Review of Environmental Radioactivity in Canada

NWMO TR-2011-17

May 2011

S.C. Sheppard, M.I. Sheppard, B. Sanipelli

ECOMatters Inc.

NUCLEAR WASTE SOCIÉTÉ DE GESTION MANAGEMENT DES DÉCHETS ORGANIZATION NUCLÉAIRES

Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor

22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca Review of Environmental Radioactivity in Canada

NWMO TR-2011-17

May 2011

S.C. Sheppard, M.I. Sheppard, B. Sanipelli ECOMatters Inc.

Disclaimer:

This report does not necessarily reflect the views or position of the Nuclear Waste Management Organization, its directors, officers, employees and agents (the "NWMO") and unless otherwise specifically stated, is made available to the public by the NWMO for information only. The contents of this report reflect the views of the author(s) who are solely responsible for the text and its conclusions as well as the accuracy of any data used in its creation. The NWMO does not make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information disclosed, or represent that the use of any information would not infringe privately owned rights. Any reference to a specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or preference by NWMO.

ABSTRACT

Title:Review of Environmental Radioactivity in CanadaReport No.:NWMO TR-2011-17Author(s):S.C. Sheppard, M.I. Sheppard, B. SanipelliCompany:ECOMatters Inc.Date:May 2011

Abstract

The objective was to review and summarize background concentrations of radionuclides in surface water and soil across Canada. Three types of radionuclides were considered. The first radionuclides were primordial, including parents and progeny of ²³⁵U, ²³⁸U and ²³²Th, ⁴⁰K and ⁹⁷Rb. The second were rare but naturally occurring radionuclides of special interest, including ³H, ¹⁴C, ³⁶Cl and ¹²⁹I. The third were fallout radionuclides with emphasis on ³H, ¹⁴C, ¹³⁷Cs and ⁹⁰Sr. Data were obtained specifically for Canadian sites, but included data from international sources as needed. Contaminated sites were avoided, but associated control-site data were evaluated. The temporal domain was present-day, but with attention to any potentially important trends, notably time since atmospheric nuclear bomb testing. In addition to the background radionuclide concentrations, Environment Increments were also identified that are one geometric standard deviation above the background geometric mean value.

TABLE OF CONTENTS

		<u>Pa</u>	age
AB	STRACT		v
1			1
••			1
	1.1	OBJECTIVE	1
	1.2	BACKGROUND VERSUS ANTHROPOGENIC RADIONUCLIDES	1
	1.3	NATURAL SOURCES – PRIMORDIAL, COSMOGENIC AND GEOGENIC	2
	1.4	VARIABILITY AND ENVIRONMENTAL INCREMENTS	3
	1.5		4
	1.6		6
	1./	ISUTOPE RATIOS	1
2.		METHOD OF REVIEW	8
	2.1	SEARCH METHODS	8
	2.2	CORRECTION OF ERRORS.	8
	2.3	CONVERSION FACTORS	8
	2.4	OUTLINE OF THE REPORT	.10
~			40
3.		environmental concentrations	.12
	3.1	TRITIUM (°H)	.12
	3.2	CARBON-14	.14
	3.3	CHLORINE-36	.15
	3.4	POTASSIUM-40	.18
	3.5	RUBIDIUM-87	.20
	3.6	STRONTIUM-90	.21
	3.7	IODINE-129	.22
	3.8	CESIUM-137	.25
	3.9	BISMUTH-210	.28
	3.10	LEAD-210	.28
	3.11	POLONIUM-210	.30
	3.12	RADON-222 and RADIUM-223,224	.31
	3.13	RADIUM-226	.31
	3.14	ACTINIUM-227 and THORIUM-227	.33
	3.15	RADIUM-228	.33
	3.16	THORIUM-228	.33
	3.17	THORIUM-230	.35
	3.18	PROTACTINIUM-231	.35
	3.19	THORIUM-231	.36
	3.20	THORIUM-232	.36
	3.21	THORIUM-234	.37
	3.22	URANIUM-234	.38
	3.23	URANIUM-235	.38
	3.24	URANIUM-238	.39
4.		SUMMARY AND CONCLUSIONS	.42

ACKNOWLEDGEMENTS	44
REFERENCES	45
APPENDIX A: COMPARISON TO PREVIOUS ENVIRONMENTAL INCREMENTS	61
APPENDIX B: MAPS OF RADIONUCLIDE CONCENTRATIONS	65
APPENDIX C: DATABASE	73

LIST OF TABLES

Table 4-1:	Summary of background and environmental increment values. Note that	
	although most values are concentrations, specific activities are also given for ³ H,	
	¹⁴ C, ³⁶ Cl and ¹²⁹ I	43

LIST OF FIGURES

Figure 3-1: Frequency histogram of ³H concentrations in precipitation, surface, shallow well and drinking water (n = 57). The red line is the best-fit lognormal frequency curve......13 Figure 3-2: Frequency histograms of specific activities of ¹⁴C in various environmental media (n = 15). The red lines are the best-fit normal and lognormal frequency curves...... 14 Figure 3-3: Frequency histograms of specific activities of ³⁶Cl in various environmental media, data for Canada (n = 27) and international (n = 17). The red lines are the Figure 3-4: Frequency histograms of concentrations in surface, shallow well and precipitation, data for Canada (n = 26) and international (n = 10). The red lines are the best-fit lognormal frequency curves......17 Figure 3-5: Frequency histograms of 40 K concentrations in soil (n = 34). The single low value is an organic soil. The red lines are the best-fit normal/lognormal Figure 3-6: Frequency histogram of 40 K concentrations in surface waters (n = 33), largely based on data for stable K. The red line is the best-fit lognormal frequency Figure 3-7: Frequency histogram of 90 Sr concentrations in surface waters (n = 10). The red (n = 10) and concentration of ¹²⁹I in international soils (n = 12). The red lines are Figure 3-9: Frequency histograms of specific activities of 129 I in water in Canada (n = 23) and international (n = 25). The red lines are the best-fit lognormal frequency international (n = 32). The red lines are the best-fit lognormal frequency Figure 3-12: Frequency histogram of 137 Cs concentrations in water (n = 26). The red line is Figure 3-13: Frequency histogram of 210 Pb concentrations in mineral soil (n = 25). The red Figure 3-14: Frequency histogram of 210 Pb concentrations in water (n = 17), excluding all values recorded as at the corresponding detection limits. The red line is the

Page

<u>Page</u>

Figure 3-15:	Frequency histograms of concentrations of ²¹⁰ Po in soil (n = 10) and in water $(n = 10)$. The red lines are the best fit legnermal frequency curves	30
Figure 3-16:	Frequency histograms of concentrations of 226 Ra in mineral soil (n = 27) and in	. 30
	water ($n = 36$). The red lines are the best-fit lognormal frequency curves.	. 32
Figure 3-17:	Frequency histogram of concentrations of 228 Th in water (n = 12). The red line	
	is the best-fit lognormal frequency curves.	. 34
Figure 3-18:	Frequency histograms of concentrations of 200 Th in soil (n = 5) and in water	. -
F : 0.40	(n = 5). The red lines are the best-fit lognormal frequency curves	. 35
Figure 3-19:	Frequency histograms of ²⁰² I h activity concentrations in soil (n = 21). The red	20
	lines are the best-fit normal/lognormal frequency curves	. 30
Figure 3-20:	Frequency histogram of ²³² Th activity concentrations and mass concentrations	
	in water (n = 25). The red line is the best-fit lognormal frequency curves	. 37
Figure 3-21:	Frequency histogram of concentrations of 235 U in water (n = 26). The red line	
	is the best-fit lognormal frequency curves.	. 39
Figure 3-22:	Frequency histograms of ²³⁸ U activity concentrations and mass concentrations	
	in mineral soil (n = 34). The red lines are the best-fit lognormal frequency	
	curves	.40
Figure 3-23:	Frequency histogram of ²³⁸ U activity concentrations and mass concentrations	
	in water (n = 63). The red line is the best-fit lognormal frequency curves	.41

1. INTRODUCTION

1.1 OBJECTIVE

The objective of the project was to review and summarize background concentrations of radionuclides in surface water and soil across Canada. Three suites of radionuclides were considered. The first were primordial radionuclides, including parents and progeny of ²³⁵U, ²³⁸U, ²³²Th, ⁴⁰K and ⁹⁷Rb. The second were rare but naturally produced radionuclides of special interest for radioactive waste management, ³H, ¹⁴C, ³⁶Cl and ¹²⁹I. The third were fallout radionuclides with emphasis on ¹³⁷Cs and ⁹⁰Sr.

The spatial domain was Canada, with emphasis on the nuclear provinces (Saskatchewan, Ontario, Quebec and New Brunswick), but drawing data from international sources as needed. Contaminated sites were avoided, but associated control-site data were evaluated. The temporal domain was present-day, but with attention to any potentially important trends such as time since Chernobyl, time since atmospheric nuclear bomb testing and time related to changes in fuel reprocessing locations and intensities.

1.2 BACKGROUND VERSUS ANTHROPOGENIC RADIONUCLIDES

The general objective is to identify background concentrations. In practice, this means consideration of the likely sources of the radionuclide, and taking this into account in selection of data to compile. For example, radionuclides from present and past nuclear facilities have affected concentrations, locally in some cases and globally in others. Local contamination is clearly not background and so such data were avoided in this study. Global contamination has become the *de facto* background, but may result in concentrations that are above the concentration range present when organisms evolved. For radionuclides where global contamination is present, both the present background concentrations and the pre-anthropogenic background concentrations have value, and both are summarised here where possible.

The atmospheric nuclear bomb test fallout¹ radionuclides, ¹³⁷Cs and ⁹⁰Sr, are the prime example of global contamination. These were distributed and deposited globally, with the highest levels of deposition in the mid-latitudes of the Northern Hemisphere. Each bomb test produced a cloud of fallout and deposition at any one location was dependent on dispersion of the cloud and the occurrence of rainfall when the cloud passed, among other variables. However, over the several decades when fallout was produced, the distribution of these radionuclides became fairly uniform at least on a regional scale. The Chernobyl accident produced a similar cloud, but the often-noted heterogeneity in deposition of radionuclides from the Chernobyl cloud is because it was a single event. In terms of total amounts of radionuclides, Chernobyl was minor relative to bomb-test fallout.

¹ Hereafter referred to as 'fallout'

Carbon-14 is different from most other radionuclides because burning of fossil fuels has actually diluted global cosmogenic² ¹⁴C with old, low-¹⁴C-carbon from the fossil fuel, such that the current global specific activity³ of ¹⁴C is less than the natural background level. This dilution of ¹⁴C has lowered doses: dose from ¹⁴C is proportional to specific activity because C is a major component of all biological compounds and tissues⁴.

Another important global trend occurs for ¹²⁹I. Global concentrations of ¹²⁹I are rising as more fuel reprocessing and fuel waste packaging is done (Aldahan et al. 2006, 2007b). Although the contamination arises from relatively few point sources, the major ones being La Hague in France and Sellafield in the UK, their impact can be detected globally (Moran et al. 2002). There are related spatial trends. Concentrations of ¹²⁹I in Europe and Scandinavia are clearly much higher than typical of the rest of the world. More relevant to Canada, there continue to be low but elevated concentrations of ¹²⁹I within a few hundred kilometres of West Valley NY, even though relatively little fuel reprocessing was done there (Rao and Fehn 1997, Moran et al. 2002). There is also a distinct but unidentified source in the north eastern US (Moran et al. 2002), which result in a very small signature in Canada.

More important to the present project was the consideration of data from the surrounds of nuclear facilities. The pre-operational sampling and monitoring programs associated with various types of mines, uranium processing facilities and research and power reactor sites all generate data on environmental concentrations. By definition, data from impacted areas near these facilities were not relevant to the present study. The more difficult question was about the control-site data from these facilities. Generally, it was assumed that if the facility operator defined a sampling site as a control site, which was presumably done to meet regulatory needs and inspection, then it was considered uncontaminated and representative of the region for this project.

1.3 NATURAL SOURCES – PRIMORDIAL, COSMOGENIC AND GEOGENIC

The primordial radionuclides, including parents and progeny of ²³⁵U, ²³⁸U, ²³²Th, ⁴⁰K and ⁹⁷Rb, are the simplest to assign to source. Their parents were present since from the formation of Earth, and although they are not distributed uniformly in all environmental media, they can be assumed to be present in almost all soils and in water that contacts soils and rocks. In contrast, cosmogenic and geogenic radionuclides are constantly produced by natural processes.

Cosmogenic radionuclides result from a range of nuclear reactions initiated by cosmic radiation. Various forms of cosmic radiation impinge on target nuclides in the atmosphere or in the Earth's crust and some of these interactions produce new 'cosmogenic' nuclides. The intensity of production depends on the properties of the cosmic radiation, the density of the target nuclides, the shielding by air, water, snow, soil and rocks as well as latitudinal and other variations in the Earth's magnetic field. The processes are very complicated, and reviews such as Gosse and

² Cosmogenic refers to products of the interaction of cosmic rays or particles with atoms on Earth, and these reactions may occur in the atmosphere (atmospheric cosmogenic) or in rocks and soils (terrestrial cosmogenic)

³ Specific activity is the decay rate of a radionuclide relative to the corresponding mass of the same element, for example Bq ¹⁴C per g C.

