure and relative concentration in the element, respectively, and qn is the flux normal to δΩ.

Equation (19) is identical to the equation for transport in freshwater. Numerical discretization for
Equation (19) and solution strategies are detailed in Therrien et al. (2004). Nonlinear flow and
transport equations are solved by using Picard iteration in each time step, until the changes in
equivalent freshwater head and relative concentration are negligible for convergence.

3.1.4 Vertically Hydrostatic Initial Condition

Hydrostatic equilibrium in the vertical direction can be applied to the domain as an initial condition
for density-dependent flow and transport simulations. A vertically hydrostatic equilibrium
condition is expressed as:

qz = − kzz

µ0g
· 1

1 + γµC
·
(

∂h
∂z

+ [cw (p − p0) + γC]
)

= 0 (24)

where z represents the vertical direction. By integrating Equation (24) from zref to z, where zref is
the reference elevation at which the equivalent freshwater head h(zref ) is prescribed, the
equivalent freshwater head at z in an equilibrium condition can be derived:

h(z) = h(zref )−
∫ z

z=zref

[cw (p − p0) + γC]dz (25)

Numerical integration of N vertically aligned nodes is given by:

hit
i = href ,N +

N∑
k=i

[cw (p̄it−1
k − p0) + γC̄k ]∆zk (26)

where superscript it represents the nonlinear iteration count and summation is implied over
elements between node i and the top reference node N of reference head href .
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Figure 17: Examples for vertically hydrostatic initial conditions for equivalent freshwater
head distributions. Case 0: reference head; Case 1: compressible fluid without density
effects; Case 2: incompressible fluid with a maximum density of 1.03 kg/L; Case 3: com-
pressible fluid with a maximum density of 1.03 kg/L

The initial vertically hydrostatic equilibrium condition was tested for a vertical 1-dimensional
domain of 2 km depth where the fluid is considered to be either compressible or incompressible,
while considering or neglecting density effects (see Figure 17).

3.2 CLIMATE AND SURFACE BOUNDARY CONDITIONS

The climate and surface boundary conditions are provided by Peltier (2003a, 2006). Two
parameters are used in this study: permafrost depth (dPF ), and the normal stress (σice) at ground
surface due to the presence of ice. Both of these parameters are used in FRAC3DVS, with some
assumptions. First, the ice load is applied as equivalent freshwater head using a Dirichlet
boundary condition across all surface nodes, and second, the permafrost depth modifies the
porous media and fracture zone permeabilities, depending on whether the entire grid block or
fracture face is completely frozen, or partially frozen. Since both permafrost depth and normal
stress vary in time (1000 year time steps), their values are linearly interpolated in time with
respect to the simulation time. As FRAC3DVS can vary time steps to suit groundwater flow and
solute transport maximum change criteria (∆h, ∆C), the permafrost depth and normal stress are
recalculated for the current simulation time.
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The hydraulic conductivity of frozen porous media is assigned the value of
KPF = 0.410 248 8× 10−4 m/year and is assumed to be isotropic. This value is similar to the
permeability for the deepest units in Table 1. For grid blocks and fracture faces that are partially
frozen, the following equation is used:

KH(PF ) =
KH ∆zunfrozen + KPF ∆zfrozen

∆zunfrozen + ∆zfrozen
(27a)

KV (PF ) =
∆zunfrozen + ∆zfrozen
∆zunfrozen

KV
+

∆zfrozen

KPF

(27b)

where KH is the horizontal hydraulic conductivity, ∆zunfrozen is the unfrozen height of a grid block
or vertical fracture face, ∆zfrozen is the frozen height of a grid block or vertical fracture face, and
KV is the vertical hydraulic conductivity. The total height of the grid block or vertical fracture face
is ∆zunfrozen + ∆zfrozen. Equation (27a) represents the arithmetic mean for horizontal hydraulic
conductivity, while Equation (27b) represents the harmonic mean for vertical hydraulic
conductivity.

The normal stress due to the weight of ice on the domain is used to calculate an equivalent
freshwater head which is applied at all surface nodes as a Dirichlet boundary condition, hice
according to:

hice =


σice

ρ g
+ z, for dPF > 0 and σice > 0;

z, otherwise
(28)

where ρ is freshwater density, g is the gravitational constant, z is ground surface elevation and
dPF is the depth of permafrost. For the situation where σice = 0 and dPF = 0 (no ice load or
permafrost), only surface nodes associated with water features, such as rivers, lakes, and
wetlands, are selected as Dirichlet nodes, allowing recharge to occur across the modelling
domain. Once either permafrost or an ice load are present, all surface nodes are selected as
Dirichlet nodes and the appropriate hice is applied. Assigning Dirichlet nodes across the entire
surface prevents recharge from entering the system if surface permeability is too low (in the case
of permafrost) or in the case of the presence of ice, which would not allow recharge to take place.
A meltwater production rate is not used for the ice-sheet.

3.3 LIFETIME EXPECTANCY AS A SAFETY INDICATOR

The classical criteria used to determine the optimal location of a deep geologic repository (DGR)
are:

i) the longest travel time from the waste site to the biosphere,
ii) the least dose (or maximum dilution) to the biosphere; and
iii) the minimal prediction uncertainty.

In the following sections, we mainly focus on points (i) and (ii). In this report, we first recall the
equivalence between the standard advection-dispersion equation (ADE) and standard diffusion
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theory which relates the dynamics of a diffusion process to the Fokker-Planck equation. The
lifetime expectancy of water molecules is then defined by introducing the formal adjoint of the
forward equation. Various sources of uncertainty for the sub-regional domain are discussed in
Chapter 5.

3.3.1 Contaminant Transport in Groundwater

The stochastic motion of particles in dynamic systems has been studied intensively in the theory
of stochastic differential equations. The spreading of a contaminant mass can be described by
the random motion of solute particles, and the ADE is assimilated to the forward Fokker-Planck
(or forward Kolmogorov) equation. Therefore, it is possible to derive an Îto stochastic differential
equation as a random walk model for the movement of a contaminant particle that is exactly
consistent with the advection-dispersion model. Two alternative differential equations have been
developed (see Gardiner (1983)): the forward Fokker-Planck equation (FPE) and the
backward-in-time Kolmogorov equation (BKE) (Kolmogorov, 1931). The FPE describes the future
state of a system, given its initial situation, while the BKE provides information about the state of
the system in the past. Both equations are formulated in terms of probabilities. With the FPE, one
can see that, under certain conditions, the probability densities can be interpreted as solute
concentrations and the expected resident concentration of a conservative tracer conforms to the
probability density for the location of a particle, at any time after having entered the system.

A Lagrangian approach for solute transport describes the spreading of a contaminant in a flow
system as follows: in a bounded domain Ω in Rd (d = 1, 2, or 3) with boundary dΩ, the position of
the contaminant particle at time t , Xx0t0(t), released at time t0 at Xx0t0 = x0 is determined by
means of the Îto stochastic differential equation, as detailed in Appendix A. The transition
probability density p(x , t | x0, t0) to find a particle at position x at time t , given that it was released
at position x0 at time t0, can be obtained by solving the FPE:

∂p
∂ t

= −∂aip
∂xi

+
∂ 2bijp
∂xi∂xj

(29)

where the terms ai = ai (x , t) and bij = bij (x , t) denote the drift vector and noise tensor,
respectively, and the Einstein summation convention is used. The solution of the FPE is subject
to the initial condition p(x , t0| x0, t0) = δ (x − x0) and any appropriate boundary conditions
(Gardiner, 1983). The change of variable p(x , t) to φ (x)C(x , t), where φ is the porosity or mobile
water content, and C is the solute residence concentration, leads to the definitions of ai and bij as
follows:

ai (x , t) = vi (x , t) + φ (x)−1 ∂

∂xj

(
φ (x)Dij (x , t)

)
(30a)

bij (x , t) = Dij (x , t) (30b)

where the vi is the pore velocity component and Dij is the dispersion tensor as defined by Bear
(1988). One can show that Equation (29) becomes equivalent to the following classical forward
ADE (LaBolle et al., 1998, 2000):

∂φC
∂ t

= − ∂

∂xi
(qiC) +

∂

∂xi
φDij

∂C
∂xj

(31)
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where qi = φvi is the water flux vector. This result implies that the particle model equation
(Equation (A.1)) with ai and bij defined as in Equation (30) are exactly consistent with the ADE.
Consequently, a particle concentration that is obtained by simulating Equation (A.1) for many
particles is an approximation of the solution for Equation (31).

3.3.2 The Lifetime Expectancy of Radionuclides

The use of forward and backward models for location and travel time probability has become a
classical mathematical approach for contaminant transport characterization and prediction
(LaBolle et al., 1998; Uffink, 1989; Neupauer and Wilson, 1999; Spivakovskaya et al., 2005). The
forward version of the Fokker-Planck equation points to the future and the transformation from
probabilities and particle densities to a physical concept of a solute concentration is
straightforward. In the backward formulation, the correspondence between probability and
concentration is lost. When a particle is observed at a certain time and position, its possible
location at an earlier time covers an area that increases in size as we look further back in time
(Uffink, 1989). Assuming that the flow field is divergence-free and at steady-state, the BKE can
be expressed by the following (see Appendix A):

∂p
∂τ

= −
∂a∗i p
∂xi

+
∂ 2bijp
∂xi∂xj

(32)

where τ = t0 − t is backward (or reverse) time, and the drift vector a∗i and noise tensor bij are
defined as follows:

a∗i (x) = −vi (x) + φ (x)−1 ∂

∂xj

(
φ (x)bij (x)

)
(33a)

bij (x) = Dij (x) (33b)

Equation (32) has the form of a forward equation, showing that the FPE and the BKE are
equivalent to each other. Only the drift coefficient differs from its original definition: velocity
presents a reversed sign to handle the backward-in-time evolution. Equation (32) is often called
the formal adjoint of the FPE (Garabedian, 1964; Arnold, 1974). Suppose that a particle is found
at position x0 at time t0. To evaluate the probability that this particle was at an upstream position
at an earlier time, one can solve the BKE as expressed by Equation (32), with the initial condition
p(x , t0| x0, t0) = δ (x − x0). Solutions of the FPE, subject to such an initial condition and any
appropriate boundary conditions, yield solutions of the BKE as well. For the FPE, solutions exist
for t ≥ t0 with (x0, t0) fixed, while, for the BKE, solutions exist for t ≤ t0, so that the backward
equation expresses the development in t0, and p(x , t0| x0, t0) = δ (x − x0) is rather termed as the
final condition (Gardiner, 1983). The forward equation gives more directly the values of
measurable quantities (such as concentration C) as a function of the observed time t . The
backward equation is most applicable in the study of first passage time or exit problems, in which
we find the probability that a particle leaves a region in a given time. Using the definitions
Equation (33), and replacing p = φg in Equation (32), one obtains:

∂φg
∂τ

=
∂

∂xi
(qig) +

∂

∂xi
φDij

∂g
∂xj

(34)
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where g = g(x , t) is a backward-in-time probability density for the particle location. Equation (34)
corresponds to the so-called ”backward-in-time” ADE (Uffink, 1989; Van Kooten, 1995; Wilson
and Liu, 1997; Neupauer and Wilson, 1999; Weissmann et al., 2002; Cornaton and Perrochet,
2006a,b). The probability density function (PDF) for lifetime expectancy can be obtained by
solving Equation (34) when a unit pulse flux input is uniformly applied over the discharging areas
of the reservoir. Specific details concerning the numerical implementation of the lifetime
expectancy boundary value problem can be found in Cornaton and Perrochet (2006a). In the
current problem of safety analysis of a DGR, one can consider that the target is known (e.g., the
biosphere), and this target can be taken as the union of all the outlets for the region of concern.
The source is a priori unknown since we are investigating potentially acceptable repository
locations.