⁴ The concept is that the organism contains a fixed amount of C, so if the specific activity is lower then the body content of ¹⁴C is lower and therefore the dose from ¹⁴C to the individual is lower.

Phillips (2001) and Lal (1987) should be consulted. For this report, cosmogenic ³H, ¹⁴C, ³⁶Cl and ¹²⁹I are of most interest.

Another source is geogenic or natural nucleogenic, where neutrons and alpha particles from decay of primordial radionuclides in rocks interact with various targets to produce geogenic nuclides. For example, ¹⁴C can be produced in rocks by the interaction of radiogenic neutrons on ¹⁴Ni and ¹⁷O, and by radiogenic alpha particles on ¹¹B (Gosse and Phillips 2001). In addition, because there is a low level of nuclear fission in U-bearing rocks, spontaneous natural fission releases otherwise rare fission products such as ¹²⁹I.

To further the example of ¹⁴C, most of the cosmogenic ¹⁴C is produced in the atmosphere by neutron absorption by nitrogen, but there is 'terrestrial' cosmogenic production in quartz and limestone minerals and the geogenic production described above. The atmospheric cosmogenic ¹⁴C is readily soluble, biologically available once deposited to Earth, and therefore very relevant to the background levels considered in this report. In contrast, the terrestrial cosmogenic ¹⁴C produced in rocks and the geogenic ¹⁴C (also produced in rocks) is generally not easily released from the rock matrices. Thus, although terrestrial cosmogenic and geogenic processes contribute to background ¹⁴C per se, this ¹⁴C does not have an immediate biological role.

For many of the terrestrial cosmogenic radionuclides, there has been considerable recent research to use these to date geomorphic processes: this was the topic of the review by Gosse and Phillips (2001), for example. Because the production rate in rocks decreases markedly with depth, the presence of the terrestrial cosmogenic radionuclides in surface rocks allows an estimate of how long they have been exposed, which is useful to date events such as glacial retreat and volcanism. However, this body of research specifically attempts to exclude atmospheric cosmogenic radionuclide production, which is arguably more important for background environmental radioactivity.

1.4 VARIABILITY AND ENVIRONMENTAL INCREMENTS

Background concentrations are clearly not constant in space or time, and in many respects the variation in background concentrations is at least as important as are the medians or means. Thus in this report, emphasis is given to measures of variability and to the corresponding data frequency distributions.

Another use of the measures of variability is that of Environmental Increments (EI). Amiro (1992, 1993) and later Solberg-Johansen et al. (1997) proposed a scheme to compile background concentration data for soil and water from a variety of sources and then generate El values. These El values were intended to be the increment in concentration above background that was well assured to not have an impact on ecological attributes or human health. Values of El have been called an estimate of the 'contaminant carrying capacity' of the biosphere. In many cases, these El values were based on the statistical dispersion of measured or estimated concentrations rather than on demonstrated effect concentrations, so the scheme was quite dependent on good background concentration data. Environmental Increment values based on statistical dispersion are computed in this report and serve to characterize the variation in background concentrations.

There are many sources of variation, some systematic and some random. There is imprecision and inaccuracy related to the radiochemical analysis method, which approaches 100% as concentrations approach the detection or quantification limit. For many radionuclides, background concentrations are near or below the detection limits, so this source of variation can become important. There is variation because of sampling: the samples may not represent the media sampled, usually because of small-scale spatial variation. Finally, there are multiple levels of spatial variation, perhaps best reflected in the semi-variograms used in spatial analyses and fractal analysis.

In a semi-variogram, the variation among samples is plotted as a function of the distance between sampling positions, and the result tends to asymptotic. However, there can be multiple asymptotes. With soils as an example, variation may reach an apparent asymptote and be quite stable within distances defined by the specific soil type and landscape. This may change as soils with different underlying geological parent materials are included, so that another apparent asymptote is reached. Ultimately, there is an asymptote that reflects samples from all soils on Earth. A similar situation occurs for surface waters. Clearly, this leads to a key question about the spatial scale needed to characterize variability.

To illustrate the effect of spatial scale, if one were to focus the EI concept on a small spatial scale, there would be low spatial variability and therefore the apparent contaminant carrying capacity would be negligible. For example, if the spatial scale was one well-mixed lake, there would be almost no spatial or sampling variation, and the EI would be based largely on analytical variation and would be very restrictive. Conversely, if the EI was focussed on a large spatial scale, such as a continent, then there would be substantial variability and therefore a large apparent contaminant carrying capacity.

One conceptual resolution to the problem is to consider the population range of the organisms to be protected. In general, most organisms, including humans, have population ranges of hundreds to thousands of kilometres, so their evolution was subject to the variations in background concentrations over at least regional to continental scales. These scales would seem a reasonable working hypothesis for the spatial scale needed to characterize variation in background concentrations in the context of impact assessment. However, the appropriate spatial domain could be much smaller, especially for rare or endangered species and if they were indeed impacted by the nuclide of concern.

1.5 SOURCES OF REGIONAL VARIABILITY

Spatial distributions for radionuclide concentrations has been most thoroughly investigated for ²³⁸U and ²³²Th in soils and outcrops, because ²³⁸U is economically important and because progeny of both can be detected by mobile gamma spectrometers that can yield detailed spatial resolution. There has also been considerable investigation of spatial variation in ¹³⁷Cs, again because it is easily detected by mobile gamma spectrometers, but also because most of the ¹³⁷Cs came as a pulse in time⁵, and present day spatial variation reflects lateral movement since the pulse. Along with these, spatial variation of ⁴⁰K is often reported, because it is obtained by the same methods at the same time. However, ⁴⁰K has such a long half-life that it has a nearly constant specific activity, and stable K is ubiquitous.

⁵ Almost all the ¹³⁷Cs in soils and surface waters came from fallout, which affected all soils and surface waters and which peaked in 1963. There are more localized and lesser sources, including deposition from the Chernobyl accident.

There are detailed maps of U and Th⁶ distributions (<u>http://gdr.nrcan.gc.ca/gamma/comp_e.php</u>, accessed March 2011, some of which are in Appendix B). These show ranges of at least an order of magnitude over distances of ten to hundreds of kilometres. The U and Th activity levels shown on the maps are dependent on surface material, especially outcrop versus soil.

All the radionuclides in this study could be considered ubiquitous. Those that are cosmogenic (³H, ¹⁴C, ³⁶Cl and ¹²⁹I) or from fallout (³H, ¹⁴C, ³⁶Cl, ⁹⁰Sr, ¹²⁹I and ¹³⁷Cs) were subject to mixing in the atmosphere followed by dry and wet deposition. Although this generally resulted in uniformity, they have distinct latitudinal trends in concentrations as a result of the magnetic-field effects on cosmic rays and global circulation effects. Regional water balance also has an effect: arid regions have retained most of the deposited radioactivity whereas leaching and runoff have often decreased concentrations in more humid regions. These atmospheric source radionuclides also have a distinct depth distribution, with higher concentrations near the surface and lower concentrations with depth. As an example, ³H as tritiated water has often penetrated to tens of metres in groundwater recharge areas, but is depleted at deeper depths because of radioactive decay. The depth gradient is steeper for ¹³⁷Cs, which in many locations is still within a few centimetres of the surface even 45 years after the peak deposition of fallout.

There is some local lateral redistribution of the atmospheric-source radionuclides. Cesium-137 has not migrated to deeper soils, but has migrated laterally in the landscape as a result of erosion. This effect is relatively subtle and is more related to total ¹³⁷Cs in a soil or sediment profile than to concentrations per se, because the erosion is a displacement of a mass of material along with the ¹³⁷Cs. There are similar subtle lateral gradients for ¹⁴C, resulting from biological isotopic discrimination. Landi et al. (2003) showed a small effect of climatic zone across Saskatchewan on ¹³C (and by inference ¹⁴C) content of soil organic matter, because there are fewer C4 plants in northern boreal forests compared to southern grasslands⁷.

As already inferred, the primordial radionuclides vary spatially because of differences in mineral composition of the surface materials. This can result in relatively sharp boundaries in levels of radioactivity between adjacent areas of different lithology. At the upper concentrations, there are rare sites of exposed mineralization, in the order of percentage level concentrations of U, which may be considered minable assets. There are other processes that can concentrate U to quite high concentrations near the surface, by combined lateral water flow regimes, sorptive materials and changes in oxidation/reduction (redox) potential. These are sometimes called 'roll fronts' (e.g. the site investigated by CBCL (1985) in Newfoundland), and these are also rare.

In counterbalance to the linkage between radioactivity and lithological characteristic of the long-lived primordial radionuclides, much of the radiological dose to humans arises from decay products of radon (²²²Rn) (Walsh 1970). Radon can be emitted to the atmosphere as a gas, with the result that ²²²Rn, ²¹⁰Bi, ²¹⁰Po and ²¹⁰Pb are subject to some spatial homogenization by atmospheric dispersion despite the fixed and sometimes inhomogeneous distribution of ²²⁶Ra and its predecessor radionuclides in soils and rocks.

⁶ These are reported as eU and eTh, indicating 'effective' ²³⁸U and ²³²Th concentrations. This is because only progeny of these radionuclides are actually detected, and the eU and eTh concentrations are computed assuming secular equilibrium (and with corrections related to detector efficiencies and measurement geometry).

⁷ C4 plants, which include many grass species, have a different biochemical pathway for photosynthesis than other plants and C4 plants tend to discriminate C isotopes less than do other plants.

1.6 FREQUENCY DISTRIBUTIONS

An important aspect of presenting statistical dispersion is consideration of the frequency distribution appropriate for the data. Frequency distributions can be described with many different functions, but two are especially common for environmental variables: normal and lognormal. It is appropriate to test for the best fit function for each data set, but there are some overall, *a priori* considerations.

In general, data are normally distributed for parameters related to constrained systems. For example, parameters that are in proportion to the size of an organism, such as weight, feed intake and breathing rate, tend to be normally distributed. The Central Limit Theorem provides some guidance: it indicates that parameters that are the result of additive processes will more likely be normally distributed. One could envision the weight of an animal as the sum of the weight of its parts. For concentration data, elements that are widely and uniformly distributed may be normally distributed: concentration of potassium (K) in soils is an example.

Other than for widely distributed nuclides, concentration data tend to be lognormally distributed. Another term for this is 'skewed', implying many more low values than high values in the data set. In part, this also follows from the Central Limit Theorem. If added quantities tend to lead to normal distributions, then it follows that multiplicative (or divisive) quantities will tend to lead to lognormal distributions. This is because the sum of log values is equivalent to the multiplication of their linear counterparts, and conversely the difference of log values is equivalent to the division of their linear counterparts. Concentrations of elements are the amount of element divided by the amount of media, and so lognormal may be the best a priori assumption. There is a spatial argument too, especially easily envisioned for elements that mainly come from discrete sources. If a fixed amount of an element is released from a discrete source (by man or by natural processes), it will be diluted as it disperses, and the dispersion and dilution with distance from the source will have some attribute of a 2-dimensional or 3-dimensional radial spread. Thus, as a simplistic model, dilution will be proportional to at least the square of distance from the source. If one sampled this space randomly, one would find many more low concentrations than high concentrations, which is the skew indicative of lognormal distributions.

In this report, the frequency distributions of concentrations for each radionuclide were examined, and either the linear, normal frequency histogram (with concentration on the x axis) or the lognormal frequency histogram (with log concentration on the x axis) is shown, depending on the best fit. For a few radionuclides, both are shown because both describe the data well.

1.7 ISOTOPE RATIOS

Along with simple environmental concentrations, there is useful information to be obtained from isotope ratios. Isotope ratios for members of decay chains are critically important, because inevitably some of the decay-chain radionuclides are very difficult to detect at environmental concentrations. In fact, many of the analyses reported in the literature for U, Ra and Th are from measurements of their decay progeny assumed to be in secular equilibrium with the parent radionuclide. However, as highlighted by Sheppard et al. (2008), several parent/progeny pairs are not in secular equilibrium in environmental samples, because they have different environmental mobilities. In these cases, because of the need to estimate concentrations, it is even more important to document how the activity concentration ratios vary among media. For example, it may be possible to estimate concentrations of decay chain members even if there is no secular equilibrium, as long as the activity ratios are predictable.

Isotope ratios are also important for non-chain radionuclides such as ¹⁴C, ³⁶Cl and ¹²⁹I. An illustration is the tracking of ¹²⁹I from Sellafield and La Hague into the Baltic Sea (Nies et al. 2000) and onto Scandinavian soils (Aldahan et al. 2006). The ¹²⁹I is very difficult to detect, but it is not dissociated from stable ¹²⁷I in environmental processes. Therefore, once an ¹²⁹I/¹²⁷I ratio for a region is determined, then the concentrations of ¹²⁹I can be inferred from data on ¹²⁷I. Of course, this requires detailed interpretation of the transport pathways for iodine, since the assumption is of uniform isotopic mixing and iodine is selectively retained in some media. The key point here is that isotope ratios compiled for even a few background sites will facilitate estimation of concentrations of the difficult-to-detect radionuclides in a much broader range of sites.

2. METHOD OF REVIEW

2.1 SEARCH METHODS

The initial literature search was completed using the SCOPUS and ScienceDirect databases. These cover a broad range of literature, including disciplines such as geomorphology⁸ and archaeometry⁹ as well as the classical environmental sciences. Each radionuclide was used as a search term along with geographic terms such as Canada, Ontario, and boreal. Once key papers were identified, citation searches were done to locate papers that subsequently cited these papers. Similarly, the papers cited by key papers were considered.

A list of key authors was identified and searches were done for their papers. A few of these were also contacted directly to enquire about more recent work or papers that may have been missed.

In addition to papers listed in scientific databases, there was an effort to obtain 'grey' literature sources. The most important of these were pre-operational and monitoring reports for Canadian nuclear facilities. Of these, only reports from 2007 or 2008 were used to avoid reporting repeated measures of the same sites, and only control or reference sites used. In general, these reports were supplied by the site owners, and many were available on line.

2.2 CORRECTION OF ERRORS

In the process of the review, a relatively large number of papers and reports were found to have errors, generally of two types. The most common were errors of 10^3 -fold resulting from faulty unit conversions. In at least one case, word processing software used by the author's institute converted the unit prefix μ to m. The next most common error was a transposition of tables or figures. These types of errors were evident when the data were compared to other papers by the same authors or from the same sampling locations. Where possible, the author was contacted to confirm our interpretation of the error. Alternatively, some papers and reports would have the error in one place and the correct value in another place, or another paper, so this confirmed our interpretation. Any assumptions that were not confirmed are noted.

2.3 CONVERSION FACTORS

A number of conversion factors were needed because values in the literature were not always presented in the same way as in this report. Some of these conversions are not simple unit conversions, so they are described here.

Data for ¹⁴C are frequently reported as percent of modern carbon (PMC), where 'modern' is taken to mean pre-industrial age, about 1890, ¹⁴C and stable C levels which are then decay

⁸ Geomorphology is the study of landforms, and in some studies this can involve radiochemical analysis to determine the age of materials.

⁹ Archaeometry is the application physical, chemical and radiochemical analytical techniques to archaeology

corrected to 1950. During the industrial age, massive amounts of geological-age C containing little ¹⁴C were released to the biosphere as emissions from the combustion of fossil fuels. This diluted biosphere ¹⁴C which is normally sustained by cosmogenic production. Conversely, the atmospheric nuclear bomb tests and releases from power reactors have elevated ¹⁴C levels since about 1963. There is also some variation in the reference material used for PMC, but here we assume 100% PMC refers to 226 Bq per kg C, a value common among those found in the literature. Thus, a value reported as 110% PMC would have 249 Bq per kg C.

The half-life of ⁴⁰K is so long $(1.28 \times 10^9 \text{ a})$ that it is assumed to represent a constant 0.012% by mass of total K, so that natural K is assumed to have a specific activity 31 Bq per g K. Similarly, ⁸⁷Rb has a very long half-life (4.9 x 10¹⁰ a), and is present at a nearly constant 27.83% fraction of total Rb, resulting in 860 Bq per g Rb.

Very often, the data reported in the literature for ³⁶Cl and ¹²⁹I are expressed as atoms per unit media or atom ratios. Similarly, ³H is often expressed in tritium units (TU) and ³⁶Cl in 'chlorine units' (CLU). The conversions are straightforward, based on half-life and atomic mass, but are given here for convenience.

For ³H:

 1.8×10^{-9} Bq per atom of ³H

One TU is 1 atom ³H per 10¹⁸ atoms ¹H

One TU in water is 0.199 Bq L^{-1} (water is 111.1 mole H per L)

For ³⁶CI:

 7.3×10^{-14} Bq per atom of 36 Cl

One CLU is 1 atom ³⁶Cl per 10¹⁵ atoms ^{35,37}Cl

For a unit atom ratio (36 Cl/ 35,37 Cl), it implies 1.2 x 10⁹ Bq per g Cl

For ¹²⁹I:

 1.4×10^{-15} Bq per atom of ¹²⁹I

For a unit atom ratio $(^{129}I/^{127}I)$, it implies 6.4 x 10⁶ Bq per g I

Various conversions have been reported in the literature for ^{nat}U, differing by the assumed contribution of ²³⁵U. For example, Ahier and Tracy (1997) assumed ²³⁵U was present at 5% of the mass of ²³⁸U for emissions from a fuel processing facility. More typically, it is assumed that ²³⁵U is present at 0.72% of the mass of ²³⁸U (Veska and Eaton 1991). These conversions follow from the half-lives and relative abundances of the isotopes, we reference Veska and Eaton (1991) simply as verification of the final specific activity.

For ^{nat}U:

12.4 kBq from ²³⁸U per g ²³⁸U or per g ^{nat}U

25.0 kBq from ²³⁴U, ²³⁵U, and ²³⁸U per g ²³⁸U or per g ^{nat}U, assuming secular equilibrium between ²³⁴U and ²³⁸U and ²³⁵U present at 0.72% of the mass of ²³⁸U.

0.566 kBq from 235 U per g 238 U or per g nat U

0.045 Bq from ²³⁵U per Bq from ²³⁸U

Two further conversions were used and are somewhat empirical - the conversion between organic C and organic H content of soils and organic matter content. In general, soil organic matter has 1.72- to 2.0-fold more mass than soil organic C (Nelson and Sommers 1996): that is the organic matter is about 50% to 58% C. Similarly, soil organic matter is about 5% H, and the H/C ratio is about 0.1.

2.4 OUTLINE OF THE REPORT

The body of the report deals with the following radionuclides, in this order of increasing atomic mass:

³H, ¹⁴C, ³⁶Cl, ⁴⁰K, ⁹⁰Sr, ⁸⁷Rb, ¹²⁹I, ¹³⁷Cs, ²¹⁰Bi, ²¹⁰Pb, ²¹⁰Po, ²²²Rn, ²²³Ra, ²²⁴Ra, ²²⁶Ra, ²²⁷Ac, ²²⁷Th, ²³⁸Ra, ²²⁸Th, ²³⁰Th, ²³¹Pa, ²³¹Th, ²³²Th, ²³⁴Th, ²³⁴U, ²³⁵U and ²³⁸U.

These include the radionuclides indicated in the objectives, plus progeny with half-lives longer than 1 d. Progeny with shorter half-lives are assumed to be in secular equilibrium and the corresponding doses for these are often included in the dose conversion factors for the parent radionuclide.

No specific data were found for ²¹⁰Bi, ²²³Ra, ²²⁴Ra, ²²⁷Ac, ²²⁷Th, ²³¹Th and ²³⁴Th. Their activity concentrations can be related to their parents, based on secular equilibrium. Because their half-lives are short, most <0.06 a, it is reasonable to assume that even in environmental media these radionuclides are in secular equilibrium with their parents. For ²¹⁰Bi, even the radioanalytical methods rely on the assumption of secular equilibrium, because ²¹⁰Bi is measured as a surrogate for ²¹⁰Pb.

The environmental data for ¹⁴C, ³⁶Cl and ¹²⁹I include direct measures of activity concentration, but are dominated by specific activity data. As a result, representative data for stable element concentrations were also compiled. For ³H (T), most of the data compiled were activity concentrations in water, and assuming this to be HTO (tritiated water with one tritium atom per molecule), this is analogous to specific activity data in that the ³H concentration in organic media could be computed assuming the organically bound tritium (OBT) has the same specific activity as water.

Many of the data in the literature for U refers to ^{nat}U, in part because many of the analyses are based on chemical as opposed to radiochemical methods. This ^{nat}U includes ²³⁴U, ²³⁵U, and ²³⁸U. By mass, ^{nat}U and ²³⁸U are identical because ²³⁴U and ²³⁵U contribute negligible mass. By activity, ^{nat}U has about twice the specific activity of ²³⁸U because of the contributions of ²³⁴U and ²³⁵U.

Maps of the distributions of ⁴⁰K, ²³²Th and ²³⁸U have been prepared by Department of Natural Resources Canada and are shown in Appendix B.

The report is supported by an Excel database. The key parameters listed in the database are sample media (mostly soil versus water), activity concentration or specific activity, mass concentration of the element, reference source and a description of how the specific values were derived from the reference. In addition, the data were categorized for spatial relevance. Notes were also included where possible about analytical methods, detection limits and statistical variation in the activity concentrations. Qualitative indices were included in many cases to rate the quality and relevance of the analytical and sampling methods. Appendix C shows the more important fields from the database.

The database includes values below the detection limit (DL). In general, for the statistical summaries these were substituted by the DL concentration. The exceptions were where the DL reported was markedly higher than the concentrations reported by other authors, in which case the DL were not included in the summations. The database also includes a few values that were not specifically identified by the authors as contaminated, but had high concentrations and were geographically in a position where contamination was plausible. Although included in the database, these are identified as outliers and were not included in the statistical summaries.

3. ENVIRONMENTAL CONCENTRATIONS

3.1 TRITIUM (³H)

Tritium (³H) is produced in the atmosphere by the interaction of cosmic-ray produced neutrons with nitrogen, with a production rate of 5000 ± 3000 atoms m⁻² s⁻¹ (Vertes et al. 2003). There is also natural production in the atmosphere resulting from solar emissions. Once created in the atmosphere, the ³H typically becomes incorporated into water and can reside in the lower stratosphere for 1 to 10 years. Once it enters the troposphere, rainout will occur within a few days (Vertes et al. 2003). Michel et al. (1984) and Renaud et al. (2005) indicated that ³H in rain before the atmospheric bomb test era would have been 3-5 Bq L⁻¹, and presumably this would represent present natural production rates. Fallout ³H and releases from nuclear reactors and particle accelerators add to these natural sources. Although there can be considerable isotopic discrimination of ³H in biological processes compared to the relatively much lighter stable ¹H, the specific activity of natural ³H in soils and surface waters is relatively uniform across the landscape. Thus, nation-wide (or global) summaries are appropriate.

There are data for ³H in free water of tissues (fish, plants and milk), and of these the average concentration (n = 6) was 4.0 Bq L⁻¹. Water with pre-fallout concentrations that have further decreased by radioactive decay can be found at depth, an example being the 0.12 Bq L⁻¹ reported in Sturgeon Falls Ontario by Renaud et al. (2005)¹⁰.

The ³H concentrations in surface water and shallow wells (recently meteoric) were strongly skewed, and were still skewed after log transformation (Figure 3-1). Although care was taken to exclude tritiated water that was contaminated by power reactor releases, these releases mix in lakes and are detectable at considerable distances from the source. Conversely, because of the relatively short half-life (12.33 a), drinking water obtained from deep wells may be depleted in ³H because of decay¹¹.

Spatially, ³H is gradually mixed by way of the hydrological cycle. However, the lower Great Lakes (Huron, Erie and Ontario) had concentrations of about 4.4 Bq L⁻¹ compared to 3.2 Bq L⁻¹ in Lake Superior and 3.9 Bq L⁻¹ in the Ontario portions of the Canadian Shield. Farther from the Great Lakes, concentrations were lower: 1.8 Bq L⁻¹ in western Canada and 1.6 Bq L⁻¹ in eastern Canada. This may be an effect of the power reactors on the lower Great Lakes. Arctic Canada had high concentrations measured before the early 1980's, averaging 23 Bq L⁻¹, but the Mackenzie River was 1.8 Bq L⁻¹ in 2010. It may be the earlier measurements in the arctic were of fallout ³H, and if so decay corrected to 2010 this would be 4 Bq L⁻¹, more in line with present-day measurements.

¹⁰ This datum is not included in the numerical summaries.

¹¹ The data set is almost exclusively surface water, the only possible exceptions are a few sources that were described as municipal drinking water, and these may include well water. None of these were distinctly depleted in ³H, and so all were considered representative of surface or meteoric water.

Of the 57 observations compiled,	the values were:
----------------------------------	------------------

Minimum	0.12 Bq L ⁻¹
Median	3.0 Bq L ⁻¹
Maximum	45 Bq L ⁻¹
Geometric mean (GM)	3.2 Bq L ⁻¹
Geometric standard deviation (GSD)	2.3
Implied EI (GM x (GSD - 1))	4.2 Bq L ⁻¹

This GM of 3.2 Bq L^{-1} in water can be expressed as a specific activity of 29 Bq (kg H)⁻¹, assuming 111.1 g H L^{-1} water. These levels are very comparable to the estimates of pre-bomb meteoric water (above), suggesting that these levels are largely of natural as opposed to anthropogenic origin.

No ³H data were found for Canadian soils. For soils in the field, much of the ³H present may be in the soil pore water, with less in OBT as part of the soil organic matter.