3.3.3 Mean Lifetime Expectancy as a Safety Indicator

Lifetime expectancy is given as a PDF for an appropriate representative volume and the mean
lifetime expectancy, its first temporal moment, is an average expected lifetime for the volume and
a representative statistic for the PDF. Since this statistic can be more comparable to radiometric
data and can be computed with relative ease, it may be used for preliminary safety analysis in
evaluating possible repository locations. It could also be used as a tool to compare the influence
of relevant physical processes and parameters. Note, however, that a longer mean lifetime
expectancy does not always guarantee the least dose, or the later arrival of risks at the
biosphere, as the averaged travel time of contaminants can be much longer than first or peak
arrivals in multiple pathway reactive systems, even though it might indicate so.

Suppose that g(x , t) is a solution of Equation (34), given that g(x , 0) = δ (x − xb), for all xb on the
outlet boundary. The density function g(x , t) is equivalent to the lifetime expectancy of a water
molecule at the location x , prior to exiting the reservoir. The mean lifetime expectancy E(x) is
defined as the first temporal moment of the function g(x , t):

E(x) = 〈g(x , t)〉 =
∫ ∞

0
t g(x , t)dt (35)

The function E(x) is the solution of the first moment form of Equation (34), given that E(xb) = 0:

∂

∂xi
(qiE) +

∂

∂xi
φDij

∂E
∂xj

+ φ = 0 (36)

In Equation (36), mean lifetime expectancy is continuously generated during groundwater flow,
since porosity φ (x) acts as a source term. This source term indicates that groundwater is aging
one unit per unit time, on average. The mean lifetime expectancy equation can be easily handled
by numerical codes that solve ADEs, by distributing a source term equal to porosity, and by
reversing the velocity field.

3.3.4 Mass Loads at the Biosphere and Risk Assessment

In order to simulate the transient history of a contaminant release with a relatively low
computational burden, we again make use of the backward-in-time equation. The solution of
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Equation (36), g(x , t), is the PDF for the lifetime expectancy of water molecules. It can be shown
that the total net mass flux jb at the biosphere, resulting from a transient input of intensity m∗(x , t)
[MT−1] at the repository site location, can be evaluated by the following equation (Cornaton,
2003):

jb(t) =
∫

Ω

(∫ t

0
m∗(x , t − u)g(x , u)du

)
δ (x − xr )dx (37)

where the xr indicate the coordinates over the repository locations. Equation (37) is similar to the
one presented in Rubin (2003), but it presents the considerable advantage that, since g(x , t)
needs to be solved only once, the mass outflux jb(t) (and thus the associated risk) can be
post-processed for a series of different repository locations. The flux averaged concentration at
the biosphere can be obtained by normalizing jb(t) with the outflow discharge rate. A decay
process can easily be added in the formulation Equation (37) by substituting the lifetime
expectancy density g(x , t) by the defective density gd (x , t) = exp(− ln 2

ω
t)g(x , t), where ω is the

radionuclide half-life (Andric̆evı́c et al., 1994). Equation (37) can then be applied to a series of
specific radionuclides with different half-lives.

3.3.5 Lifetime Expectancy in Fractured Porous Media

In a crystalline geologic environment, interconnected permeable fracture networks have attracted
concern since they could act as pathways for rapid contaminant migration. In this section,
analytical solutions are derived for the first and second temporal moments of lifetime expectancy
in a semi-infinite domain with a set of parallel vertical fractures in a porous matrix block, which
could represent a typical fractured crystalline environment as shown in Figure 18 (Sudicky and
Frind, 1982).

To derive analytical solutions for lifetime expectancy, fractures with a constant aperture 2b are
distributed with equal spacing L, as shown in Figure 18. Fluid flow is assumed to be
upward-directional with a constant flow rate qf in each fracture. Transport in fractures is assumed
to be 1-dimensional advective-dispersive along the fracture axis, while diffusion is the dominant
transport process in the matrix block perpendicular to the fracture axis. Under these conditions,
the following boundary value problem can be derived from Equation (36) for mean life expectancy
in the fracture and matrix domains:

−qf
∂Ef

∂z
+ nf Df

∂ 2Ef

∂z2 + nf = −nmDm

b
∂Em

∂x

∣∣∣∣
x=0

(38)

nmDm
∂ 2Em

∂x2 + nm = 0 (39)

where x ([0,∞)) and z ([0, L]) are spatial coordinates along and perpendicular to the fracture
axis, respectively, E is the mean lifetime expectancy, n is porosity, D is the effective dispersion
coefficient, and subscripts f and m denote fracture and matrix respectively. Symmetry and
continuity constrain the boundary conditions as follows:

Ef (z = 0) = 0 (40a)

lim
z→∞

Ef (z)→∞ (40b)



- 29 -

Figure 18: Schematics for a set of parallel vertical fractures and matrix block system, to
derive analytical solutions for temporal moments for lifetime expectancy

Em(x = 0, z) = E(x = L, z) = Ef (z) (40c)

∂Em

∂x

∣∣∣∣
x= L

2

= 0 (40d)

The solution for Equation (38) with Equation (40) is given by

Ef (z) =
z

2bqf
(nmL + 2bnf ) =

z
vf

(
nmL
2bnf

+ 1
)

(41)

where vf = qf /nf is the pore velocity in the fractures. The resulting mean lifetime expectancy in
the fractures is a linear function of depth z and it becomes longer as the volume of water in the
matrix block (nmL) becomes larger than the volume of water in the fractures (2bnf ) due to matrix
diffusion. On the other hand, when the matrix porosity is negligible (nmL� 2bnf ), the mean
lifetime expectancy at depth z becomes the trivial piston-flow solution z/vf . The mean lifetime
expectancy in the matrix block is also given by:

Em(x , z) = − 1
2Dm

x(x − L) + Ef (z) (42)

Equation (42) shows that the mean lifetime expectancy is parabolic across the matrix block
constrained by the solution in the bounding fractures Ef (z). Maximum mean lifetime expectancy
is obtained in the midpoint of the block (x = L/2) as L2/8Dm + Ef (z), indicating that it becomes
larger as the block gets bigger with smaller effective matrix diffusion (see Figure 19).

As solute travels longer, it spreads wider, and the variance of lifetime expectancy becomes larger
as the mean lifetime expectancy becomes longer. The variance represents the uncertainty of the
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Figure 19: Mean lifetime expectancy solutions for a set of parallel fractures and matrix
block system in Figure 18

mean as a safety indicator for repositories: for instance, if the mean of the lifetime expectancy is
large and its variance is small for a certain point, it could be considered to be a safe location,
while if the variance is large compared to the mean, a long lifetime expectancy may not
adequately represent safety. In this context, we derive the variance of lifetime expectancy for a
fracture as:

σ
2
f (z) = Vf (z)− E2

f (z) =
∫ ∞

0
(t − Ef (z))2g(z, t)dt (43)

A second moment equation similar to Equation (38) and Equation (39) can be derived from
Equation (36) as follows:

−qf
∂Vf

∂z
+ nf Df

∂ 2Vf

∂z2 + 2nf Ef = −nmDm

b
∂Vm

∂x

∣∣∣∣
y=b

(44)

nmDm
∂ 2Vm

∂x2 + 2nmEm = 0 (45)

The solution for the variance of lifetime expectancy in fractures σ2
f (z) has a form of α z2 + βz,

where the coefficients α and β are functions of b, L, n, D and qf . To avoid the redundancy but for
illustrative purposes, the solutions Ef (z), σf (z), and σf /Ef are plotted with depth for the case
where L = 150 m, b = 20 m, nf = 0.01, nm = 0.001, qf = 10 m/year, Df = Dm = 0.007 25 m2/year
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Figure 20: (a) Mean (Ef : solid line) and standard deviation (σf : dashed line) in lifetime
expectancy, and (b) the coefficient of variation (σf /Ef ) with depth for the fracture domain

as shown in Figure 20. Figure 20a shows that the mean and standard deviation for lifetime
expectancy become larger with depth. Note that increasing mean and variance in lifetime
expectancy has positive and negative effects for a repository location as we can expect longer
travel time from that location, but with a higher uncertainty. Interestingly, although both statistics
increase with depth, the rates of increase are different and their ratio actually decreases, causing
the relative uncertainty to get smaller with depth in Figure 20b. From these results, it could be
concluded that, with careful uncertainty analysis, the mean lifetime expectancy could be used as
a safety indicator for potential repository locations at depth in a fractured crystalline environment.

3.4 STATISTICAL ANALYSIS

In order to compare spatially and temporally distributed data such as hydraulic head,
concentration, and lifetime expectancy, etc., parametric statistics such as mean and standard
deviation, and non-parametric rank statistics such as percentiles, quartiles, quartile deviation,
and range are utilized. In this section, various statistics used for this study, and their advantages
and disadvantages, are summarized.

3.4.1 Parametric Statistics

The mean, µ = E(x), and standard deviation, σ (x), of variable x are the first and second central
moments for a given number of samples, n:

E(x) =
1
n

n∑
i=1

xi (46a)

σ (x) =

√√√√1
n

n∑
i=1

[xi − E(x)]2 (46b)
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The mean and standard deviation for a given probability density function f (x) are defined as:

E(x) =
∫

x f (x) dx (47a)

σ (x) =

√∫
[x − E(x)]2 f (x) dx (47b)

The mean is a representative statistic for a given sample or an expectation and the standard
deviation represents the uncertainty of the mean or the degree of scattering about the mean.
When the random variable x follows a certain specified probability density function such as a
normal distribution, then the characteristics of the random variable can be characterized solely by
its mean and standard deviation; the statistical inferences based on those statistics will be
accurate and unbiased.

When the random variable log(x) follows a known distribution function, then statistical inferences
can be performed based on E(log(x)) and σ (log(x)). In general, if samples of a random variable
have orders of magnitude range and have only positive (or negative) values (for example,
concentration or travel time), then the analysis with log-transformed values could be more
appropriate. A representative value as µg = 10E(log(x) is often called a geometric mean, to
distinguish from an arithmetic mean µa. An interesting characteristic for σ (log(x)) is its
magnitude-independence; because the difference between sample value and the mean can be
transformed as their ratio log(x)− log(µ) = log(x/µ), standard deviation (or root mean squared
difference) in log-scale represents the relative degree of scattering. For a random variable
following a normal distribution with a standard deviation value of 1, one can expect about 68 % of
samples to range between E(x)− 1 and E(x) + 1, and thus if σ (x) = 1, then 68 % of samples can
range between 0 and 2, while if E(x) = 100, then 68 % of samples can range between 99 and
101. Therefore, uncertainty for the expectation is relatively higher for a smaller mean and lower
for a larger mean. For a random variable following a log-normal distribution with a standard
deviation of unity in log-scale, σ (log(x)) = 1, if E(log(x)) = 0, then 68 % of samples can range
between 0.1 and 10, and if E(log(x)) = 2, then they range between 10 and 1000.

In order to measure the uncertainty associated with the mean or expectation, the coefficient of
variation (CV), defined as the ratio between standard deviation and mean CV = E(x)/σ (x), can
be used. When CV = 1 with E(x) = 1, then 68 % of samples can range between 0 and 2, and in
the case that E(x) = 100, they range between 0 and 200.

In safety analysis, certain worst case values need to be considered to ensure that the risk is
minimal. In parametric statistics, statistics such as µ − 2σ (µ + 2σ if a larger value is considered
to be safer) can be worst case values, because one can expect less than 2.5 % of samples to be
smaller than µ − 2σ .

3.4.2 Non-Parametric Statistics

When the population statistics are unknown for the random variable x , statistical inferences based
on parametric statistics such as the mean, standard deviation, and CV could lead to inappropriate
conclusions. Nonparametric rank statistics utilize the statistical rank of samples (ordinal number
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of a sample in a list arranged in increasing or decreasing order) and thus they are independent of
population statistics. For a given number of samples, n, ordered as Y1 < Y2 < ... < Yn, the
statistical rank of Yk is k . Important rank statistics include: minimum, maximum, midrange, range
(or half range), percentiles, quartiles, quartile deviation, quartile coefficient of variation, etc.

Minimum and maximum are Y1 and Yn, and represent the smallest and largest sample values.
Midrange (MR) is a representative value for the sample and is defined as MR = (Y1 + Yn)/2. The
half range is defined as HR = (Yn−Y1)/2 and is a measure of a degree of scattering or variability.