Soil concentrations in this report are based on the dry weight of soil. Thus, there is essentially no HTO in dry soil and the concentration would be 0 Bq kg⁻¹ dry soil. However, at field moisture content, assuming an average soil moisture content of 15% water per mass of moist soil, the GM of 3.2 Bq L⁻¹ in water would imply a concentration in moist soil of 0.5 Bq kg⁻¹ moist soil. This is clearly very transient, and has little biological relevance because organisms intake ³H largely with water ingestion and so the concentration in water is the important parameter. The OBT in soil organic matter is less transient and remains in dry soil, but is rarely reported. Soil organic matter is composed of materials of varying age, up to centuries. Thus, radioactive decay of ³H significantly affects the net OBT content of soils. Assuming 12 g organic C per kg dry soil (referenced in the next section), an H/C ratio of 0.1 and a specific activity of 29 Bq (kg H)⁻¹, GM of 3.2 Bq L⁻¹ in water implies a concentration in dry soil, as OBT, of 0.03 Bq kg⁻¹ dry soil. The actual value will be somewhat different than this depending on the average age of the soil organic matter. Again, this OBT has little biological relevance, even for soil organisms.

3.2 CARBON-14

Carbon-14 is also naturally produced in the atmosphere by impact of cosmic-ray neutrons on nitrogen, where the ¹⁴C then either reacts with oxygen or undergoes isotopic exchange to form ¹⁴CO or ¹⁴CO₂ molecules. The production rate is about 18000 atoms m⁻² s⁻¹ (Whicker and Schultz 1982). These molecules follow the same reactions as their stable-element counterparts in the atmosphere and biosphere, although often there is discernable isotopic discrimination in rate-limited processes because the heavier ¹⁴C molecules have slightly slower diffusion and reaction rates (Vertes et al. 2003). Because gaseous species are the dominant dispersal form, nation-wide (or global) summaries of spatial distribution of ¹⁴C are appropriate.

Almost all the data compiled for ¹⁴C were specific activities, and these are probably the best representation of ¹⁴C in the biosphere. Essentially all organic C in the biosphere comes from recent photosynthetic activity, and so the specific activity in the atmosphere is permutated throughout the biosphere. The C content of organic matter is relatively constant, but the C content of water and soil can be quite variable. It is better to determine a specific activity for ¹⁴C in the environment in general and apply this to soils and waters of concern using data for stable C concentrations.

Figure 3-2: Frequency histograms of specific activities of ¹⁴C in various environmental media (n = 15). The red lines are the best-fit normal and lognormal frequency curves.

The specific activity data appear skewed, even after log transformation (Figure 3-2). Of the 15 observations compiled, the values were:

Minimum	218 Bq (kg C)⁻'
Median	233 Bq (kg C) ⁻¹
Maximum	283 Bq (kg C) ⁻¹
Geometric mean (GM)	239 Bq (kg C) ⁻¹
Geometric standard deviation (GSD)	1.07
Implied EI (GM x (GSD - 1))	17 Bq (kg C)⁻¹

Given that 100 PMC is 226 Bq (kg C)⁻¹, this median observed specific activity of 233 Bq (kg C)⁻¹ suggests that the present levels of ¹⁴C are representative of natural background despite the time-varying modern inputs of ¹⁴C and cold (fossil) stable C.

Concentrations (by mass) of organic stable C in soils can range from nearly 0% in sandy soils to nearly 50% in organic soils. The median for 27,000 mineral soils (Soil Landscapes of Canada, 2009) was 12 g organic C per kg (1.2%), and for 1500 organic soils (soils with greater than 30% organic matter) was 400 g organic C per kg (40%). The GSD for soil organic carbon was 2.7. Soils may contain carbonate minerals, but in general these contain ancient 'cold' C, and little ¹⁴C. Some of the organic C in soil may also be up to several centuries old, and so the overall specific activity may be slightly different than the present atmospheric specific activity. Based on these organic C contents of soils and the assumption that the atmospheric specific activity applies, median ¹⁴C levels in mineral soils would be 3 Bq kg dry soil and in organic soils would be 100 Bq kg⁻¹ dry soil.

Concentrations of organic stable C in water differ by at least 5-fold, from the brown-coloured water of small boreal lakes to the relatively clear Great Lakes. From Smith et al. (2004), the Great Lakes typically have 2.8 mg organic C per L, with tributary rivers having 8 mg organic C per L. Boreal lakes have levels of about 10 mg organic C per L (Heikkinen 1994, Jonsson et al. 2007 and O'Driscoll et al. 2006). The GSD for each of these studies was in the range of 1.3 to 1.6. Surface waters will also contain inorganic C, typically as carbonate species and thus highly dependent on pH, photosynthetic activity and respiration, but probably in isotopic equilibrium with the atmosphere. Based on these organic C contents and the specific activity of 239 Bq (kg C)⁻¹, typical ¹⁴C levels in surface waters would be 0.0007 to 0.002 Bq L⁻¹.

3.3 CHLORINE-36

Cosmic-ray neutron capture (spallation) of Ar in the upper atmosphere accounts for much of the natural atmospheric inventory of ³⁶Cl (Fabryka-Martin et al. 1987). These authors suggest the residence time in the troposphere is 2 weeks or less, so that global mixing is not complete. Deposition, both wet and dry, is about fivefold greater at about 45° latitude that at the equator. The oceans have negligible ³⁶Cl, so that the specific activity of ³⁶Cl increases exponentially inland from the coast (Fabryka-Martin et al. 1987), with atom ratios ranging from 10⁻¹⁴ along the coast to 10⁻¹² inland (0.01 to 1 Bq (kg Cl)⁻¹). Fallout was an important spike in ³⁶Cl production, and this is evident in Cl that was chemically bound (isolated from exchange reactions) at that time.

Cosmogenic ³⁶Cl also arises because of thermal neutron, epithermal neutron, spallation (fast neutron) and muon-absorption reactions in rocks (Gosse and Phillips 2001, Heisinger and Nolte 2000, Swanson and Caffee 2001), all of which vary in intensity with depth in the rock and the concentrations of calcium and potassium. Natural (geogenic) neutron activation of ³⁵Cl and alpha interaction with ³³S and ³⁹K to produce ³⁶Cl also occurs. Reference texts by Whicker and Shultz (1982) and Vertes et al. (2003) suggest that the atmospheric cosmogenic ³⁶Cl is deposited to the Earth's surface at about 12 atoms m⁻² s⁻¹. With an annual net rainfall (minus evaporation) of 0.1 m to 1 m, this is a concentration in the range of 3 x 10⁻⁷ to 3 x 10⁻⁸ Bq L⁻¹ as a result of natural processes. Andrews and Fontes (1991) estimated that the natural deposition in relatively dry western Canada resulted in a soil water concentration of 2 x 10⁻⁷ Bq L⁻¹.

There is a considerable body of research reporting ³⁶Cl concentrations in exposed rocks, done to determine how long, in millennia, that the rock has been exposed on the surface (e.g. Jackson et al. 1999, Osborn et al. 2007). This ³⁶Cl is locked in the rock matrix (otherwise it would have no value for dating events), and has no biological significance. The specific activities in surface rocks from Jackson et al. (1999) and Osborn et al. (2007) had a median of 0.24 Bq (kg Cl)⁻¹, which is very low compared to current biosphere data.

No data were obtained for ³⁶Cl in Canadian soil. There were several studies reporting specific activities in tissues, including teeth, bone and plants. Paleological teeth and bones and pre-fallout seeds had values of about 1.7 Bq (kg Cl)⁻¹ (Cornett et al. 1997b). Plant samples after the fallout had about 32 Bq (kg Cl)⁻¹, because of ³⁶Cl in the fallout.

Specific activities were more commonly reported for waters, including present day surface waters and borehole waters that may predate fallout. The range of specific activities in present day surface waters was substantial, and only one study that reported pre-fallout borehole waters had lower specific activities of about 0.02 Bq (kg Cl)⁻¹.

Figure 3-3: Frequency histograms of specific activities of 36 Cl in various environmental media, data for Canada (n = 27) and international (n = 17). The red lines are the best-fit lognormal frequency curves.

The specific activity data appear to conform to lognormal (Figure 3-3). Of the 27 observations of Canadian environmental media, the values were:

Minimum	0.020 Bq (kg Cl)
Median	0.70 Bq (kg Cl) ⁻¹
Maximum	40 Bq (kg Cl) ⁻¹
Geometric mean (GM)	0.96 Bq (kg Cl) ⁻¹
Geometric standard deviation (GSD)	6.2
Implied EI (GM x (GSD - 1))	5.0 Bq (kg Cl)⁻¹

The specific activity data among the 17 international observations were:

Minimum	0.025 Bq (kg Cl) ⁻¹
Median	0.44 Bq (kg Cl) ⁻¹
Maximum	4.7 Bq (kg Cl) ⁻¹
Geometric mean (GM)	0.37 Bq (kg Cl) ⁻¹
Geometric standard deviation (GSD)	3.7

Comparing the Canadian and international GM values for specific activity, they are within one GSD, and so could not be considered statistically different. The Canadian data may be slightly elevated because several of the samples were drawn from eastern Ontario, and they may have been influenced by emissions from the Chalk River Nuclear Laboratory. Several of these slightly higher values were water from tissue samples, but it is not likely that they were high because of biological effects.

The specific activities in paleological teeth and bones and pre-fallout seeds were about 1.7 Bq (kg Cl)⁻¹ (Cornett et al. 1997b), comparable to the modern values. This suggests the observed specific activities represent natural background.

Figure 3-4: Frequency histograms of concentrations in surface, shallow well and precipitation, data for Canada (n = 26) and international (n = 10). The red lines are the best-fit lognormal frequency curves.

The concentrations of ³⁶Cl in water for samples from Canada also appear to conform to lognormal (Figure 3-4). Of the 26 observations compiled, the values were:

Minimum	4.4 x 10 ⁻⁷ Bq L ⁻¹
Median	5.1 x 10 ⁻⁶ Bq L ⁻¹
Maximum	1.5 x 10 ⁻³ Bq L ⁻¹
Geometric mean (GM)	5.1 x 10 ⁻⁶ Bq L ⁻¹
Geometric standard deviation (GSD)	4.6
Implied EI (GM x (GSD - 1))	1.8 x 10 ⁻⁵ Bq L ⁻¹

Minimum	6.0 x 10 ⁻⁸ Bq L ⁻¹
Median	2.9 x 10 ⁻⁶ Bq L ⁻¹
Maximum	2.0 x 10 ⁻⁵ Bq L ⁻¹
Geometric mean (GM)	1.7 x 10 ⁻⁶ Bq L ⁻¹
Geometric standard deviation (GSD)	6.3

The difference in GM between the international and Canadian water concentration data were well less than one GSD, and so are not statistically different. Similarly, there were no statistically significant differences or notable trends spatially among the data, suggesting that global averages may be representative. These median concentrations are about an order of magnitude higher than the 2×10^{-7} Bq L⁻¹ that Andrews and Fontes (1991) estimated for natural deposition from the atmosphere. These authors also estimated concentrations of \sim 7 x 10⁻⁶ Bq L⁻¹ in near-surface groundwater as a result of terrestrial cosmogenic production. The later are comparable to the median observed concentrations, suggesting that the median concentrations may represent natural background, largely of terrestrial cosmogenic origin.

The relatively high GSD for ³⁶Cl was also evident in the variation reported within studies. The specific activities had GSD values in the range of 1.1 to 5, and the water concentrations had GSDs in the range 1.1 to 10. Some of this variation may be because of inclusion of fallout or pre-fallout waters (well waters) and continued isotopic dilution of fallout ³⁶Cl. Analysis for ³⁶Cl is complicated, and so analytical difficulties may contribute to this variability.

Concentrations of stable CI are not commonly measured in soils – there is sufficient for plant growth in all regions except a few locations in the Prairies, and it is rarely a contaminant of concern. Sheppard et al. (1999), Hill (1986) and Edwards et al. (1981) gave values with a median of about 50 mg kg⁻¹ and a GSD of about 2.2. In recent sampling in Northern Ontario and Manitoba, the GM was 230 mg kg⁻¹ with a GSD of 1.6 (Sheppard et al. 2009a). These values may not be statistically different, and it is not clear why they would be different. From the value 230 mg kg⁻¹ and the specific activity of 1.0 Bq (kg Cl)⁻¹, the corresponding concentration in soil would be 0.0002 Bq kg⁻¹ dry soil.

Concentrations of stable CI are measured more commonly in water in order to monitor the effects of road salt and general human activities. The concentrations in the Great Lakes have increased from a GM of 1.6 mg L⁻¹ prior to settlement to 12 mg L⁻¹ recently (Chapra et al. 2009). There is also an increase from 1.4 mg L⁻¹ in Lake Superior to 22 mg L⁻¹ in Lake Ontario, reflecting more anthropogenic inputs downstream and a general evaporative concentration of CI with time. Hayashi et al. (1998), Andrews and Fontes (1993) and Cornett et al. (1997a) noted concentrations in precipitation of about 0.25 mg L⁻¹. The median concentration in 21 rivers sampled across Canada in 2010 (Sheppard and Sanipelli 2011) was 7.6 mg L⁻¹. From these 21 values and the specific activity from 4 of these sites of about 0.3 Bq (kg Cl)⁻¹, the corresponding median concentration would be 2 x 10⁻⁶ Bq L⁻¹, very close to the GM of measured concentrations.

3.4 POTASSIUM-40

Potassium-40 is a primordial radionuclide, and is neither the product nor parent of a decay series. Because of the very long half-life $(1.28 \times 10^9 \text{ a})$, measures of 40 K are assumed to be

directly correlated to measures of stable K. The corresponding specific activity is 31 kBq (kg K)⁻¹, and this is representative of natural background. The variation in ⁴⁰K concentrations is therefore the variation in total stable K concentrations. For this reason, and in contrast to most other radionuclides, ⁴⁰K concentrations might be expected to be normally distributed. This is evident for soil concentrations in Figure 3-5: both linear and log-transformed ⁴⁰K concentrations appear to represent the data well.

Figure 3-5: Frequency histograms of 40 K concentrations in soil (n = 34). The single low value is an organic soil. The red lines are the best-fit normal/lognormal frequency curves.

In soils, K concentration is related to clay content. De Jong et al. (1994) proposed the empirical relationship 40 K (Bq kg⁻¹) = 385 (Bq kg⁻¹) + 3.7 clay (%). VandenBygaart et al. (1999) proposed empirical relationships of 40 K (Bq kg⁻¹) = 420 (Bq kg⁻¹) + 7.88 clay (%) and 40 K (Bq kg⁻¹) = 259 (Bq kg⁻¹) + 5.37 clay (%) for soils of different depositional regimes. Maps of 40 K concentrations across Canada are shown in Appendix B. Several studies reported 40 K concentrations in beach sands, with a range similar to that of mineral soils (Figure 3-5). Zach et al. (1989) reported concentrations in an organic soil of 100 Bq kg⁻¹.

Of the 33 observations of ⁴⁰K concentrations in mineral soils (i.e. excluding the soil of Zach et al. 1989), the values were:

Minimum	200 Bq kg⁻¹
Median	460 Bq kg ⁻¹
Maximum	769 Bq kg ⁻¹
Geometric mean (GM)	430 Bq kg ⁻¹
Geometric standard deviation (GSD)	1.5
Implied EI (GM x (GSD - 1))	210 Bq kg⁻¹

The GSD for ⁴⁰K is relatively low, and this was also reflected in the individual studies where the range in GSD was 1.1 to 1.6.

Water concentrations of ⁴⁰K are rarely reported: the average of two studies that reported values is 0.08 Bq L^{-1.} However, Rowan and Rasmussen (1994) did a thorough review of surface water

stable K concentrations, and from these it is possible to compute ⁴⁰K concentrations. Also, Sheppard and Sanipelli (2011) measured stable K at 21 sites. There were distinct spatial trends, much the same as for stable Cl. Lake Superior and the North Channel had concentrations of about 18 mBq L⁻¹, and concentrations increased downstream with 28 mBq L⁻¹ in Lake Huron, 44 mBq L⁻¹ in Lake Erie and 64 mBq L⁻¹ in Lake Ontario. This is suggestive of more human inputs and more concentration by evaporation downstream. The Ontario Shield had low concentrations of about 23 mBq L⁻¹, perhaps because the watersheds are smaller and more northerly and remote. The concentrations in western Canada was quite high (60 mBq L⁻¹), which is consistent with it being the recipient of a very large and relatively arid watershed. Overall, the data were skewed, even after log transformation (Figure 3-6).

Figure 3-6: Frequency histogram of 40 K concentrations in surface waters (n = 33), largely based on data for stable K. The red line is the best-fit lognormal frequency curve.

Of the 33 observations and estimates of ⁴⁰K concentrations in surface waters, the values were:

Minimum	0.009 Bq L ⁻¹
Median	0.034 Bq L ⁻¹
Maximum	0.11 Bq L ⁻¹
Geometric mean (GM)	0.033 Bq L ⁻¹
Geometric standard deviation (GSD)	1.9
Implied EI (GM x (GSD - 1))	0.030 Bg L ⁻¹

3.5 RUBIDIUM-87

Rubidium-87 is a primordial radionuclide with a very long half-life (4.9×10^{10} a), and so virtually does not decay and is present at a nearly constant 27.83% fraction of total Rb. The resulting specific activity is 860 kBq (kg Rb)⁻¹, and this is representative of natural background. Thus, the relevant data are for stable Rb concentrations in soils and surface waters. Rubidium is easily measured, but not often reported because it is rarely linked with contamination or biological responses.

In a survey of 30 soils in Manitoba and Ontario, Sheppard et al. (2009a) found total Rb concentrations of 37 \pm 18 mg kg⁻¹. A separate database reported by Sheppard et al. (2009b) involved 171 soils from southern Ontario, and the Rb concentrations were approximately normally distributed with a mean and standard deviation of 29 \pm 14 mg kg⁻¹. In activity

concentration of ⁸⁷Rb, assuming 27.83 % of Rb is ⁸⁷Rb, this is 25 ± 12 Bq kg⁻¹. The corresponding relative standard deviation implies an El of 12 Bq kg⁻¹.

In survey2 of 20 lakes and 21 rivers, Sheppard et al. (2009a) and Sheppard and Sanipelli (2011) found Rb concentrations with a GM of 0.29 μ g L⁻¹ (GSD = 3.4) In activity concentration of ⁸⁷Rb, this is 0.26 mBq L⁻¹. The corresponding EI is 0.62 mBq L⁻¹.

3.6 STRONTIUM-90

Strontium-90 is a fission product, and apart from a small amount of natural spontaneous fission, the dominant sources of ⁹⁰Sr are nuclear reactors and fallout. Measurement of ⁹⁰Sr is complicated because it requires chemical separation prior to analysis. Additionally, it is often associated with ¹³⁷Cs during emissions and deposition, which is simpler to measure and so serves as a surrogate. Barrie et al. (1992) measured ⁹⁰Sr deposition in a south-north transect, noting a decrease northward. Assuming a 15-cm depth of soil with a dry bulk density of 1300 kg m⁻³ and decay adjusting to 2010, the concentrations were 2.9 Bq kg⁻¹ at 60-70°N decreasing to 0.55 Bq kg⁻¹ at 80-90°N. As a measure of variation, the GSD for ¹³⁷Cs of 3.5 may be a useful surrogate, giving an EI of 7.3 Bq kg⁻¹.

Strontium-90 is measured more commonly in surface waters, and contamination from present nuclear facilities such as Chalk River Laboratories is notable at least within 100 km downstream. Because the half-life is relatively short (29 a) and much of the ⁹⁰Sr present is the result of deposition from fallout, there is a question of whether or not to adjust for decay to a specific year. For waters, this is especially true because the watersheds continue to contribute ⁹⁰Sr to the water, so the source to the water is not just directly from the initial fallout pulse. Thus, the rate of change in water concentrations is not a simple first-order function of sediment burial, flushing and decay, but is at least second-order because of the input from the water. Tracy and Prantl (1983) presented environmental half-times to estimate future ⁹⁰Sr concentrations, with values of 20 a for Lake Superior and 10 a for Lake Huron. Most of the ⁹⁰Sr data were reported in the 1980's and early 1990's, so reductions of 50% since then may have occurred.

Figure 3-7: Frequency histogram of ⁹⁰Sr concentrations in surface waters (n = 10). The red line is the best-fit lognormal frequency curve.

Of the 10 observations of ⁹⁰Sr concentrations in surface waters, the values without any decay or loss adjustment were:

Minimum	0.0044 Bq L ⁻¹
Median	0.018 Bq L ⁻¹
Maximum	0.026 Bq L ⁻¹
Geometric mean (GM)	0.015 Bq L ⁻¹
Geometric standard deviation (GSD)	1.8
Implied EI (GM x (GSD - 1))	0.012 Bq L ⁻¹

As noted above, these ⁹⁰Sr levels are due to human activities, specifically fallout, and probably overstate current Canadian levels.

3.7 IODINE-129

Cosmic-ray activation of Xe in the upper atmosphere accounts for much of the natural atmospheric inventory of ¹²⁹I, with a contribution up to 50% from volatilization of geogenic ¹²⁹I (Fabryka-Martin et al. 1987). Beer (2004) indicated production in the atmosphere was 0.3 atoms m⁻² s⁻¹, about 40-fold lower than ³⁶Cl. Fabryka-Martin et al. (1987) suggest the residence time in the troposphere is 2 weeks or less, so that global mixing is not complete. Deposition, both wet and dry, is about fivefold greater at about 45° latitude that at the equator. Residence times of ¹²⁹I and stable I in the oceans is sufficiently long, and the interchange with the atmosphere sufficiently rapid, that the oceans buffer the atmospheric ¹²⁹I:I atom ratio to a fairly constant natural background value of 3 x 10⁻¹³ to 3 x 10⁻¹² (0.002 to 0.02 Bq (kg I)⁻¹) (Fabryka-Martin et al. 1987). These levels are consistent with pre-bomb or natural specific activities as reported by Hou et al. (2009), Kekli et al. (2003) and Renaud et al. (2005). None the less, ¹²⁹I from fallout was an important spike in production and is evident in groundwater that recharged during that time.

lodine-129 also arises naturally from spontaneous fission in rocks, which can be estimated from the U content. The spontaneous fission decay constant was assumed to be $8.49 \times 10^{-17} a^{-1}$ by

Fabryka-Martin et al. (1991), and the fission yield was assumed to be 0.05%. Thus, there are 2500 atoms ¹²⁹I produced per year per μ g U. However, much of this remains trapped in the solid matrix. The 'escape efficiency' (the fraction of fission ¹²⁹I that escapes the solid matrix and interacts with pore water) ranges from 0.3 to 3%. Fabryka-Martin et al. (1991) estimated fission-produced ¹²⁹I to be up to 1.7 x 10⁶ atoms L⁻¹ (0.12 μ Bq L⁻¹) in the water of the Milk River sandstone, in some cases amounting to up to 87% of the ¹²⁹I present.

Specific activities of ¹²⁹I reported in the literature were especially variable, confounded by marked differences before and after the peak of fallout, a few recent point sources of ¹²⁹I and perhaps the widespread use of stable I in foods and other applications. For example, Cornett et al. (1997b) suggested specific activities before the fallout were about 0.6 Bq (kg I)⁻¹ (notably higher than the estimates by Hou et al. (2009), Kekli et al. (2003) and Renaud et al. (2005)), whereas after fallout they were much higher at about 130 Bq (kg I)⁻¹ (in teeth, vegetation and soil). With its very long half-life and the enhanced modern releases, pre-bomb levels may have little relevance for the near or far future because the entire global biosphere inventory of I will eventually have a higher-than-natural ¹²⁹I specific activity.

Figure 3-8: Frequency histograms of specific activities of ¹²⁹I in international soil samples (n = 10) and concentration of ¹²⁹I in international soils (n = 12). The red lines are the best-fit lognormal frequency curves.

For Canadian and international soil samples, the specific activities were:

Source	Canada n = 3	international n = 10
Minimum	1.8 Bq (kg l) ⁻¹	4.7 Bq (kg l) ⁻¹
Median	-	23 Bq (kg l) ⁻¹
Maximum	43 Bq (kg I) ⁻¹	800 Bq (kg l) ⁻¹
Geometric mean (GM)	8.6 Bq (kg l) ⁻¹	33 Bq (kg l) ⁻¹
Geometric standard deviation (GSD)	3.7	4.0
Implied EI (GM x (GSD - 1))	23 Bq (kg I)⁻¹	

For Canadian organic and mineral soils and international soils, the concentrations were:

Source	Canada n = 5	international n = 12
Minimum	0.022 mBq kg⁻¹	0.00047 mBq kg⁻¹
Median	0.22 mBq kg ⁻¹	0.14 mBq kg ⁻¹
Maximum	0.70 mBq kg ⁻¹	2.2 mBq kg ⁻¹
Geometric mean (GM)	0.14 mBq kg ⁻¹	0.11 mBq kg ⁻¹
Geometric standard deviation (GSD)	4.1	9.1
Implied EI (GM x (GSD - 1))	0.43 mBq kg⁻¹	0.9 mBq kg⁻¹
		-

Specific activities and concentrations of ¹²⁹I in water samples were also extremely variable (Figure 3-9).

Figure 3-9: Frequency histograms of specific activities of 129 l in water in Canada (n = 23) and international (n = 25). The red lines are the best-fit lognormal frequency curves.

For the Canadian and international water samples, the specific activities were:

Canada n = 23	international n = 25
16 Bq (kg I)⁻¹	9.6x10⁻ ⁶ Bq (kg I)⁻ ¹
93 Bq (kg I) ⁻¹	5.1 Bq (kg l) ⁻¹
600 Bq (kg I) ⁻¹	3000 Bq (kg l)⁻¹
74 Bq (kg I) ⁻¹	4.6 Bq (kg I)⁻¹
2.2	21
90 Bq (kg I)⁻¹	90 Bq (kg I)⁻¹
	Canada n = 23 16 Bq (kg I) ⁻¹ 93 Bq (kg I) ⁻¹ 600 Bq (kg I) ⁻¹ 74 Bq (kg I) ⁻¹ 2.2 90 Bq (kg I) ⁻¹

Figure 3-10: Frequency histograms of concentrations of 129 I in water in Canada (n = 26) and international (n = 32). The red lines are the best-fit lognormal frequency curves.