A kth percentile (Pk ) is defined as Ŷ(k/100)n, where Ŷ is an estimate for non-integer (k/100)n and
one can expect k % number of samples less than Pk . P25, P50, and P75 are often termed as the
first, second, and third quartiles (Q1, Q2, and Q3). The second quartile is specifically termed as
the median due to its representativeness of a sample. Quartile deviation (QD) is defined as
QD = (Q3 −Q1)/2 to indicate the degree of scattering. Quartile coefficient of variation (QCV ) is a
relative measure of the degree of scattering and it is defined as QCV = (Q3 −Q1)/(Q3 + Q1).

Worst case values can be represented by minimum, P1, P5, Q2 − 2QD, etc., in rank statistics as
most samples are expected to be greater than the worst case values.

3.4.3 Advantages and Disadvantages

For given samples, arithmetic and geometric means (µa and µg), midrange (HR), and median
(P50) can be used as a representative value. MR was derived from extreme samples (minimum
and maximum) and thus is most sensitive to samples of extreme values (or outliers). If most
sample values are different from minimum or maximum, then MR may not be representative for
the general sample characteristics. Thus, MR can only be representative for average extreme
characteristics. The median, P50, is least influenced by samples with extreme values as it is
independent of the distribution characteristics of the sample. Arithmetic or geometric mean
considers all sample values with the same weighting of 1/n and thus they can be influenced by
extreme values (or outliers) but it becomes negligible when the number of samples increases.

Standard deviation, half range, and quartile deviation are measures of the degree of scattering
around the representative value of the sample. Range is most sensitive to outliers and quartile
deviation is least influenced by extreme values or outliers. Relative uncertainty of representative
values can be measured by coefficient of variation in parametric statistics and by quartile
coefficient of variation in rank statistics, as they are independent from magnitude of sample
values. The ratio between half range and midrange HR/MR can be used as a measure of the
relative uncertainty when samples of extreme value are considered to be important.

A worst case can be represented by µ − 2σ , the minimum, P1, P5, or Q2 − 2QD. The minimum is
most sensitive to outliers while the percentiles can be easily interpreted from their definition.

Both parametric and non-parametric statistics will be used in subsequent sections to explore their
relative merits in visualizing and comparing some of the very complex flow and transport
simulation results completed for the sub-regional modelling case study.
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4. GROUNDWATER FLOW AND LIFETIME EXPECTANCY IN A SINGLE SUB-REGIONAL
MODEL REALIZATION

4.1 HYDRAULIC PROPERTIES

In order to better understand the evolution and the dynamics of groundwater flow in the
sub-regional domain, a reference case using fracture zone network realization 1 was selected
and embedded in the domain as described in Chapter 2. Matrix hydraulic properties are given in
Table 1.

The distribution of hydraulic properties in the fracture domain is critical to groundwater flow and
solute transport, but these properties are somewhat uncertain as described in Chapter 2. As a
reference simulation, the fracture zone permeability is assumed to decrease with depth following
the median trend (50th percentile) in Figure 12; the fracture zone porosity is given as a function of
the permeability (Equation (10)) with, for illustrative purposes, an assumed fracture density of
10 m−1 and matrix porosity of 0.003; the fracture zone width is assumed to follow a log-normal
distribution as given by Equation (4) (see Figure 21, Figure 22, and Figure 23). The uncertainty
related to fracture zone hydraulic properties will be discussed later.

Figure 21: Fracture zone permeability for reference case
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Figure 22: Fracture zone porosity for reference case

Figure 23: Fracture zone width for reference case
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4.2 GROUNDWATER FLOW

With the boundary conditions specified as described in Chapter 2, steady-state flow was
simulated. As a first step, density effects were not considered for the simulations. Figure 24
shows the head distributions in the matrix and fracture domains. The results show that the
hydraulic head near ground surface is influenced by the surface boundary conditions (due to
topography) and fracture zone geometry. Hydraulic head tends to become smoother at depth, as
suggested by Tóth and Sheng (1996) and shown by Sykes et al. (2003).

The fluid flux distribution (Figure 25) confirms that fracture zones could act as permeable
pathways for fluid flow and contaminant migration even at depths of 870 m (z = −500 m),
although the flux decreases approximately an order of magnitude, or more, as compared to near
surface fluxes. Note that groundwater flow is more active near surface than at depth as fracture
zones and matrix permeabilities are higher and the hydraulic driving force is stronger near
surface. Likewise, with increasing depth, fracture zones become sparser and less permeable,
matrix permeabilities decrease, and the resulting flows can become stagnant, except within major
fracture zones.

4.3 BRINE DISTRIBUTION

4.3.1 Initial and Boundary Conditions

In order to examine the effects of Shield brine on the sub-regional flow system, a series of
simulations were completed assuming a simple linear relationship between density or viscosity
and TDS concentration with the maximum density (see Section 3.1.1) of 1.0 kg/L (TDS:
3500 mg/L), 1.03 kg/L (TDS: 35 000 mg/L), 1.1 kg/L (TDS: 150 000 mg/L), or 1.2 kg/L (TDS:
300 000 mg/L), and a maximum viscosity (relative to fresh water) of 1.0, 2.0, or 4.0.

For the initial condition of 20 000 years of viscous buoyancy-driven flow and transport simulations,
the following steps were followed:

i) a steady flow field was obtained without density and viscosity effects (Figure 24),
ii) initial relative concentration was set to 1.0 below an elevation of −250 masl and 0.0

elsewhere (Figure 26), and
iii) hydraulic head in brine region is modified to accommodate vertical hydrostatic condition

with given maximum brine density (for example, see Figure 27).

The bottom of the domain was set as a specified concentration boundary assuming that the brine
always exists, zero mass flux condition was applied for surface recharge areas, and zero
dispersive flux boundary condition was applied for discharge areas.

4.3.2 Illustrative Examples

In order to check the validity of the numerical simulator for density-dependent flow and transport
and also to demonstrate the effects of brine on groundwater flow system behaviours, simplified
simulations were carried out for illustrative purposes. For this example, a 10 km wide and 1.6 km



- 37 -

(a)

(b)

Figure 24: Piezometric head for steady-state flow in the (a) matrix, and (b) fracture zones
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Figure 25: Darcy flux distribution for reference case

Figure 26: Initial concentration distribution for viscous buoyancy-driven flow and transport
simulations
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Figure 27: Initial equivalent freshwater head for maximum relative brine density of 1.2

deep rectangular domain was considered. The domain was discretized similarly to the
sub-region; each element being 50 m wide with variable thickness as described in Chapter 2. The
domain was assumed to be homogeneous with a hydraulic conductivity of 0.01 m/year. Hydraulic
head was specified at the top of the domain to linearly vary from 420 m (roughly the highest
ground surface elevation in the subregion) in the left top corner to 350 m (the lowest ground
surface elevation in the subregion) in the right top corner. Steady flow was simulated first without
brine (Figure 28) and then brine was assumed to exist initially below −250 masl (Figure 29). The
initial head distribution for vertical hydrostatic equilibrium was modified for given maximum
relative density values (Figure 30). The increase in the maximum relative density results in an
increase in head in the lower portion of the domain. Horizontal, transverse horizontal and
transverse vertical dispersivities are 50 m, 5 m, and 0.5 m respectively with a diffusion coefficient
of 0.000 725 m2/year and a tortuosity of 1.0 (i.e., not considered).

Density-dependent flow and transport was simulated for 20 000 years for a maximum relative
brine density of 1.0 (no brine effect), 1.03 (saline), 1.1 (brackish), and 1.2 (brine). Figure 31
shows the relative brine concentration distributions for given maximum brine density values.
Results in Figure 31 clearly demonstrate the effects of brine density: as the fluid becomes
denser, upward migration is retarded in the discharge area, as noted by the varying concentration
contours near the top right corner of the domain. A similar effect is notable in the recharge area
near the top left corner of the domain; the increased density impedes downward recharge, visible
in the variation in the concentration contours.

Brine distributions in Figure 31 influences the groundwater flow field and Figure 32 shows the
change in groundwater linear velocity fields for different values of maximum brine density. In
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Figure 28: Hydraulic head distribution in steady state

Figure 29: Initial relative brine concentration

Figure 32, it is shown that the change in groundwater flow due to the change in fluid density is not
significant in the recharge area but upward velocity in the discharge area becomes smaller with
higher fluid density, as illustrated by the reduction in velocity vector magnitude near the top right
corner. The results imply that brine can retard migration of contaminants released in the brine
region to the surface discharge areas.

Figure 33 shows the change in streamlines with different values of maximum brine density. The
results show that the brine region behaves similar to a diffraction zone (a low permeability zone)
and the groundwater recharged into the system flows through the shallower region as the
maximum fluid density increases.
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(a)

(b)

(c)

Figure 30: Illustrative initial equivalent freshwater head for a relative brine density of:
(a) 1.03, (b) 1.1, and (c) 1.2
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(a)

(b)

(c)

(d)

Figure 31: Relative brine concentration at 20 000 years for relative brine densities of: (a) 1.0,
(b) 1.03, (c) 1.1, and (d) 1.2
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(a)

(b)

(c)

(d)

Figure 32: Linear velocity at 20 000 years for relative brine densities of: (a) 1.0, (b) 1.03,
(c) 1.1, and (d) 1.2



- 44 -

(a)

(b)

(c)

(d)

Figure 33: Streamlines at 20 000 years for relative brine densities of: (a) 1.0, (b) 1.03, (c) 1.1,
and (d) 1.2
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Density-dependent flow and transport were simulated when the maximum fluid viscosity was
assumed to be two or four times larger than fresh water. Figure 34 shows the relative
concentration distribution when the maximum density of fluid was set to be 1.2 with a maximum
relative viscosity of 2.0 or 4.0. The results indicate that increasing maximum viscosity can retard
the migration of brine at depth. Velocity and streamline distributions also show that a change in
fluid viscosity values causes the brine region to be more stagnant (Figure 35 and Figure 36).
Although the figures for a maximum relative viscosity of 2.0 or 4.0 look similar, the differences are
noted if one carefully examines the top right portion of the relevant figures. The concentration
contours are slightly elevated in the 2.0 relative viscosity case, when compared to the case with a
relative viscosity of 4.0

(a)

(b)

Figure 34: Relative brine concentration at 20 000 years for a relative brine density of 1.2
and with maximum relative viscosities of: (a) 2.0, and (b) 4.0

Alternatively, the distribution of the magnitude of linear fluid velocity is presented to demonstrate
the effects of brine density and viscosity on the distribution of stagnant areas (see Figure 37 and
Figure 38). The results show that stagnant areas (blueish colours) become bigger as the
maximum density increases. It is worth noting that density variations affect only the vertical
component of groundwater flow; although horizontal flow is dominant in the mid-region of the
domain, linear velocity in the mid-region decreases significantly with increasing density.
Increasing viscosity due to the presence of brine also significantly retards groundwater flow
especially in the mid-region but the influence is relatively minor below recharge or discharge
areas.
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(a)

(b)

Figure 35: Linear velocity at 20 000 years for a relative brine density of 1.2 and with maxi-
mum relative viscosities of: (a) 2.0, and (b) 4.0

4.3.3 Brine Distribution and Groundwater Flow in the Sub-Regional Domain

Brine distribution was simulated within the sub-regional domain. With given initial and boundary
conditions described in Section 4.3.1, density-dependent flow was simulated for 20 000 years. As
a reference case, brine distribution was simulated without density and viscosity changes
(Figure 39). Note that the brine migrates in a steady groundwater flow field if the variation in
density and viscosity is not considered.

Figure 39 shows that although brine initially located below −250 masl moves upwards through
fracture zones, the concentration is negligible near ground surface except in major fracture zones
as shown in Figure 40.

Figure 41 shows the distribution of relative brine concentration for different values for maximum
brine density. The results show that as the maximum brine density increases, the relative brine
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(a)

(b)

Figure 36: Streamlines at 20 000 years for a relative brine density of 1.2 and with maximum
relative viscosities of: (a) 2.0, and (b) 4.0

concentration becomes smaller in permeable fracture zones as upward migration of brine is
restricted by gravity.