For the Canadian and international water samples, the concentrations were:

Source	Canada n = 26	international n = 32
Minimum	0.034 µBq L⁻¹	0.0013 µBq L⁻¹
Median	0.11 µBq L ⁻¹	0.070 µBq L ⁻¹
Maximum	0.28 µBq L ⁻¹	5.7 µBq L ⁻¹
Geometric mean (GM)	0.10 µBq L ⁻¹	0.070 µBq L⁻¹
Geometric standard deviation (GSD)	1.7	8.4
Implied EI (GM x (GSD - 1))	0.07 μBq L ⁻¹	0.52 µBq L ⁻¹

Stable I concentrations in soils were reported by Sheppard et al. (1989), Rao and Fehn (1999), and (Sheppard et al. 2009a), together giving a GM of 1.6 mg kg⁻¹ and variation of about 1.8-fold.

Rao and Fehn (1999) measured stable I in surface waters across North America, with a median of 0.2 μ g L⁻¹. Data from Sheppard et al. (2009a) were higher, with a GM for lake waters on the Precambrian Shield of 1.2 μ g L⁻¹ and for drinking water (both well and surface waters) of 3.8 μ g L⁻¹. The GSD values for these data were 1.5- to 2.4-fold, suggesting these concentrations differed significantly from the concentrations reported by Rao and Fehn (1999). The GM stable I concentration for 21 rivers and lakes sampled in 2010 (Sheppard and Sanipelli 2011) was 1.6 μ g L⁻¹, with a GSD of 1.8. Using the GM specific activity in Canadian water samples of 74 Bq (kg I)⁻¹ (above), the concentrations of 1.2 to 1.6 μ g ¹²⁷I L⁻¹ imply 0.09 to 0.1 μ Bq L⁻¹, consistent with the observed activity concentrations.

3.8 CESIUM-137

Cesium-137 is a fission product, and apart from a small amount of natural spontaneous fission, the dominant sources of ¹³⁷Cs are nuclear reactors and fallout. Soil concentrations of ¹³⁷Cs are commonly measured: the analytical method with gamma spectroscopy is simple and ¹³⁷Cs is considered one of the major fingerprints of fallout and some current nuclear facilities. Although stable Cs is relatively abundant and does affect the sorption reactions of ¹³⁷Cs, the specific activity of ¹³⁷Cs is not considered useful to represent environmental concentrations because

stable Cs is largely of geological origin and ¹³⁷Cs is largely of atmospheric (fallout) origin, so there is no inherent value in the specific activity.

Almost all the ¹³⁷Cs present in the biosphere results from fallout and is relatively uniform in distribution, whereas the contribution from Chernobyl is much smaller except in a few specific locations in Europe. There is a latitudinal effect for ¹³⁷Cs: most is in the temperate latitudes of the northern hemisphere, consistent with the latitudes for many of the bomb tests. Barrie et al. (1992) showed 5-fold higher concentrations at 60-70°N compared to 80-90°N.

Figure 3-11: Frequency histogram of 137 Cs concentrations in soil (n = 37). The red line is the best-fit lognormal frequency curve.

The apparent bimodal frequency density (Figure 3-11) reflects that soil samples from the arctic and sandy soils tend to have an order of magnitude lower ¹³⁷Cs concentrations than do finer textured, temperate latitude soils. It is probable that this bimodal trend would not be apparent if data for a fuller distribution of soil textures had been available.

There were statistically significant differences among regions. The highest concentrations were in samples from Atlantic Canada (14 Bq kg⁻¹, n = 2), BC (11 Bq kg⁻¹, n = 2), the Precambrian Shield outside of Ontario (19 Bq kg⁻¹, n = 8) and western Canada (12 Bq kg⁻¹, n = 4). The lowest concentrations were in northern Canada (1.2 Bq kg⁻¹, n = 4). Southern Ontario had intermediate (4.9 Bq kg⁻¹, n = 16) concentrations.

For the 36 soil concentrations, the values were:

Minimum	0.15 Bq kg⁻'
Median	10 Bq kg ⁻¹
Maximum	60 Bq kg ⁻¹
Geometric mean (GM)	6.5 Bq kg⁻¹
Geometric standard deviation (GSD)	4.0
Implied EI (GM x (GSD - 1))	20 Bq kg⁻¹

Water concentrations of ¹³⁷Cs, as with ⁹⁰Sr, are still being influenced by runoff of ¹³⁷Cs from watershed soils. At the same time, there is burial in sediment and downstream flushing. Tracy
and Prantl (1983) provided a two-phase model of the decrease in ¹³⁷Cs in the Great Lakes with time since the peak deposition in 1963. In Lake Superior, 70% of the ¹³⁷Cs diminished with a half-time of 0.53 a and 30% with a half-time of 5.5 a. In Lake Huron, 97.5% of the ¹³⁷Cs diminished with a half-time of 0.22 a and 2.5% with a half-time of 19 a. Most of the data were published in the early 1990's, so these functions would suggest a decrease of 5- to 10-fold from 1990 to 2010. However, this was not supported by recent data from AECL Whiteshell (2008) and AECL Chalk River (2008) where concentrations are consistent with the data from the 1990's. However, the AECL data are very near the detection limits, and are less reliable as a result.

Figure 3-12: Frequency histogram of 137 Cs concentrations in water (n = 26). The red line is the best-fit lognormal frequency curve.

Although the frequency density plot for water concentrations appears bimodal (Figure 3-12), there is no apparent explanation for the exceptionally low values. Some variation in the data may result from different pre-concentration methods, which will change detection limits by up to an order of magnitude. The especially low reported concentrations may be cases where the detection limit was also low, and other laboratories may have reported higher concentrations using as a default the detection limit values.

For the 26 water concentrations, the values were:

Minimum	0.12 mBq L ⁻¹
Median	1.6 mBq L ⁻¹
Maximum	5 mBq L⁻¹
Geometric mean (GM)	1.5 mBq L⁻¹
Geometric standard deviation (GSD)	2.3
Implied EI (GM x (GSD - 1))	2.0 mBq L ⁻¹

The differences among regions were not statistically significant, but there was a trend that the lower Great Lakes and St. Lawrence River had slightly lower concentrations (1 mBq L⁻¹, n = 13) compared to Lake Superior, the Ottawa River, the Precambrian Shield and north of 60°N (2 mBq L⁻¹, n = 13). This north/south trend is opposite that shown for soil samples, and may not be real. However, it may be the result of water balance and soil types: the northern soils

may be less retentive because of low pH, low clay contents and higher net water infiltration. This results in greater transfer of Cs to water bodies which may retain Cs in solution because of low pH and clay sediments.

3.9 BISMUTH-210

Bismuth-210 is in the ²³⁸U decay series, and thus is a product of a primordial radionuclide. The half-life of ²¹⁰Bi is 5 d and it is assumed to be in secular equilibrium with its parent, ²¹⁰Pb. Indeed, many of the analyses reported for ²¹⁰Pb are in fact the results of detection of beta emissions from ²¹⁰Bi. Thus, the assumption of secular equilibrium is necessitated by the way the data were obtained. The background concentration and El values for ²¹⁰Pb (and ²¹⁰Po) apply to ²¹⁰Bi. From the following section of this report dealing with ²¹⁰Pb, the GM soil concentration is 47 Bq kg⁻¹ (El of 110 Bq kg⁻¹) and the GM water concentration is 6.4 mBq L⁻¹ (El of 20 mBq L⁻¹).

3.10 LEAD-210

Concentrations of ²¹⁰Pb in soils occurs entirely because of the ²³⁸U (4n + 2) decay series, but can arrive in the soil by at least two processes. One is the decay of chain radionuclides that were present in the soil parent materials, resulting in the ingrowth of ²¹⁰Pb. However, the ²¹⁰Pb may not be in secular equilibrium with soil ²²⁶Ra and higher members of the chain because the intermediary ²²²Rn (radon) is volatile. Thus, some ²²²Rn may escape the soil resulting in disequilibrium between ²¹⁰Pb and ²²⁶Ra. The second process for generation of ²¹⁰Pb in soil is related to radon: as radon decays in the atmosphere, insoluble ²¹⁰Pb beyond what is expected from ingrowth if the radon in the atmosphere comes from sources other than the surface soil. An example would be radon emitted from lakes or deep soils that is then transferred to the top soil. Despite these complications, soil ²¹⁰Pb concentrations are not especially variable.

Figure 3-13: Frequency histogram of 210 Pb concentrations in mineral soil (n = 25). The red line is the best-fit lognormal frequency curve.

For the 25 mineral soil concentrations, the values were:

Minimum	2.5 Bq kg⁻ [^]
Median	50 Bq kg⁻¹
Maximum	800 Bq kg⁻¹
Geometric mean (GM)	49 Bq kg⁻¹
Geometric standard deviation (GSD)	3.2
Implied EI (GM x (GSD - 1))	110 Bq kg⁻¹

There were data for 4 organic soils, with a GM of 310 Bq kg⁻¹ and GSD of 1.3-fold. Given that the bulk density of an organic soil may be about one-tenth that of a mineral soil, the GM of 310 Bq kg⁻¹ for the organic soils is consistent with that of the mineral soils if both were expressed per unit volume or per unit landscape surface area. Given the atmospheric source of much of the ²¹⁰Pb, a similar value per unit landscape surface area might be expected regardless of soil type.

There were no statistically significant differences among regions in soil ²¹⁰Pb concentrations.

Figure 3-14: Frequency histogram of 210 Pb concentrations in water (n = 17), excluding all values recorded as at the corresponding detection limits. The red line is the best-fit lognormal frequency curve.

For the 17 water concentrations above their detection limits, the values were:

Minimum	0.5 mBq L⁻¹
Median	3.6 mBq L ⁻¹
Maximum	86 mBq L ⁻¹
Geometric mean (GM)	6.4 mBq L ⁻¹
Geometric standard deviation (GSD)	4.5
Implied EI (GM x (GSD - 1))	20 mBq L⁻¹

Although there were no statistically significant differences among regions in water 210 Pb concentrations, the probability level for differences was P = 0.09¹². Lake Huron appeared to be

¹² Statistical significance is usually assigned at P < 0.05, so this level is 'nearly' significant.

low (0.5 mBg L^{-1} , n = 1), the Ottawa River, northern Ontario and eastern Canada were intermediate (4 mBq L^{-1} , n = 9), and the Precambrian Shield outside of Ontario, western Canada and north of 60°N were highest (30 mBq L^{-1} , n = 7). These differences might be attributable to the regional average amount of overburden between the U-bearing rocks and the water bodies. The overburden would retard radon movement and retain Pb.

- 30 -

3.11 POLONIUM-210

Polonium-210 is also in the ²³⁸U decay series, and thus is a product of a primordial radionuclide. Because the half-life of ²¹⁰Po is only 138 d, it is often in secular equilibrium with its parent ²¹⁰Pb. Ten values for both soil and water were found in the literature and are summarized here.

Figure 3-15: Frequency histograms of concentrations of 210 Po in soil (n = 10) and in water (n = 10). The red lines are the best-fit lognormal frequency curves.

9.2 mBq L⁻¹

For the 10 soil concentrations, the values were:	
Minimum	14 Bq kg⁻¹
Median	35 Bq kg ⁻¹
Maximum	150 Bq kg ⁻¹
Geometric mean (GM)	40 Bq kg ⁻¹
Geometric standard deviation (GSD)	2.2
Implied EI (GM x (GSD - 1))	48 Bq kg⁻¹
For the 10 water concentrations above their detection	ction limits, the values were:
Minimum	2.5 mBq L ⁻¹
Median	5.5 mBq L ⁻¹
Maximum	49 mBq L ⁻¹
Geometric mean (GM)	7.1 mBq L ⁻¹
Geometric standard deviation (GSD)	2.3

Implied EI (GM x (GSD - 1))

As expected, the GM concentrations in soil and water for ²¹⁰Po were nearly the same as in the previous section for ²¹⁰Pb. In both cases, the GSD was larger for ²¹⁰Pb than ²¹⁰Po, but there is no obvious reason why this might be the result of physical or chemical processes. One could argue that the data for ²¹⁰Pb and ²¹⁰Po be combined, but this changes the meaning of the GSD from a measure of variation from study to study and site to site to a measure of variation from analytical method to method.

3.12 RADON-222 and RADIUM-223,224

Radon is an important radionuclide for two primary reasons. In the decay series, it often disrupts secular equilibrium because as a gas it can migrate away from the site where it was formed. Although this migration is most notable in the atmosphere, it also occurs in unsaturated porous media. Radon is quite soluble in water, so its migration in water-filled pores is not as great. Concentrations of ²²²Rn are not useful for dose prediction per se, but the emission factors based on soil and water ²²⁶Ra concentration are important. Sheppard et al. (2006) reviewed radon emission factors, and so no further review is done here.