The groundwater flow system can be influenced by the brine distribution as shown in the
illustrative cross-section example of Section 4.3.2. Figure 42 shows the total Darcy flux in the
domain for different values for maximum brine density. Although Darcy flux becomes smaller as
the density increases, the effect is not significant because the fluxes are much more influenced
by the vertical distribution of permeability and the location of fracture zones.

In order to closely examine the brine effects on groundwater flow, a vertical cross section was
selected to plot the brine concentration and the Darcy flux vector in the matrix (Figure 43). This
cross-section is the same as the X–Z cross-section shown in Figure 42. In Figure 43, Darcy flux
was plotted only in the region below sea level to remove the relatively larger vectors near ground
surface. The results indicate that the vertical component of the Darcy flux vector becomes
smaller as the brine density increases for both upward and downward cases and the change in
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(a)

(b)

(c)

(d)

Figure 37: Magnitude of linear fluid velocity at 20 000 years for maximum relative brine
densities of: (a) 1.0, (b) 1.03, (c) 1.1, and (d) 1.2
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(a)

(b)

Figure 38: Magnitude of linear fluid velocity at 20 000 years for a relative brine density of
1.2 and with maximum relative viscosities of: (a) 2.0, and (b) 4.0

Figure 39: Relative brine concentration without density and viscosity effects. Plane view at
−200 masl
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Figure 40: Relative brine concentration without density and viscosity effects. Plane view at
0 masl

flux vectors restricts the vertical migration of brine to a discharge area. It is important to note that
the change in vertical flux vectors in the recharge or discharge areas, as a result of density
effects, also influences the flow in the brine region below because of the reduced amount of
water needed to flow from the brine region.

4.4 LONG-TERM CLIMATE CHANGE

The effects of long-term climate change (e.g., permafrost) on the groundwater flow system are
investigated by modifying the permeability of rock within the permafrost zone, and by changing
the surface boundary conditions to reflect a glacial scenario as developed in Section 3.2. Plots of
permafrost depth and ice load, expressed as equivalent metres of water, are shown in Figure 44
for the NN2008 glaciation scenario provided by the University of Toronto’s Glacial Systems Model
(GSM) (Peltier, 2003b). Permafrost exists for nearly the entire simulation period of 121 000 years
before present, except for approximately the most recent 10 000 years (see Figure 44a). Three
glaciation events were predicted to occur over the sub-regional domain as shown in Figure 44b.

Zero flux Neumann boundary conditions were used for the lateral and bottom surfaces of the
model domain. A Dirichlet boundary condition was applied as described in Section 3.2. The ice
loading was assumed to be entirely applied as a piezometric head equivalent to the normal stress
imposed by the ice sheet upon the domain. This approach neglects the fact that the bedrock will
carry a significant portion of the imposed normal stress, due to the fact that rock is less
compressible than water. Although FRAC3DVS does not account for hydro-mechanical effects,
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(a)

(b)

(c)

Figure 41: Relative brine concentration at 20 000 years for maximum relative brine densities
of: (a) 1.03, (b) 1.1, and (c) 1.2. Plane view at −200 masl
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(a)

(b)

Figure 42: Darcy flux distribution at 20 000 years for maximum relative brine densities of:
(a) 1.0, (b) 1.03, (c) 1.1, and (d) 1.2. Plane view at −200 masl
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(c)

(d)

Figure 42: (continued) Darcy flux distribution at 20 000 years for maximum relative brine
densities of: (a) 1.0, (b) 1.03, (c) 1.1, and (d) 1.2. Plane view at −200 masl
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(a)

(b)

(c)

(d)

Figure 43: Darcy velocity vectors along with relative brine concentration in a cross section
of the sub-regional domain at 20 000 years for maximum relative brine densities of: (a) 1.0,
(b) 1.03, (c) 1.1, and (d) 1.2
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Figure 44: Time series plots of (a) permafrost depth, and (b) ice load in equivalent metres
of water for climate simulation NN2008 (cold-based glaciation)

this analysis does demonstrate the behaviour of deep groundwater flow systems subjected to
permafrost conditions and glacial loading events at ground surface and provides a basis to
qualitatively understand the magnitude and time rate-of-change of flow in response to ice-sheet
advance and retreat.

Matrix properties for solute transport include a longitudinal dispersivity of 50 m, a transverse
horizontal dispersivity of 5 m and a transverse vertical dispersivity of 0.5 m. A free solution
diffusion coefficient of 7.258× 10−3 m2/yr was also applied. A matrix bulk density of
2642.05 kg/m3 (2650 kg/m3 × (1− 0.003)) is used. Fracture hydraulic conductivity is set to
1.0× 10−6 m/s, porosity to 0.1, and thickness to 1 m throughout the modelling domain. Salinity is
not included in these climate simulations.

Similarly, Peltier (2006) has provided an alternate climate simulation, NN2778. This climate
scenario differs from NN2008 (cold-based glaciation) in that the base of the glacier is unfrozen for
significant periods of time representing a warm-based glaciation. Both permafrost depth and ice
load specific to the sub-regional modelling domain are plotted in Figure 45. Although the GSM
simulations are North-American continent in scale, the results plotted in Figure 45 are specific to
the sub-regional modelling domain.

4.4.1 Simulation Results

A north-south cross-section through the domain with piezometric heads at 12 000 years before
present is shown in Figure 46. At this point in time, the last glacial episode is retreating, thereby
reducing the ice loading. However, due to the lower permeabilities at depth, the higher pressures
from the prior ice loads remain at depth. Higher permeability features such as fractures are able
to dissipate excess pore pressures quicker than the rock matrix. Two arbitrary locations are
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Figure 45: Time series plots of (a) permafrost depth, and (b) ice load in equivalent metres
of water for climate simulation NN2778 (warm-based glaciation)

highlighted on Figure 46: a red dot within the rock matrix, and a green dot within a fracture.
Vertical Darcy velocities at these locations are plotted in Figure 47 for NN2008. The vertical
Darcy fluxes are also plotted for simulation NN2778 as shown in Figure 48
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Figure 46: Piezometric heads for north-south cross-section at 12 000 years before present.
The red dot represents a location in the rock matrix, while the green dot represents a loca-
tion within a fracture.

Both Figure 47 and Figure 48 show that the vertical Darcy velocities in both the rock matrix and a
fracture can be both downwards (negative) and upwards (positive), depending on whether the ice
load at ground surface is increasing or decreasing, respectively. The vertical Darcy velocities in
the fractures are much larger than in the rock matrix and can vary by approximately 5 orders of
magnitude. It is interesting to note that the Darcy velocities for the matrix and fracture are very
similar in shape when permafrost is present in the near surface. However, when no permafrost is
present, the vertical Darcy velocity in the fracture is strongly influenced by topographic gradients
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Figure 47: Vertical Darcy velocities within the rock matrix and a fracture as indicated in
Figure 46, for climate simulation NN2008 (cold-based glaciation)
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Figure 48: Vertical Darcy velocities within the rock matrix and a fracture as indicated in
Figure 46, for climate simulation NN2778 (warm-based glaciation)

since it is well connected to the near surface flow system. The presence of permafrost inhibits
this connection and the fracture responds in a similar manner to the surrounding rock matrix.

Concern has been expressed regarding the ability of oxygenated recharge waters penetrating to
great depths during and following a glaciation event. To analyze this situation, a unit load of
concentration was applied at the surface nodes of the numerical model. Recharge occuring
during the 121 000 year simulation is thereby tagged with a tracer of unit concentration. Mean life
expectancy could not be used since it is only applicable to steady-state simulations. Plotting an
iso-surface representing 5% recharge water (a concentration of 0.05) can provide an indication of
the depth to which recharge waters can migrate. A plot of the 5% iso-surfaces for the NN2008
and NN2778 climate simulations is shown in Figure 49.

As can be clearly seen, the blue iso-surface representing NN2778, the warm-based glaciation
scenario, is barely visible as the red iso-surface for NN2008 is above it. This indicates that the
warm-based glacier scenario leads to greater penetration of recharge waters to depth. A different
plot showing the intersection of both iso-surfaces with numerous east-west and north-south
trending cross-sections is shown in Figure 50.

Figure 50 clearly shows that the depth of recharge water penetration for NN2778 is greater than
for NN2008. Depth of recharge water penetration is greater within fractures than the matrix. This
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Figure 49: Iso-surface of 5% recharge water at the end of a 121 000 year simulation for the
NN2008 climate simulation (red iso-surface) and for the NN2778 climate simulation (blue
iso-surface)

fact is also prevalent in comparing Figure 48 to Figure 47 as the duration of downward velocity in
the fracture is also greater for NN2778 than for NN2008. Some fractures permit the 5% recharge
water to penetrate to the bottom of the modelling domain, while the 5% recharge water penetrates
the matrix to approximately 500–600 m depth for the NN2008 scenario and 100–200 m deeper
than NN2008 for the NN2778 scenario. It should be mentioned that the depths of penetration are
accentuated by the translation of ice thickness into hydraulic head for the boundary conditions.

4.5 LIFETIME EXPECTANCY

4.5.1 Illustrative Examples

In this section, the utility and the applicability of the concepts of lifetime expectancy and
backward-in-time transport for optimal location of subsurface waste repositories are illustrated
with a set of numerical examples. We focus specifically on the effects of fracture network
geometry on lifetime expectancy, as a preliminary study for the application of this approach to the
Canadian Shield sub-regional environment.



- 59 -

Figure 50: East-west and north-south trending fences showing 5% recharge water at the
end of a 121 000 year simulation for the NN2008 climate simulation (red lines) and for the
NN2778 climate simulation (blue lines)

Figure 51: Schematics of the vertical cross-sections used to model mean and probability
density for lifetime expectancy: (a) hydraulic head distribution in a homogeneous matrix
system under given flow boundary conditions; (b)-(d) variation cases with different fracture
networks (thick lines).
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4.5.1.1 Model Layout and Proof-of-Concept

Four sets of different fracture network geometries are considered in a two-dimensional, 10 km
wide and 1 km deep, cross-sectional domain (Figure 51). The domain is discretized using 10 m
square rectangular elements. For the illustrative schematic of fractured porous media, the
fracture domain is assumed to be more permeable and have a higher porosity than the matrix
domain. Flow and transport properties are homogeneous, with the fracture domain having a
hydraulic conductivity of 10−3 m/s, porosity of 0.3, dispersivity of 10 m, and free solution diffusion
coefficient of 2.3× 10−9 m2/s, and the matrix domain having a isotropic hydraulic conductivity of
10−6 m/s, porosity of 0.2, and longitudinal and transverse dispersivities of 10 m and 1 m
respectively. Decay and retardation are excluded for simplification and clarity. A specified
hydraulic head boundary condition is imposed at the top of the domain, to derive a steady flow
from top left to top right as shown in Figure 51a.

Figure 52: Lifetime expectancy solutions for the case in Figure 51. (a) Mean lifetime ex-
pectancy distribution in years, (b) lifetime expectancy probability density at nine observa-
tion points in (a), and (c) vertical logs of mean lifetime expectancy passing through the
observation points.
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As a first step, mean lifetime expectancy is computed throughout the whole domain for the
homogeneous matrix system (Figure 52a). The result was obtained by solving the steady state
backward-in-time mean lifetime expectancy Equation (36), and is equivalent to solving the
forward transport Equation (29), or its first moment form, a number of times using a Dirac input at
each nodal upstream point. The result in Figure 52a can easily be understood from the flow field
in Figure 51a: mean lifetime expectancy gets shorter as any point becomes closer to the top right
exit boundary because one can expect a short travel time to the exit boundary if a source is near
the exit boundary, while travel time is longer for the bottom left corner of the domain (up to
100 000 years). With this result in mind, one might conclude that the bottom left corner would be
the safest location for hosting a repository in terms of the longest average expected travel time to
the biosphere.

Figure 52b shows nine probability density functions for lifetime expectancy at the observation
points R11-R33 in Figure 52a. Since the probability density for lifetime expectancy accounts for
the temporal probabilistic distribution for lifetime expectancy, travel time from one point within the
domain to the exit boundary could vary significantly, depending on the flow field and
hydro-dispersive properties of the medium. For this specific example, water molecules at the
observation point, for example R22, will reach the top of the domain (biosphere) in about 30 000
years on average, but it could be 5000 years earlier or later as shown in Figure 52b. Note that as
lifetime expectancy becomes longer, it tends to spread wider as in classical transport theory.

Figure 52c shows vertical profiles of mean lifetime expectancy through the observation points
R11-R13 (R1), R21-R23 (R2), and R31-R33 (R3). The results show that the expected travel time
is longer as a source becomes deeper. Interestingly, the three vertical profiles in Figure 52c
behave in different ways due to their different locations in the flow field. For the profile across R1,
mean lifetime expectancy linearly increases with depth, while it increases quickly down to 100 m
depth for the profile across R2 and it increases relatively slowly down to 900 m depth for R3.

4.5.1.2 Effects of Fracture Zone Geometry

In order to investigate the influence of fracture zone geometry on lifetime expectancy in fractured
porous media, three sets of fracture network geometries were embedded in the matrix system.
First we consider the case with one horizontal fracture zone at the bottom and four evenly spaced
vertical fracture zones (Figure 51b) and then the cases with different numbers of vertical and
horizontal fracture zones (Figure 51b and Figure 51c).

For the case in Figure 51b, mean lifetime expectancy in the matrix domain varies up to about
60 000 years along the recharge area at the upper left corner and contours tend to be refracted
across fracture zones due to a higher flow rate in the discontinuities (Figure 53a). The main
difference between Figure 52a and Figure 53a lies in the mean lifetime expectancy near the
bottom horizontal fracture zone, where mean lifetime expectancy becomes smaller (e.g., see the
5000 year contour). Computed probability density functions of lifetime expectancy from nine
observation points (Figure 54b) indicate that lifetime expectancy becomes much smaller over the
domain compared to the results in Figure 52b, because fracture zones act as a “short cut” to the
biosphere. Not surprisingly, the probability density for R1 has notable multiple peaks due to
multiple distinct flow paths to the discharge area along the fracture zones. It is worth noting that
first peaks for R1 come earlier than peaks for R2 because the observation points R1 are located



- 62 -

Figure 53: Lifetime expectancy solutions for the case in Figure 51b. (a) Mean lifetime ex-
pectancy distribution in years, (b) lifetime expectancy probability density at nine observa-
tion points in (a), and (c) vertical logs of mean lifetime expectancy passing through the
observation points.

closer to fracture zones. The mean lifetime expectancy for R1 ranges from about 20 000 years for
R13 to 45 000 years for R11, as attested to by the strong gradient in mean lifetime expectancy in
the neighbourhood of R1 (Figure 53a), even though the first peaks will appear between 10 000
and 20 000 years. This discrepancy is important in the context of risk or safety in hosting
repositories because a life expectancy PDF can be multi-modal, having two or more peaks
representing the likelihood of travel time to the biosphere. The mean or some weighted average
of the life expectancy PDF may not be sufficient to represent the travel time, and hence risk. In
this case, it would be best or more prudent to choose the shorter travel time, even though the
mean travel time is greater. Due to the existence of the bottom fracture zone, mean lifetime
expectancy decreases near the bottom of the domain (Figure 53c). A rapid decrease in mean
lifetime expectancy along R1 could be explained by downward flow in the matrix block, compared
to lateral or upward directional flow in other blocks.

Figure 54 shows the results for mean lifetime expectancy and the corresponding PDFs when the
number of vertical or horizontal fracture zones is increased (Figure 51c and Figure 51d). For
Figure 54a and Figure 54b, lifetime expectancy is smaller than in the previous case (Figure 53),
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Figure 54: Lifetime expectancy solutions for different fracture network geometries. (a) and
(c) show lifetime expectancy probability density at nine observation points for Figure 51c
and Figure 51d, respectively. (b) and (d) are vertical logs of mean lifetime expectancy pass-
ing through the observation points for Figure 51c and Figure 51d

although the general tendency in the distribution does not change significantly as the distance
from the observation points to the nearest fracture zones does not change significantly. Note
again that the points in R2 could represent more suitable repository locations than in R1,
regarding the first arrival times. This result could be contradictory to the suggestion that a
repository could be best hosted in the recharge area by Tóth and Sheng (1996). When a
horizontal fracture zone is added in the middle of the domain (Figure 51d), the nine observation
points become significantly closer to a fracture zone (R12, R22, and R32 are now located on the
fracture zone). The mean lifetime expectancy distribution shows that the additional fracture zone
could shorten the lifetime expectancy values to less than one half of their original values for most
of the domain (Figure 54c and Figure 54d). The lifetime expectancy PDFs for R12, R22, and R32
shows multiple peaks and significant tailing due to matrix diffusion. It should be noted that a
repository would not knowingly be placed in or near a fracture zone.
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Analyses of lifetime expectancy for the illustrative examples indicate that one can expect shorter
lifetime expectancy near horizontal fracture zones, and that, as a matter of fact, depth is not
necessarily a secure factor in ensuring safety in fractured porous media. In addition, the
comparison between the mean and PDF solutions in lifetime expectancy leads to the suggestion
that multiple pathways reactive transport systems such as fractured porous media require more
careful analyses.

4.5.2 Mean Lifetime Expectancy - Sub-Regional Domain

Mean lifetime expectancy (MLE) was computed throughout the sub-regional domain following the
theory described in Section 3.3.3 (Figure 55). In Figure 55, MLE generally increases at deeper
locations, ranging from less than one hundred years near ground surface to greater than 10
million years at depth; it is the least at major fracture zones; and it becomes greater as one
moves from fracture zones towards the middle of matrix blocks. It is worth noting that MLE could
be less than 100 years, as represented by the blue contours, near ground surface. This is mostly
associated with discharge areas but can occur in recharge areas as well since local
flow/dispersion is a key factor for MLE.

Figure 56 shows the distribution of MLE for four horizontal slices at different depths. At an
elevation of 100 masl (approximately 270 m below ground surface), MLE could be less than 1000
years in major fracture zones but for most of the horizontal slice, it ranges from 104 to 106 years;
at an elevation of −100 masl (approximately 470 m below ground surface), MLE becomes larger
than 104 years even within fracture zones; at an elevation of −300 masl (approximately 670 m
below ground surface), MLE becomes greater than 106 years for most areas except within major
fracture zones; and finally, MLE becomes greater than 10 million years for deeper areas. MLE
captures the impact of diffusion and hydromechanical dispersion, while advective particle tracking
does not.

Figure 57 shows an isosurface for MLE = 106 years in the sub-region: MLE is greater than
106 years below the isosurface and this region is relatively more suitable than the upper region for
locating a repository. In Figure 57, depression of the isosurface is mostly due to major
sub-vertical fracture zones distributed across the domain, which act as preferential pathways
from the deep sub-surface, reducing MLE in their vicinity.

Figure 58 shows frequency plots for MLE at four different elevations across the sub-region. The
results show that MLE is strongly influenced by depth as MLE at an elevation of −500 masl
increased by three orders of magnitude compared to that at an elevation of 100 masl. Figure 58
also shows that the MLE distributions (in log-scale) become narrower as depth increases,
indicating less variation with increasing depth.

In order to compare MLE distributions at different elevations, cumulative frequency plots were
generated for various elevations (Figure 59). It is clear in Figure 59 that MLE increases with
depth and its range becomes narrower. The results imply that with sparser and less permeable
fracture zones, expected groundwater travel time from depth to the biosphere increases with less
uncertainty.
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(a)

(b)

Figure 55: Mean lifetime expectancy distribution in (a) matrix, and (b) fracture domains.
Plane view at −415 masl
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Figure 56: Mean lifetime expectancy at four different elevations in the sub-region

Figure 57: Isosurface for 106 years of mean lifetime expectancy
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Figure 58: Frequency plots for mean lifetime expectancy at four different elevations

4.5.3 Probability Density for Lifetime Expectancy - Sub-Regional Domain

MLE is the first temporal moment of lifetime expectancy probability, and thus, a greater MLE does
not always guarantee the least dose, or the later arrival of contaminants at the biosphere, as the
averaged travel time of contaminants can be much greater than either first or peak arrivals in
multiple pathway reactive systems, even though it might indicate so. It was clearly demonstrated
in Section 4.5.1, with illustrative fractured porous media, that it is more desirable to compute the
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Figure 59: Cumulative frequency plots for mean lifetime expectancy at four different eleva-
tions

probability density function for lifetime expectancy, in order to completely analyze the suitability of
a location to host a subsurface repository. It is possible to compute the probability density for
lifetime expectancy for any given volume or for any union of volume subsets with a given release
function (see Equation (37)). Figure 56 shows four specific repository locations at different depths
to compute PDFs of lifetime expectancy: P1 at z = 100 masl, P2 at z = −100 masl, P3 at
z = −300 masl, and P4 at z = −500 masl. Each location has an approximate size of
(∆x , ∆y , ∆z) = (100 m, 1 km, 100 m). For the given locations, the mean of lifetime expectancy
was calculated to be between 100 000 and 1 000 000 years for P1 and P2, but peak mass flux
arrival times for P1 and P2, based on Equation (37), were earlier than the calculated MLE values:
approximately 30 000 and 150 000 years for P1 and P2, respectively as shown in Figure 60. For
the deeper release points P3 and P4, mass flux computed from the source locations was
negligible for 2 million years of simulation time, as can be expected from MLE solutions which are
greater than 107 years. This result implies that strong tailing for transport in fractured porous
media due to multiple pathways and matrix diffusion could make a significant difference between
the first temporal moment and the peak arrival time, even though a greater MLE would still be an
indicator of later water molecule arrival. The risk associated with potential subsurface
repositories needs to be analyzed for the given safety criteria, ideally with transient simulations
and the PDFs of lifetime expectancy instead of MLE.
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Figure 60: Mass flux to biosphere from sources at four different elevations

4.5.4 Effects of Shield Brine - Sub-Regional Domain

As shown in Section 4.3, Shield brine can retard upward groundwater flow and may influence
lifetime expectancy and the performance of deep subsurface repositories. In this section, the
effects of Shield brines on mean lifetime expectancy (MLE) distributions are examined. MLE
distributions are computed by using the flow field simulated with different maximum brine density
values discussed in Section 4.3.

For illustrative purposes, flow fields and brine distributions for the vertical cross-sectional
examples in Section 4.3.2 were utilized to obtain the MLE distribution (Figure 61). The results in
Figure 61 clearly demonstrate that as Shield brines become denser, MLE increases in the brine
region. Figure 61 also shows that MLE contour lines become more horizontal in the brine region
as density increases, indicating that the depth-dependency of MLE becomes stronger in more
hydraulically stagnant regions.

MLE was computed in the sub-regional domain by using the groundwater flow fields obtained
from the density-dependent flow and transport simulations in Section 4.3 (Figure 62). The results
show that MLE generally increases with less variation at deeper locations as brines become
denser. This can be seen by comparing the z = −500 masl elevation of Figure 62a and
Figure 62d, where the higher density of Figure 62d results in greater MLE, than similar locations
in Figure 62a. Similar trends can be seen when comparing the various sub-figures (varying
density) of Figure 62 at similar elevations.
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(a)

(b)

(c)

(d)

Figure 61: Mean lifetime expectancy distributions for maximum relative brine densities of:
(a) 1.0, (b) 1.03, (c) 1.1, and (d) 1.2
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(a)

(b)

Figure 62: Mean lifetime expectancy at four elevations in the sub-region with maximum
relative brine density of: (a) 1.0, (b) 1.03, (c) 1.1, and (d) 1.2
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(c)

(d)

Figure 62: (continued) Mean lifetime expectancy at four elevations in the sub-region with
maximum relative brine density of: (a) 1.0, (b) 1.03, (c) 1.1, and (d) 1.2
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In Figure 63, an isosurface for MLE = 106 years was compared for the cases with and without
density effects. The results clearly show that the MLE isosurface with dense brine undulates less
than the MLE isosurface without brine effects.