Radium-223 is a member of the ²³⁵U decay series, and because it has a short half-life (11 days) it is usually considered to be in secular equilibrium with its parent ²²⁷Ac (half-life 22 a) and grandparent ²³¹Pa. There are few if any data for ²²³Ra in environmental media. Amiro (1992, 1993) reported that ²³¹Pa (half-life 3.28 x 10⁴ a) was in secular equilibrium with ²³⁵U in the lithosphere, and he assumed this applied to soils. In contrast, he assumed that ²³¹Pa was depleted 500-fold relative to ²³⁵U in aquatic systems, based on data for marine samples. In turn, there are few data for ²³⁵U and it is often assumed to be 0.72% by mass of ²³⁸U. Using these assumptions, the background concentration of ²²³Ra in soil, based on ²³⁸U as given in a later section of this report, is 1 Bq kg⁻¹ (El of 0.8 Bq kg⁻¹). For water, including the 500-fold decrease, the values are 0.4 µBq L⁻¹ (El of 1 µBq L⁻¹).

Radium-224 is a member of the ²³²Th (4n) decay series and has a short half-life (3.6 days). Thus it is reasonably assumed to be in secular equilibrium with its parent ²²⁸Th (half-life 1.9 a), grandparent ²²⁸Ac (half-life 6 hrs) and great grandparent ²²⁸Ra (half-life 5.75 a). Amiro (1992, 1993) assumed secular equilibrium in soils for all these three nuclides with their great-great grandparent ²³²Th, but assumed a 20-fold accumulation of ²²⁸Ra over ²³²Th in water, again based on data for marine samples. As a result, data for ²²⁸Ra are potentially important, but data for ²²⁴Ra will be sparse and not needed. Using these assumptions, the background concentration of ²²⁴Ra in soil, based on ²³²Th as given in a later section of this report, is 23 Bq kg⁻¹ (El of 25 Bq kg⁻¹). For water, including the 20-fold increase, the values are 0.015 Bq L⁻¹ (El of 0.036 Bq L⁻¹).

3.13 RADIUM-226

Radium-226 is a progeny of the ²³⁸U decay series. There is interest in measuring ²²⁶Ra largely because it is the parent of radon, and radon progeny are both major dose contributors and important tracers of environmental processes. There are at least 3 common methods to measure ²²⁶Ra concentrations, including alpha spectroscopy, gamma spectroscopy and measurement of radon after ingrowth in sealed containers.

Soil concentrations are not especially variable (Figure 3-16), but water concentrations had a range of 1600-fold and a GSD of 6.3. Some of this variation may be related to variation in the solubility of the parent radionuclides, especially ²³⁰Th which can vary substantially in solubility because of the presence or absence of natural organic ligands.

Figure 3-16: Frequency histograms of concentrations of 226 Ra in mineral soil (n = 27) and in water (n = 36). The red lines are the best-fit lognormal frequency curves.

For the 27 mineral soil concentrations, the values	s were:
Minimum	2.5 Bq kg⁻¹
Median	30 Bq kg ⁻¹
Maximum	170 Bq kg ⁻¹
Geometric mean (GM)	29 Bq kg ⁻¹
Geometric standard deviation (GSD)	2.2
Implied EI (GM x (GSD - 1))	35 Bq kg⁻¹

There were data for 3 organic soils, with a GM of 52 Bq kg⁻¹, and in addition 2 other organic soils near U mineralizations with a GM of 410 Bq kg⁻¹.

There were no statistically significant differences in soil concentrations among regions.

For the 36 water concentrations, the values were:

Minimum	0.06 mBq L ⁻¹
Median	5.0 mBq L ⁻¹
Maximum	100 mBq L ⁻¹
Geometric mean (GM)	2.7 mBq L⁻¹
Geometric standard deviation (GSD)	6.3
Implied EI (GM x (GSD - 1))	14 mBq L ⁻¹

There were statistically significant differences among regions, in general waters from the Precambrian Shield, western Canada and north of 60°N had higher concentrations (7 mBq L^{-1} , n = 22) compared to the rest of Canada (0.7 mBq L^{-1} , n = 14). As with ²¹⁰Pb, this may result

because the watersheds in the north tend to have less overburden, less clay and lower pH than in the south, all of which would facilitate transfer of ²²⁶Ra to the water bodies.

3.14 ACTINIUM-227 and THORIUM-227

Actinium-227 (half-life 21.77 a) and ²²⁷Th (half-life 18.72 d) are assumed to be in secular equilibrium with their parent ²³¹Pa (and with their progeny ²²³Ra) in soil. Amiro (1992, 1993) assumed that activity concentrations of ²³¹Pa were 500-fold lower than for the grandparent ²³⁵U in water, based on marine studies. In absence of other data, and in recognition that low values for EI are conservative, the same assumption is made here. Using these assumptions, the background concentration of both ²²⁷Ac and ²²⁷Th soil, based on ²³⁸U as given in a later section of this report, is 1 Bq kg⁻¹ (EI of 0.8 Bq kg⁻¹). For water, including the 500-fold decrease, the values are 0.4 µBq L⁻¹ (EI of 1 µBq L⁻¹).

3.15 RADIUM-228

Radium-228 is a progeny of the ²³²Th decay series. With a half-life of 5.8 a, ²²⁸Ra is usually in secular equilibrium with its parent ²³²Th, especially in soil. Tracy and Prantl (1985) estimated ²²⁸Ra based on this assumption. Sheppard et al. (2008) and Sheppard and Sanipelli (2011) measured ²²⁸Ra concentrations in soil of about 40 Bq kg⁻¹, and these were approximately equal to the concentrations they reported for ²³²Th. Thus the background and El values for ²²⁸Ra can be based on that for ²³²Th, as done by Amiro (1992, 1993). Note that Amiro assumed 20-fold higher concentrations of ²²⁸Ra relative to ²³²Th in water, based on marine water data as described above; however, there is now reliable data for ²²⁸Ra in fresh water, and they do not support the 20-fold factor.

For the 7 water concentrations, the values were:

Minimum	0.08 mBq L ⁻¹
Median	0.25 mBq L ⁻¹
Maximum	0.94 mBq L ⁻¹
Geometric mean (GM)	0.29 mBq L ⁻¹
Geometric standard deviation (GSD)	2.2
Implied EI (GM x (GSD - 1))	0.35 mBq L ⁻¹

This GM of 0.29 mBq L⁻¹ is much more consistent with direct secular equilibrium with 232 Th, where the GM concentration, given in a later section of this report, was 0.73 mBq L⁻¹.

3.16 THORIUM-228

Thorium-228 is a progeny of the ²³²Th decay series. The half-life of ²²⁸Th is 1.9 a and so it is usually in equilibrium with its parent ²²⁸Ra, which in turn is in equilibrium with ²³²Th, at least in soils (Amiro (1992, 1993) proposed 20-fold higher ²²⁸Th than ²³²Th concentrations in water). Sheppard et al. (2008) and Sheppard and Sanipelli (2011) measured ²²⁸Th concentrations in soil of about 40 Bq kg⁻¹, and these were approximately equal to the concentrations they reported for ²³²Th and ²²⁸Ra. Brunskill and Wilkinson (1987) reported ²²⁸Th concentrations of 36 Bq kg⁻¹ in soils where they reported ²³²Th concentrations of 22 Bq kg⁻¹, perhaps close enough to support the assumption of secular equilibrium. Assuming secular equilibrium, the

background concentration of 228 Th in soil, based on 232 Th as given in a later section of this report, is 23 Bq kg⁻¹ (El of 25 Bq kg⁻¹).

Lupien and Grondin (1984) provided the necessary ²²⁸Th and ²²⁸Ra data needed to evaluate secular equilibrium in freshwater. Their concentrations of ²²⁸Th were 2.8- to 6.4-fold (average 3.5-fold) higher than for ²²⁸Ra, somewhat less than the 20-fold ratio assumed by Amiro (1992, 1993) but already questioned in discussion of ²²⁸Ra in the above section of this report. For water, assuming the 20-fold increase of the activity concentrations of ²³²Th, the values are 0.015 Bq L⁻¹ (El of 0.036 Bq L⁻¹). However, there were data for ²²⁸Th in water.

For the 12 water concentrations, the values were:

Minimum	0.028 mBq L ⁻¹
Median	0.12 mBq L ⁻¹
Maximum	1.2 mBq L ⁻¹
Geometric mean (GM)	0.96 mBq L ⁻¹
Geometric standard deviation (GSD)	4.1
Implied EI (GM x (GSD - 1))	3.0 mBq L⁻¹

This GM of 0.96 mBq L⁻¹ is much more consistent with direct secular equilibrium with ²³²Th, where the GM concentration, given in a later section of this report, was 0.73 mBq L⁻¹. This is further evidence that the 20—fold upward adjustment recommended by Amiro (1992, 1993) based on marine systems does not apply to fresh water. There are sufficient measured data for ²²⁸Th to consider them reliable.

There are statistically significant differences among regions. In general, the Great Lakes and eastern Canada had lower concentrations (0.3 mBq L⁻¹, n = 7) compared to the Ottawa River and the Precambrian Shield (2 mBq L⁻¹, n = 5).

3.17 THORIUM-230

Thorium-230 (sometimes referred to as Ionium) is in the 238 U (4n + 2) decay series, but between long lived 234 U and 226 Ra, so is not expected to be found at secular equilibrium in the environment. None the less, 230 Th is not commonly reported.

Figure 3-18: Frequency histograms of concentrations of 230 Th in soil (n = 5) and in water (n = 5). The red lines are the best-fit lognormal frequency curves.

For the 5 soil concentrations, the values were:	
Minimum	9 Bq kg⁻¹
Median	20 Bq kg ⁻¹
Maximum	40 Bq kg ⁻¹
Geometric mean (GM)	19 Bq kg ⁻¹
Geometric standard deviation (GSD)	1.9
Implied EI (GM x (GSD - 1))	17 Bq kg⁻¹

For the 5 water concentrations above their detection limits, the values were:

Minimum	1.7 mBq L⁻'
Median	4.9 mBq L ⁻¹
Maximum	10 mBq L⁻¹
Geometric mean (GM)	1.9 mBq L ⁻¹
Geometric standard deviation (GSD)	7.4
Implied EI (GM x (GSD - 1))	12 mBq L⁻¹

3.18 PROTACTINIUM-231

Protactinium-231 is a progeny of the ²³⁵U decay series, and so is primordial. There were very few data for ²³¹Pa. Osburn (1965) reported ²³¹Pa to be in secular equilibrium in soil with ²³⁵U, but had an error in units for the concentration reported. The corrected value was 3.9 Bq kg⁻¹. CBCL (1985) reported concentrations at an anomalous site, the lowest concentration was

120 Bq kg⁻¹, but this is still probably elevated. They reported a ²³⁵U/²³¹Pa activity ratio of 83, but this was in a U 'roll front', where because of redox gradients U was especially mobile, and disequilibrium might be expected. Amiro (1992, 1993) assumed that activity concentrations of ²³¹Pa were 500-fold lower than for the grandparent ²³⁵U in water, based on marine studies. In absence of other data, and in recognition that low values for EI are conservative, the same assumption is made here. However, there are few data for ²³⁵U and it is often assumed to be 0.72% by mass of ²³⁸U. Using these assumptions, the background concentration of ²³¹Pa in soil, based on ²³⁸U as given in a later section of this report, is 1 Bq kg⁻¹ (EI of 0.8 Bq kg⁻¹). For water, including the 500-fold decrease, the values are 0.4 µBq L⁻¹ (EI of 1 µBq L⁻¹).

3.19 THORIUM-231

Thorium-231 has a half-life of 25 hrs, and so is assumed to be in secular equilibrium with its parent ²³⁵U in both soil and water (the 500-fold decrease proposed by Amiro (1992, 1993) does not apply to ²³¹Th). There are few data for ²³⁵U and it is often assumed to be 0.72% by mass of ²³⁸U. Using these assumptions, the background concentration of ²³¹Th in soil, based on ²³⁸U as given in a later section of this report, is 1 Bq kg⁻¹ (El of 0.8 Bq kg⁻¹). For water, the values are 0.17 mBq L⁻¹ (El of 0.45 mBq L⁻¹).

3.20 THORIUM-232

As the start of a primordial decay series and with a very long half-life $(1.4 \times 10^{10} a)$, ²³²Th dominates the mass of Th in the environment. Thus it is appropriate to summarize the data both as mass concentration and activity concentration (they should differ by a constant conversion). For concentrations in soil, the values could be equally well described as normally or lognormally distributed, and both frequency distributions are shown in Figure 3-19. The El values are computed from the GM and GSD to be consistent with other radionuclides.

Figure 3-19: Frequency histograms of 232 Th activity concentrations in soil (n = 21). The red lines are the best-fit normal/lognormal frequency curves.