Cumulative frequency plots for MLE with and without density effects are compared in Figure 64.
In the shallow elevations, brine effects are negligible but dense brine at deeper locations
influences the leading edges of cumulative frequency distributions (smaller MLE in hydraulically
more active regions). The aggregate effect of density is to shift the MLE cumulative frequency
plots to the right, especially for elevations which contain brine, thereby increasing MLE at that
horizon.
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(a)

(b)

Figure 63: Isosurface for 106 years of mean lifetime expectancy in the sub-region with max-
imum relative brine density of: (a) 1.0, and (b) 1.2
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Figure 64: Comparison of cumulative frequency plots for mean lifetime expectancy at four
different elevations in the sub-region with (red lines) and without brine effects (black lines)
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5. SUB-REGIONAL MODEL UNCERTAINTY AND SENSITIVITY ANALYSIS

5.1 PARAMETER UNCERTAINTY

It was shown in Chapter 4 that fluid flow and lifetime expectancy can be strongly influenced by
the presence of fracture zones. However, it is unlikely that the hydraulic properties of the fracture
zones can be completely characterized and thus they, at best, can be characterized statistically to
a certain degree (see Chapter 2). In this section, the effects of uncertainties in fracture zone
permeability, porosity, and width distributions on groundwater flow and lifetime expectancy are
discussed.

5.1.1 Fracture Zone Permeability

Based on the distribution of fracture zone permeability with depth observed at the WRA and
Finnish sites (see Figure 7), a statistical model was developed to describe the relationship
between fracture zone permeability and depth (see Section 2.5). In order to investigate the
effects of fracture zone permeability distributions on a sub-regional groundwater flow system,
fluid flow and mean lifetime expectancy were simulated for three different permeability-depth
relationships: uniform permeability, deterministic decrease of permeability with depth, and
statistical decrease of permeability with depth.

In Figure 11, it was shown that most of the measured fracture zone permeability values range
from 10−12 m2 to 10−15 m2 at ground surface, decreasing by two to three orders of magnitude at
approximately 600 m below ground surface, and become statistically homogeneous, with a range
from 10−13 m2 to 10−18 m2 at depth. Using the median (50th percentile in Figure 11), the
permeability is approximately 10−13 m2 near ground surface, mildly decreases to 200 m below
ground surface, rapidly decreases by about three orders of magnitude to 500 m below ground
surface, and stabilizes at 10−16 m2 for the remaining depth to 1600 m. This median relationship
between fracture zone permeability and depth (Figure 21) was utilized for the reference
simulations in Chapter 4.

In order to compare the case of a uniform fracture permeability (kF ) to the reference case, a
uniform constant kF value of 10−13 m2 (average kF at ground surface) was applied throughout the
domain to simulate groundwater flow and mean lifetime expectancy. The resulting Darcy flux and
MLE distributions at four different elevations are plotted in Figure 65. Compared to the results
from the reference case in Figure 25 and Figure 56, the Darcy flux increased mostly in the
fractures, while mean lifetime expectancy decreased both in the fractures and the matrix due to
higher kF values at depth.

Comparison of the frequency distribution of MLE at four different elevations in Figure 66 to the
results in Figure 58 clearly shows the effects of higher kF values at depth: MLE distributions shift
toward smaller values at all elevations. As the fracture zone permeability contrast with the matrix
increases, the MLE frequency plot can become bimodal (see the results at the elevation of
−500 masl).
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(a)

(b)

Figure 65: Darcy flux (a) and MLE distributions (b) for kF = 10−13 m2
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Figure 66: Frequency plots for mean lifetime expectancy at four different elevations for
kF = 10−13 m2

In Figure 67, cumulative frequencies for MLE values at four elevations are compared for the
reference case and a constant kF case. The results indicate that decreasing MLE in fracture
zones (stronger leading edges) is accompanied by a decrease of MLE in the matrix.

In order to compare the effects of different kF values, three uniform kF values were considered for
flow and transport simulations: 10−12 m2, 10−14 m2, and 10−16 m2. Figure 68, Figure 69, and
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Figure 67: Comparison of cumulative frequency plots for mean lifetime expectancy at four
different elevations: Reference case (black lines) and kF = 10−13 m2 (red lines)

Figure 70 shows Darcy flux and mean lifetime expectancy distributions for three constant kF
values. The results show that the Darcy flux near fracture zones becomes smaller as kF
decreases but the change is relatively minor in the matrix. However, mean lifetime expectancy
can be orders of magnitude smaller with higher kF values both in the fracture zones and in the
matrix.

Cumulative frequencies for MLE values at four elevations are compared for the cases with
various uniform kF values. Figure 71 shows that the result for kF = 10−14 m2 is most comparable
to the result from the reference case at an elevation of 100 masl but for other elevations, the
results for kF = 10−16 m2 are most similar to the results for the reference case. We recall that
average fracture permeability is about 10−16 m2 from 500 m below ground surface and it is about
10−14 m2 at an elevation of 100 masl (Figure 11). The results suggest that mean lifetime
expectancy at depth is strongly influenced by changes in fracture zone permeability, but the
effects of higher fracture permeability values near surface is relatively minor for MLE values at
depth. The factor that appears more important is the permeability of the fracture zone at depth,
compared to the variation of permeability in the fracture from near surface to depth.

As shown in Section 2.5, fracture zone permeability is highly variable at any depth and the
deterministic average decreasing trend may not be sufficient to capture the characteristics in the
observed kF distribution in Figure 7. In order to incorporate the observed kF distribution with
depth in the simulations, the probabilistic model developed in Section 2.5 (Figure 11) was
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(a)

(b)

Figure 68: Darcy flux and MLE distributions for kF = 10−12 m2
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(a)

(b)

Figure 69: Darcy flux and MLE distributions for kF = 10−14 m2
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(a)

(b)

Figure 70: Darcy flux and MLE distributions for kF = 10−16 m2
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Figure 71: Comparison of cumulative frequency plots for mean lifetime expectancy at
four different elevations: Reference case (black lines), and kF = 10−12 m2 (red lines),
kF = 10−14 m2 (purple lines), and kF = 10−16 m2 (blue lines)

adapted to assign a different relationship between kF and depth for each fracture zone. Each
fracture zone follows an ith percentile trend for kF with a randomly generated i (see Section 2.5
for detail). Darcy flux and MLE distributions with a probabilistic kF model are shown in Figure 72.
The results are, in general, comparable to the results for the reference case, but in some major
fracture zones, Darcy flux increases while MLE decreases at depth due to the presence of more
permeable fracture zones.

In Figure 73, cumulative frequencies for MLE values at four elevations are compared for the
reference case and for the case with the probabilistic kF distribution. Overall, the effects of a
variable kF were not significant because the probability of a fracture zone having an extremely
high-permeability was not sufficient in this case.

In conclusion, the effects of fracture zone permeability on flow and transport in the sub-regional
domain are significant and the fracture zone permeability observed near ground surface, if
assumed to be representative throughout the entire depth of the model, can significantly
overestimate fluid flow and MLE in both fracture zones and the adjacent matrix. The influence of
the variability in fracture zone permeability was minor for the sub-regional domain, but it could
become significant if the probability of having extremely high permeability fracture zones at depth
increases compared to the model in Figure 11.
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(a)

(b)

Figure 72: Darcy flux and MLE distributions with probabilistic kF and depth relationship
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Figure 73: Comparison of cumulative frequency plots for mean lifetime expectancy at four
different elevations: Reference case (black lines) and a probabilistic kF distribution (red
lines)

5.1.2 Fracture Zone Porosity

Bulk porosity in a fracture zone (φbulk
F ) can be represented as a function of fracture zone

permeability (kF ) with a set of assumptions as presented in Equation (10) where bulk porosity
increases as a fracture zone becomes more permeable and its lower limit is given by matrix
porosity (0.3 % for the sub-regional domain). With a fracture frequency of 10 m−1, porosity
ranged from 0.32 % to 0.56 % for the permeability values in the reference case (10−13 m2 –
10−16 m2). Although the fracture zone porosity change is not significant for a given permeability
and porosity relationship, it can be higher in some fracture zones, depending on their origin. In
order to investigate the effects of fracture zone porosity on fluid flow and solute transport in the
sub-region, MLE was simulated with constant φbulk

F values of 0.3 % and 3 % (as lower and upper
limits), but using the same kF as the reference case (Figure 74). Note that porosity does not
influence fluid flux, however, it does affect fluid velocity. The results in Figure 74 show that the
effects of a change in fracture zone porosity on MLE distribution is relatively minor both in fracture
zones and matrix domain. It was shown in Section 3.3.5 that MLE in a fracture zone (Ef ) is given
as z/2bqf (nmL + 2bnf ) and if the fluid volume in the matrix is much larger than the volume in the
fracture (nmL� 2bnf ), then the influence of fracture zone porosity (nf ) on lifetime expectancy is
negligible for a given Darcy flux qf . MLE in the matrix domain is determined by the effective
diffusion coefficient and the MLE distribution in the fracture zones (see Equation (39)), and thus,
the influence of fracture zone porosity on MLE within the matrix is insignificant in this case.
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(a)

(b)

Figure 74: MLE distributions for constant fracture zone porosity of (a) 0.3 %, and (b) 3 %
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Comparison of cumulative frequencies for MLE values at four elevations confirms that fracture
zone porosity is insignificant for MLE at all depths (Figure 75).

Figure 75: Comparison of cumulative frequency plots for mean lifetime expectancy at four
different elevations: Reference case (circles), and uniform fracture zone porosity (nF ) of
0.3 % (red lines) and 3.0 % (blue lines)

In conclusion, the effects of fracture zone porosity on MLE distribution in the sub-region are
negligible compared to the effects of fracture zone permeability since the fluid volume in the
matrix is much larger than that in the fracture zones. Fracture zone porosity can be an important
factor only when the volume fraction of fracture zones is comparable to the matrix volume fraction.

5.1.3 Fracture Zone Width

Fracture zone width observed at the WRA follows a log-normal distribution (Figure 15), with a
mean and standard deviation of 3.27 m and 0.483 m, respectively. This distribution was used in
the reference case as illustrated in Figure 23. Uniform fracture zone widths of 1 m and 10 m, as
two end member cases, were used to check the sensitivity on flow and transport, keeping other
parameters the same as the reference case. Comparing the results in Figure 76 and Figure 77
shows that an increase in uniform fracture zone width from 1 m to 10 m can reduce the lifetime
expectancy in fracture zones and influence the MLE distribution in the matrix blocks, because an
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increase in fracture zone width by an order of magnitude has a similar influence as an order of
magnitude increase in fracture zone permeability and volume fraction.

Comparison of cumulative frequencies shows that MLE at all depths can be influenced by a
change in fracture zone width (Figure 78).

In conclusion, fracture zone width, in general, is a significant factor for MLE distribution as it can
increase or decrease transmissivity of fracture zones. However, since fracture zone width was
observed to vary only within an order of magnitude at the WRA site (as a typical Canadian Shield
environment), the effects of fracture zone width variability on the MLE is relatively less significant
in the sub-region, as compared to the effects of variability in fracture zone permeability.

5.1.4 Diffusion and Tortuosity

Hydrodynamic dispersion includes molecular diffusion and mechanical dispersion as defined by
Bear (1988) and presented in Equation (20). Diffusive flux of solute (qdiff ) in saturated porous
media follows Fick’s law as:

(qdiff )i = φτDfreeδij
∂C
∂xj

= φDeδij
∂C
∂xj

(48)

where De is the effective diffusion coefficient defined as τDfree. The free solution diffusion
coefficient Dfree is assumed to be constant for a given solute species and the tortuosity is a
medium property, representing the ratio of diffusion paths in a porous medium to those paths in
free solution.

Diffusion is considered to be a relatively slower process compared to advection and mechanical
dispersion in hydraulically active environments. However, in deep subsurface crystalline
environments such as in the Canadian Shield, groundwater flow is extremely slow and thus
long-term transport is likely to be diffusion-dominated.

In order to investigate the effects of diffusion, mean lifetime expectancy was simulated in the
sub-region, by increasing or decreasing the effective diffusion coefficient by an order of
magnitude. In the reference simulation, De was assumed to be about 2.3× 10−10 m2/sec or
Dfree = 2.0 cm2/day with τ = 0.1. Compared to the results for the reference case in Figure 56, the
influence of increased tortuosity was remarkable, as shown in Figure 79: at shallower depths, the
effects of increased effective diffusion was relatively insignificant as the transport is dominated by
advection and mechanical dispersion, while at deeper elevations (z < −100 m), the MLE
decreases notably and becomes more uniform, and fracture zones are less noticeable, because
diffusion is the dominant transport process.

To further illustrate the effect of different tortuosities, and hence, effective diffusion coefficients on
the sub-region, cumulative frequencies for MLE values at four elevations are shown in Figure 80,
comparing the reference case and the cases with different tortuosity values. It is clear that the
effects of lowering tortuosity (e.g., τ = 0.01) on MLE distributions is relatively insignificant, but
higher tortuosity has a significant influence on MLE distributions at greater depths: (1) more
uniform MLE at depth with less variation characterized by steeper, narrower curves; and (2) a
general decrease in MLE, particularly at greater depths.
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(a)

(b)

Figure 76: Darcy flux and MLE distributions for a fracture zone width of 1 m
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(a)

(b)

Figure 77: Darcy flux and MLE distributions for a fracture zone width of 10 m
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Figure 78: Comparison of cumulative frequency plots for mean lifetime expectancy at four
different elevations: Reference case (black lines) and uniform fracture zone widths (wF ) of
1 m (red lines) and 10 m (blue lines)

When the diffusion path has a directional preference and is anisotropic, the scalar τ in
Equation (48) can be replaced by a tortuosity tensor τij . As shown in Figure 80, solute transport
is diffusion-dominant in deep crystalline rock settings; as such, effective diffusion characteristics
need to be better understood than for shallower, hydraulically active regions.

5.2 FRACTURE ZONE NETWORK GEOMETRY

Srivastava (2002) developed a discrete fracture network model, which provides geostatistical
tools for the probabilistic simulation of the propagation of surface lineaments to depth in order to
build geologically and geomechanically plausible fracture networks that honour the type of
information typically available from a non-invasive Site Characterization stage. The model utilizes
such information as the surface expression of some of the fractures, which manifest themselves
as lineaments on aerial photographs and remote sensing images, statistics on fracture density
and length distributions, general structural geology principles that describe the down-dip
behaviour of fractures, and truncation rules that come from regional tectonic considerations and
geology. When applied to the sub-regional domain, additional surface lineaments were created to
account for the extension of existing major lineaments, and to increase the fracture density in
areas where overburden cover would have obscured the surface lineaments or where aerial
photographs had weak contrast.
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(a)

(b)

Figure 79: MLE Distributions for Different Tortuosity Values of (a) 0.01 and (b) 1
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Figure 80: Comparison of cumulative frequency plots for mean lifetime expectancy at four
different depths: Reference case (black lines) and tortuosity values of 0.01 (red lines) and
1.0 (blue lines)

The curve-planar fracture networks, developed by Srivastava (2002), were mapped onto
orthogonal faces of brick elements as permeable two-dimensional planes (Therrien et al., 2004).
Fracture planes mapped onto elemental faces can accommodate both the dip and orientation of
original curve-planar fractures in the scale under consideration, despite their stepped nature
(Sykes et al., 2004).

The fracture zone network model developed by Srivastava (2002) utilizes statistical tools for
downward propagation of surface lineaments according to geological and geomechanical
principles. Due to its probabilistic nature, an infinite number of equally probable fracture zone
networks can be generated for given surface lineaments. In addition, a certain number of random
surface features are generated to accommodate a given fracture density, resulting in generated
subsurface fracture zone geometries that reflect greater uncertainty.

In this study, 100 equally probable fracture zone networks were used to analyze the statistics and
uncertainty in groundwater flow and solute transport associated with the uncertainty in fracture
zone geometry.
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Figure 81: Fracture zone probability at ground surface

5.2.1 Probabilistic Characteristics

The existence and location of a fracture zone is inevitably uncertain at depth, even though the
model can honour surface observations and incorporate geological and geomechanical principles
for downward propagation of surface lineaments. As fracture zones either observed or generated
at the ground surface propagate to the subsurface, the probability of a given point belonging to a
fracture zone (fracture zone probability, PrF ) itself propagates from ground surface to depth (see
Figure 81 and Figure 82).

The results show that major fracture zones observed at ground surface are propagated to the
bottom of the domain with a slight probabilistic variation in their dip-angles, but most intermediate
fracture zones generated from surface lineaments typically propagate downward only a few
hundred metres, to an elevation near sea level (see Figure 83). The existence of a fracture zone
at a certain point follows a binomial distribution with a mean of PrF and a variance of PrF (1−PrF )
and thus, the geometrical uncertainty is maximized when PrF = 0.5 (green in Figure 81,
Figure 82, and Figure 83) and minimized when PrF approaches 0 or 1 (blue and red in Figure 81,
Figure 82, and Figure 83). Geometrical uncertainty increases due to the randomly generated
intermediate fracture zones near ground surface, but at depth, a greater proportion of the
uncertainty originates from the probabilistic propagation of fracture zones to depth and the
uncertainty is therefore greatest near major fracture zones.
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Figure 82: Propagation of fracture zone probability with depth

Figure 83: Fracture zone probability in the subsurface. Plane elevation at −200 masl
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5.2.2 Effects on Groundwater Flow

Steady-state groundwater flow was simulated for 100 fracture zone network realizations with the
same fracture zone hydraulic properties and boundary conditions used in the reference
simulation discussed in Section 4.1. With 100 simulations, 100 head values at each node and
100 Darcy flux values in each element were obtained. Statistical properties for 100 values at
nodes and elements can be calculated using parametric or non-parametric methods. For
example, arithmetic or geometric mean and standard deviation are parametric statistics while
median, midrange, or quartiles are non-parametric statistics. These various statistical measures
are investigated to determine which measures best characterize the model output of interest.

Figure 84 shows the distribution of mean and standard deviation for 100 head values at each
node computed for 100 fracture zone network realizations. Mean head distribution in Figure 84a
is similar to the result obtained from a single realization (Figure 24) and scattering from the mean
is not significant because the mean ranges from 350 m to 420 m and the deviation is less than
1 m for most of the domain.

Figure 85 shows the distribution of median and quartile deviations for the same data used for
Figure 84. As most head values are distributed near the mean value, median and quartile
deviation distributions are similar to mean and standard deviation distributions.

Four different representative statistics for 100 Darcy flux values in each element are computed
and compared at four different elevations: arithmetic and geometric means, median, and
midrange (Figure 86). Note that the median statistic is least dependent on outliers and the
midrange is most dependent on them. The results indicate that all four representative statistics
have similar values but the midrange differs to a greater extent than the other statistics, possibly
due to mild outliers. The midrange is also a more robust estimator since since it is the average of
Q1 and Q3, comprising two non-parametric estimators.

Variation or uncertainty of the representative statistics can be measured by standard deviation,
quartile deviation, or half-range (Figure 87). Similar to representative statistics, quartile deviation
is least dependent on outliers and half-range is most influenced by outliers. Figure 87d shows
that half-range is more uniformly distributed in depth than the other statistics, as the highest flux
values at each node could be more uniform. The results indicate that the standard deviation in
log-scale is independent from the magnitude of the flux value and is less dependent on depth,
while the other variational measures are strongly dependent on depth since the flux decreases
with depth.

Measures of variation such as standard deviation or quartile deviation are strongly dependent on
the magnitude of the representative statistics. Coefficient of variation or quartile variation
coefficient are scale-independent and measures the relative degree of scattering. Figure 88
shows the distribution of these two relative uncertainty measures. The results indicate that the
relative uncertainty is higher at shallower depth and becomes highest near major fracture zones
at any depth. This can be compared to Figure 82 which shows the probability of fracture zone
intersection. The quartile coefficient of variation is preferred since it is non-parametric and is a
more robust estimator of the variance as compared to using parametric statistics, which require
that the data are distributed according to a particular probability density function.
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(a)

(b)

Figure 84: Distribution of (a) mean, and (b) standard deviation for 100 head values at each
node computed for 100 fracture zone network realizations
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5.2.3 Effects on Lifetime Expectancy

Mean lifetime expectancy (MLE) was computed for 100 fracture zone network realizations using
the flow fields from the previous section. Different statistics for representative value, degree of
scattering, and worst case value were computed for 100 MLE values at each node.

Figure 89 shows the distributions of four different representative statistics for MLE at each node.
The results indicate that all four representative values are similar to each other and also similar to
the result obtained for realization 1 (Figure 56). Similar distributions of the MLE from a single
realization and the average MLE from multiple realizations indicate that the stochastic field may
be ergodic at depth.

Figure 90 shows the distribution of the degree of scattering or uncertainty in the representative
values in terms of standard deviation, quartile range, and half-range. Similar to the analysis in
Darcy flux, half-range is more uniformly distributed at each depth than other statistics, as the
smallest MLE values at each node could be more uniform and the standard deviation in log-scale
is less dependent on depth, while the other variational measures are strongly dependent on
depth as MLE increases with depth.

Figure 91 shows the normalized degree of scattering for the coefficient of variation and quartile
variation coefficient. The results indicate that the relative uncertainty is more uniform but greater
at shallower depths and becomes greatest near major fracture zones at all depths.

For safety analysis, a worst case needs to be considered to ensure that the risk is minimal. In
parametric statistics, the 2.5 percentage point or z2.5 = µ − 2σ can be used for a worst case
estimate, to ensure that 97.5 % of the sample is greater than z2.5. Figure 92 shows the
distribution of the 2.5 percentage point for MLE. The results show that the 2.5 percentage point
values are much smaller than mean values at shallower depth and near major fracture zones
where the coefficient of variation is greater. Note that the coefficient of variation, σ/µ, is more
important than the standard deviation for z2.5 as the relative magnitude of σ to µ determines the
confidence interval for µ.

In non-parametric order statistics, minimum, 5th percentile, and Q2− 2QD can be utilized for
worst case estimates. A minimum is the same as MD − 2HR and first percentile for 100 samples
in this study. Figure 93 shows the distribution of three non-parametric worst case estimates for
MLE.

The results indicate that the distribution of the 2.5 percentage point in a linear scale is more
irregular as the MLE distribution deviates the greatest amount from a normal distribution. Except
for the percentage point in a linear scale, distribution of all other worst case estimates are similar
to each other, but Q2− 2QD is smaller than the others near fracture zones where the quartile
deviation is relatively greater.
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(a)

(b)

Figure 85: Distribution of (a) median, and (b) quartile deviation for 100 head values at each
node computed for 100 fracture zone network realizations



- 100 -

(a)

(b)

Figure 86: Four representative statistics for 100 Darcy flux values at each element com-
puted for 100 fracture zone realizations: (a) arithmetic mean, (b) geometric mean, (c) me-
dian, and (d) midrange
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(c)

(d)

Figure 86: (continued) Four representative statistics for 100 Darcy flux values at each ele-
ment computed for 100 fracture zone realizations: (a) arithmetic mean, (b) geometric mean,
(c) median, and (d) midrange
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(a)

(b)

Figure 87: Four different measures for uncertainty in representative statistics for Darcy
flux: standard deviations in (a) linear and (b) log-scale, (c) quartile deviation, and (d) half-
range
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(c)

(d)

Figure 87: (continued) Four different measures for uncertainty in representative statistics
for Darcy flux: standard deviations in (a) linear and (b) log-scale, (c) quartile deviation, and
(d) half-range
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(a)

(b)

Figure 88: Measures for relative uncertainty in representative statistics for Darcy flux:
(a) coefficient of variation, and (b) quartile coefficient of variation
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(a)

(b)

Figure 89: Representative statistics for mean lifetime expectancy computed for 100 fracture
zone realizations: (a) arithmetic mean, (b) geometric mean, (c) median, and (d) midrange
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(c)

(d)

Figure 89: (continued) Representative statistics for mean lifetime expectancy computed for
100 fracture zone realizations: (a) arithmetic mean, (b) geometric mean, (c) median, and
(d) midrange
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(a)

(b)

Figure 90: Degree of scattering in representative statistics for mean lifetime expectancy:
standard deviations in (a) linear and (b) log-scale, (c) quartile deviation, and (d) half-range
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(c)

(d)

Figure 90: (continued) Degree of scattering in representative statistics for mean lifetime
expectancy: standard deviations in (a) linear and (b) log-scale, (c) quartile deviation, and
(d) half-range
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(a)

(b)

Figure 91: Measures for relative uncertainty in representative statistics for mean lifetime
expectancy: (a) coefficient of variation, and (b) quartile coefficient of variation
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(a)

(b)

Figure 92: Worst case estimates for mean lifetime expectancy in terms of 2.5 percentage
points in (a) linear and (b) log-scale
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(a)

(b)

(c)

Figure 93: Worst case estimates for mean lifetime expectancy in terms of (a) minimum,
(b) 5th percentile, and (c) Q2− 2QD
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6. SUMMARY AND CONCLUSIONS

The Phase-II sub-regional model presented in this report is an improvement upon the Phase-I
model developed in Sykes et al. (2004). Surface boundary conditions were changed from fixed
head at all nodes to fixed head only at water features. Recharge was then applied at a rate of
1.0 mm/year. This approach avoids digital elevation model (DEM) artifacts, allows discharge to
occur coincident with known rivers, lakes, and wetlands, and reduces short-circuiting of water in
surface and near surface grid blocks and fracture elements. Reduced short-circuiting improves
solute transport, age, and mean life expectancy simulation times in FRAC3DVS.

A statistical model of fracture permeability was developed, providing a depth varying probability
density function (PDF). The inversion of this PDF can be used in a stochastic Monte Carlo sense
to develop spatially varying and correlated fracture zone permeability fields. Percentile depth
permeability fields were applied in this study. Fracture zone porosity can also be calculated from
fracture zone permeability. A PDF for fracture zone width was developed based on data obtained
at the Whiteshell Research Area.

Mean life expectancy (MLE) has been shown to be an excellent performance measure in
determining the most relevant and dominant geosphere parameters and processes that would be
relevant to the long-term safety of a deep geological repository in a fractured, crystalline rock
setting characteristic of the Canadian Shield. Mean life expectancy represents the average time
for any subsurface location to discharge to the biosphere, while honouring both advective and
diffusive dispersion processes (unlike particle tracking which can only honour advection). Life
expectancy is characterized by a probability density function; its mean may not represent earliest
arrival or least dose, and hence, must be used with this caveat in mind.

The presence of brines at depth plays an important role in determining the characteristics of
deep flow systems and can impact the safety of a deep geological repository from the
perspective of retarding the migration of contaminants released in the brine region. Denser pore
fluids at depth essentially reduce the topographic gradient (and driving forces) by requiring a
greater energy potential to displace them. As deep pore fluid density increases, the shallow zone
accommodates higher fluxes, while fluxes at depth decrease. Increasing fluid viscosity has a
similar effect, namely increasing the resistance to fluid flow at depth. This increased flow
resistance leads to decreased linear velocities at depth, as clearly shown for the illustrative
example in Figure 37 and Figure 38.

Although the illustrative example neglects permeability variations to highlight the impact of denser
fluids at depth, a similar conclusion can be drawn for the sub-regional domain. Increased pore
fluid density tends to reduce the ability of deep fluids to migrate to discharge areas, and is
evidenced by reduced vertical flux vectors below discharge and recharge areas. For the
sub-regional domain, mean life expectancy increases with increasing brine density at depth as
shown in Figure 64. It should be noted that the presence of brines at depth have a greater
influence on the MLE of fluids in fractures than they do on fluids in the matrix.

MLE was used to assess the impact of fracture zone permeability on travel time. Decreasing
fracture permeability can significantly increase MLE by several orders of magnitude as shown in
Figure 71. The effects of fracture zone permeability assumptions on flow and transport are
significant. The fracture zone permeability observed near ground surface, if assigned to fracture
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zones at depth, can significantly overestimate the risk associated with a subsurface repository
location by reducing the MLE, even in the adjacent matrix domain. Statistical variability in fracture
zone permeability had a minor effect on the sub-regional domain, but it could become significant
as the probability of encountering an extremely high permeability fracture zone at depth
increases.

The effects of fracture zone porosity on MLE distributions in the sub-regional domain are
negligible as compared to the effects of fracture zone permeability, since the fluid volume in the
matrix is much greater than that in the fracture zones. Fracture zone porosity can be an important
factor only when the volume fraction of fracture zones is comparable to the matrix volume fraction.

Fracture zone width, in general, is a significant factor for MLE distributions as it can increase or
decrease the transmissivity of fracture zones, since fracture transmissivity is the product of
permeability and width. However, as fracture zone width was observed to vary within an order of
magnitude at the WRA site (typical of a Canadian Shield environment), the effects of fracture
zone width on MLE may be relatively less significant in the sub-regional domain, as compared to
the effects of fracture zone permeability.

The mean and standard deviation were calculated for 100 head values at each node computed
for 100 fracture network realizations. The mean head distribution is similar to the results obtained
from a single realization and scattering from the mean is not significant. The median and quartile
deviation were also determined for 100 head values at each node, computed from 100 fracture
network realizations. As most head values are distributed near the mean, median and quartile
distributions are similar to the mean and standard deviations.

MLE was computed for 100 fracture zone network realizations and different statistics for
representative value, degree of scattering and worst case value were computed. The arithmetic
mean, geometric mean, median and midrange have similar distributions. The uncertainty in the
representative value was measured by the standard deviation, quartile range and half-range. The
results indicate that the half-range is more uniformly distributed than the other statistics.

In terms of the cold-based (NN2008) and warm-based (NN2778) climate simulations, recharge
waters are able to penetrate deeper in the warm-based simulation. This is primarily due to the
absence of permafrost below the ice-sheet in NN2778. In the case of NN2008, freezing
temperatures are present below the ice-sheet for a much longer time, thereby resulting in greater
permafrost, which seals the near surface and greatly reduces, by several orders of magnitude,
the hydraulic connection with the fracture zone network.

It should be noted that these simulation results were undertaken without accounting for fluid
density, or hydromechanical effects associated with ice-sheet loading and unloading. Therefore,
the results should be viewed with this caveat in mind.
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APPENDIX A – FORWARD AND BACKWARD ADVECTION-DISPERSION EQUATIONS
EQUIVALENT TO STOCHASTIC DIFFERENTIAL EQUATIONS
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A.1 DERIVATION

The position of a particle Xx0,t0(t), that was released at time t0 at Xx0,t0(t0) = x0 is described by the
following Îto stochastic differential equation (SDE):

dXi = ai (t , X )dt + σij (t , X )dWj (t) (A.1)

where ai is a vector function, σij is a matrix function related to the dispersion tensor, and Wj is a
vector-valued Brownian motion process. The term σij (t , X )dWj (t) accounts for the stochastic
displacement due to dispersion, and the Wj ’s are independent Wiener processes (Gardiner,
1983). The transition density p(x , t | x0, t0) to find a particle at position x at time t , given that it was
released at time t0 at position x0, can be obtained by solving the Fokker-Planck equation (FPE):

∂p
∂ t

= −∂aip
∂xi

+
∂ 2bijp
∂xi∂xj

(A.2)

Note that Equation (A.2) is formulated according to Langevin’s formulation (Langevin, 1908) of
the FPE. The terms ai = ai (x , t) and bij = bij (x , t) = σik σjk denote the drift vector and noise tensor,
respectively. The solution of the FPE is subject to the initial condition p(x , t0| x0, t0) = δ (x − x0)
and any appropriate boundary condition (Gardiner, 1983). Defining ai and bij according to:

ai = vi +
∂bij

∂xj
(A.3a)

bij = Dij (A.3b)

where the vi ’s are the components of pore velocity and Dij ’s are the entries of the dispersion
tensor. One can show that Equation (A.2) becomes equivalent to the following classical forward
advection-dispersion equation (ADE):

∂p
∂ t

= − ∂

∂xi
(vip) +

∂

∂xi
Dij

∂p
∂xj

(A.4)

This result implies that the particle model Equation (A.1) with ai and bij defined as in
Equation (A.3) is exactly consistent with the ADE. Consequently, a particle concentration that is
obtained by simulating the SDE for many different particles is an approximation of the solution of
Equation (A.2). Considering the FPE, we replace the variable p(x , t) with φ (x)C(x , t), where φ is
porosity, or mobile water content, and where C is the solute resident concentration. In this case,
the equivalence between the FPE and the forward ADE is given by specifying the drift vector and
the noise tensor as:

ai (x , t) = vi (x , t) + φ (x)−1 ∂

∂xj

(
φ (x)bij (x , t)

)
(A.5a)

bij (x , t) = Dij (x , t) (A.5b)

The equivalent ADE is then given by:

∂φC
∂ t

= − ∂

∂xi
(qiC) +

∂

∂xi
φDij

∂C
∂xj

(A.6)
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where qi = φvi is the water flux vector. Note that linear reaction processes such as decay and
linear equilibrium adsorption can be incorporated by replacing the parameters qi and Dij by their
retarded values qr

i = qi/R and Dr
ij = Dij/R, where R is the retardation factor, and by adding a

decay term in the right-hand sides of Equation (A.2) and Equation (A.6):

∂p
∂ t

= −∂aip
∂xi

+
∂ 2bijp
∂xi∂xj

− λp (A.7)

∂φRC
∂ t

= − ∂

∂xi
(qiC) +

∂

∂xi
φDij

∂C
∂xj
− φRλC (A.8)

where λ is the decay constant. In this case, the equivalence between the FPE and the ADE is
obtained by adding the term to the right-hand side of Equation (A.2).

The backward equation as given by Kolmogorov (1931) can be formalized as follows:

∂p
∂ t

= −ai
∂p
∂xi
− bij

∂ 2p
∂xi∂xj

(A.9)

Equation (A.9) is the formal adjoint model of the FPE (Garabedian, 1964; Arnold, 1974), and can
be transformed into the following formulation:

∂p
∂ t

= −
[
ai −

∂bij

∂xj

]
∂p
∂xi
−

∂ 2bijp
∂xi∂xj

+
∂

∂xi

(
p

∂bij

∂xj

)
(A.10)

We consider the case of a steady-state divergence-free velocity field, which can be expressed by
∂vi/∂xi = 0. Combining this condition with Equation (A.5), we obtain:

∂

∂xi

(
ai −

∂bij

∂xj

)
= 0 (A.11)

Consequently, one can write

∂

∂xi

[(
ai −

∂bij

∂xj

)
p
]

=
(

ai −
∂bij

∂xj

)
∂p
∂xi

(A.12)

Using Equation (A.12) to modify Equation (A.10), and reversing time, τ = t0 − t , yields:

∂p
∂τ

= −
∂a∗i p
∂xi

+
∂ 2bijp
∂xi∂xj

(A.13)

where a∗i and bij are given by:

a∗i = −vi +
∂bij

∂xj
(A.14a)

bij = Dij (A.14b)
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Equation (A.13) has the form of a forward equation, showing that the FPE and the BKE are
equivalent to each other. Only the drift coefficient differs from its original definition: velocity
presents a reversed sign to handle the backward-in-time evolution. Using the definitions of
Equation (A.14), the BKE formulated according to Equation (A.13) becomes:

∂p
∂τ

=
∂

∂xi
(vip) +

∂

∂xi
Dij

∂p
∂xj

(A.15)

Equation (A.15) corresponds to the backward advection-dispersion equation (BADE) equivalent
to the BKE. Finally, by specifying

a∗i (x) = −vi (x) + φ (x)−1 ∂

∂xj

(
φ (x)bij (x)

)
(A.16a)

bij (x) = Dij (x) (A.16b)

and by letting p = φg in Equation (A.13), one obtains:

∂φg
∂τ

=
∂

∂xi
(qig) +

∂

∂xi
φDij

∂g
∂xj

(A.17)

Like with the forward equation, linear equilibrium adsorption and decay can be incorporated into
the backward models by replacing qi and Dij by their retarded values:

∂p
∂τ

= −
∂a∗i p
∂xi

+
∂ 2bijp
∂xi∂xj

− λp (A.18)

∂φRg
∂τ

=
∂

∂xi
(qig) +

∂

∂xi
φDij

∂g
∂xj
− φRλg (A.19)
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