For the 21 soil concentrations, the values were:		
Minimum	2.7 Bq kg⁻¹	0.7 mg kg⁻¹
Median	27 Bq kg ⁻¹	6.6 mg kg⁻¹
Maximum	45 Bq kg ⁻¹	11 mg kg⁻¹
Arithmetic mean	26 Bq kg ⁻¹	6.3 mg kg⁻¹
Geometric mean (GM)	22 Bq kg ⁻¹	5.4 mg kg⁻¹
Geometric standard deviation (GSD)	2.0	1.9
Implied EI (GM x (GSD - 1))	22 Bq kg⁻¹	4.9 mg kg⁻¹

There were no statistically significant differences in soil concentrations among regions. Maps of ²³²Th concentrations across Canada are shown in Appendix B.

Figure 3-20: Frequency histogram of 232 Th activity concentrations and mass concentrations in water (n = 25). The red line is the best-fit lognormal frequency curves.

For the 25 water concentrations, the values were:

Vinimum	0.082 mBq L ⁻¹	0.020 µg L ⁻¹
Vedian	0.36 mBq L⁻¹	0.088 µg L ⁻¹
Vaximum	2.2 mBq L ⁻¹	0.54 µg L⁻¹
Geometric mean (GM)	0.39 mBq L⁻¹	0.096 µg L ⁻¹
Geometric standard deviation (GSD)	2.5	2.5
mplied EI (GM x (GSD - 1))	0.59 mBq L⁻¹	0.14 µg L⁻¹

There were no statistically significant differences in water concentrations among regions.

3.21 THORIUM-234

Thorium-234 has a half-life of 24 d, and so is assumed to be in secular equilibrium with its parent ²³⁸U. With this assumption, the background concentration of ²³⁴Th in soil, based on ²³⁸U as given in a later section of this report, is 24 Bq kg⁻¹ (El of 19 Bq kg⁻¹). For water, the values are 3.9 mBq L⁻¹ (El of 0.01 Bq L⁻¹).

3.22 URANIUM-234

Uranium-234 (half-life 2.4 x 10^5 a) is a decay product of ²³⁸U (half-life 4.5 x 10^9 a). For natural U (^{nat}U), ²³⁴U is present at 0.0054% atom ratio relative to ²³⁸U at 99.274% and ²³⁵U at 0.720%. Although the specific activity of ²³⁴U is much higher than that of ²³⁸U, this is counterbalanced by the atom abundance ratios so that they contribute nearly equal amounts to the specific activity of ^{nat}U. Thus, per unit mass of U, the total activity from all U isotopes is about double that of the ²³⁸U alone. There is an alpha decay between ²³⁸U and ²³⁴U, so that alpha recoil could potentially mobilize ²³⁴U relative to ²³⁸U. In soils, the ²³⁴U/²³⁸U activity ratio was reported as 0.92 by CBCL (1985) and 1.05 by Brunskill and Wilkinson (1987). In surface waters, the ²³⁴U/²³⁸U activity ratio was reported as 1.08 by Ivanovich et al. (1991), 1.15 by Kronfeld et al. (2004) and 1.20 by Brunskill and Wilkinson (1987). In shallow well waters (drinking water), Gascoyne (1989) measured ²³⁴U/²³⁸U activity ratios of 2.6. These atom ratio data suggest that secular equilibrium may be expected in soils but that, perhaps because of alpha recoil, there is enhanced solubility and hence concentration of ²³⁴U in water.

Brunskill and Wilkinson (1987) reported 21 Bq kg⁻¹ in soil, with a GSD of about 2.2, implying an El of 25 Bq kg⁻¹. This is very comparable to the GM of 24 Bq kg⁻¹ with a GSD of 1.8 yielding an El of 19 Bq kg⁻¹ found for ²³⁸U (in later sections of this report). Amiro (1992, 1993) reported a background activity concentration in soil (equal to that of ²³⁸U) of 12 Bq kg⁻¹, a GSD of 3.16 and subsequently an El of 26 Bq kg⁻¹.

Brunskill and Wilkinson (1987), Ivanovich et al. (1991) and Kronfeld et al. (2004) reported concentrations in surface waters of 3.6, 14 and 7.6 mBq L⁻¹, implying a GM of 7.3 mBq L⁻¹, a GSD of 1.7 and an El of 5.1 mBq L⁻¹. This is also very comparable to the GM of 3.9 mBq L⁻¹ with a GSD of 3.6 yielding an El of 10 mBq kg⁻¹ for ²³⁸U.

3.23 URANIUM-235

As described above, ^{nat}U is assumed to include ²³⁵U at an atom ratio of 0.72%. Lupien and Grondin (1984) measured both ²³⁵U and ²³⁸U, and their data indicate an atom ratio or 0.66%, which given analytical uncertainties is consistent with the standard value of 0.72%. CBCL (1985) indicated an atom ratio in soil of about 0.5%.

Waller and Cole (1999) and Sheppard and Sanipelli (2011) reported concentrations in 6 mineral soils with a GM of 0.79 Bq kg⁻¹ and GSD of 1.6-fold, suggesting an El of 0.5 Bq kg⁻¹. Sheppard and Sanipelli (2011) also reported a concentration of 460 Bq kg⁻¹ in an organic soil near a known low-grade U mineralization. Assuming the atom ratio with ²³⁸U of 0.72%, the implied background and El concentrations for ²³⁵U based on ²³⁸U are 1 Bq kg⁻¹ and 0.8 Bq kg⁻¹, quite comparable to the values of Waller and Cole (1999).

Lupien and Grondin (1984) measured ²³⁵U in surface waters, resulting in a GM of 0.051 mBq L⁻¹, a GSD of 2.7 and thus an EI of 0.087 mBq L⁻¹. Assuming the atom ratio with ²³⁸U of 0.72%, the implied background and EI concentrations for ²³⁵U based on ²³⁸U are 0.17 mBq L⁻¹ and 0.45 mBq L⁻¹, within about 5-fold of the values from Lupien and Grondin (1984).

For the 26 water concentrations, the values were:	
Minimum	0.010 mBq L ⁻¹
Median	0.076 mBq L ⁻¹
Maximum	0.82 mBq L ⁻¹
Geometric mean (GM)	0.093 mBq L ⁻¹
Geometric standard deviation (GSD)	3.1
Implied EI (GM x (GSD - 1))	0.20 mBq L ⁻¹

There were no statistically significant differences in water concentrations among regions.

3.24 URANIUM-238

As described above, by mass ²³⁸U and ^{nat}U are essentially identical, but the specific activity of ²³⁸U is 12.4 MBq (kg U)⁻¹ whereas for ^{nat}U it is 25.0 MBq (kg U)⁻¹ consisting of 12.4 MBq (kg U)⁻¹ from ²³⁸U, 12.2 MBq (kg U)⁻¹ from ²³⁴U and 0.566 MBq (kg U)⁻¹ from ²³⁵U (Veska and Eaton 1991). Note that Ahier and Tracy (1997) used a different atom ratio of ²³⁵U for emissions from a fuel processing facility, giving 28.4 MBq (kg U)⁻¹ for ^{nat}U in the environment but assumed to come from that facility.

Figure 3-22: Frequency histograms of 238 U activity concentrations and mass concentrations in mineral soil (n = 34). The red lines are the best-fit lognormal frequency curves.

For the 34 mineral soil concentrations, the values expressed as activity concentration of ²³⁸U, activity concentration of ^{nat}U and mass concentration were:

	²³⁸ U	^{nat} U	U
Minimum	5 Bq kg⁻¹	10 Bq kg⁻¹	0.4 mg kg⁻¹
Median	25 Bq kg ⁻¹	50 Bq kg ⁻¹	2.0 mg kg ⁻¹
Maximum	86 Bq kg ⁻¹	170 Bq kg ⁻¹	7.0 mg kg ⁻¹
Geometric mean (GM)	23 Bq kg ⁻¹	49 Bq kg ⁻¹	1.9 mg kg ⁻¹
Geometric standard deviation (GSD)	1.8	1.8	1.8
Implied EI (GM x (GSD - 1))	18 Bq kg⁻¹	39 Bq kg⁻¹	1.5 mg kg⁻¹

Note that an organic soil near a low-grade U mineralization at Black Lake, Manitoba, had a concentration of 9700 Bq kg⁻¹ (780 mg kg⁻¹). This number is high because of both the U mineralisation and the low bulk density of the peat. Five other organic soils had concentrations in the range of 12 to 61 Bq kg⁻¹, more consistent with the mineral soils represented in Figure 3-22. Clearly, there are U hot spots related to localized mineralization.

There were no statistically significant differences in soil concentrations among regions for the data compiled. However, gamma survey maps do show trends, and maps of ²³⁸U concentrations across Canada are shown in Appendix B.

Figure 3-23: Frequency histogram of 238 U activity concentrations and mass concentrations in water (n = 63). The red line is the best-fit lognormal frequency curves.

For the 63 water concentrations, the values expressed as activity concentration of ²³⁸U, activity concentration of ^{nat}U and mass concentration were:

	²³⁸ U	^{nat} U	U
Minimum	0.15 mBq L ⁻¹	0.30 mBq L ⁻¹	0.012 µg L ⁻¹
Median	3.1 mBq L ⁻¹	6.3 mBq L⁻¹	0.25 µg L ⁻¹
Maximum	64 mBq L⁻¹	130 mBq L ⁻¹	5.2 µg L ⁻¹
Geometric mean (GM)	3.3 mBq L ⁻¹	6.5 mBq L⁻¹	0.26 µg L ⁻¹
Geometric standard deviation (GSD)	3.5	3.5	3.5
Implied EI (GM x (GSD - 1))	8.3 mBq L⁻¹	16 mBq L⁻¹	0.65 µg L⁻¹

There were no statistically significant differences in water concentrations among regions. However, there was a slight increasing trend downstream through the Great Lakes, from Lake Superior (1 mBq L⁻¹, n = 1), to Lakes Michigan and Huron (4 mBq L⁻¹, n = 4) and Lakes Erie and Ontario (6 mBq L⁻¹, n = 6).

4. SUMMARY AND CONCLUSIONS

The amount of data for concentrations in the environment is quite variable among radionuclides. There is undoubtedly more data for radionuclides that are easy to measure, and much fewer for the others. Some of the rarely measured, such as ¹⁴C, ³⁶Cl and ¹²⁹I require expensive accelerator mass spectroscopy methods to detect environmental concentrations, and for these the atom ratios with their stable isotopes are especially useful. Others of the rarely measured are commonly assumed to be in secular equilibrium with more easily measured radionuclides.

Table 4.1 is a summary of the background concentrations and derived EI values, along with foot notes to explain assumptions as needed. Some of these values differ markedly from those proposed by Amiro (1992, 1993). This is largely the result of more recent data.

The concept of setting the EI as one (arithmetic) standard deviation [EI = SD], or the log distribution equivalent [EI = $GM \cdot (GSD - 1)$] yields some interesting results. For radionuclides that are normally distributed and for others where the spread of data is not too extreme, the EI is less than or similar in value to the (arithmetic or geometric) mean background concentration. However, when the data are lognormally distributed and the GSD exceeds 2, then the EI is larger, and sometimes almost tenfold larger, than the GM. Regardless of whether the data are normally or lognormally distributed, one SD or one GSD above the mean or GM represents a consistent probability level – these levels would not be statistically different from the mean or GM despite that they may be several fold higher. It would be very difficult to attribute an ecological impact to such a low relative increase in concentration above background.

Radionuclide	Soil background (Bq kg⁻¹)	Soil environmental increment (Bq kg ⁻¹)	Water background (Bq L ⁻¹)	Water environmental increment (Bq L ⁻¹)
³Н	0.04		3.2 37 Ba (ka H) ⁻¹	4.2
¹⁴ C	3	5	0.001	0.0005
-	239 Ba (ka C) ⁻¹	17 Ba (ka C) ⁻¹	239 Ba (kg C) ⁻¹	17 Ba (ka C) ⁻¹
³⁶ Cl	0.0002	0.0001	$5.1 \cdot 10^{-6}$	$18 \cdot 10^{-6}$
	1.0 Ba (ka Cl) ⁻¹	5.6 Ba (ka Cl) ⁻¹	0.96 Ba (ka Cl) ⁻¹	5.0 Ba (ka Cl) ⁻¹
⁴⁰ K	430	210	0.033	0.030
⁸⁷ Rb	25	12	$0.26 \cdot 10^{-3}$	$0.62 \cdot 10^{-3}$
⁹⁰ Sr	2.9	7.3	0.015	0.012
¹²⁹	$0.14 \cdot 10^{-3}$	$0.43 \cdot 10^{-3}$	$0.10 \cdot 10^{-6}$	$0.07 \cdot 10^{-6}$
	8.6 Ba (ka l) ⁻¹	23 Ba (ka l) ⁻¹	74 Ba (ka l) ⁻¹	90 Ba (ka l) ⁻¹
¹³⁷ Cs	6.5	20	$1.5 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$
²¹⁰ Bi	(49) ^a	(110) ^a	(6.4 · 10 ⁻³) ^a	(0.020) ^a
²¹⁰ Pb	49	110 ´	6.4 · 10 ⁻³	0.020
²¹⁰ Po	40 (49) ^a	48 (110) ^a	7.1 · 10 ⁻³ (6.4 · 10 ⁻³) ^a	9.2 · 10 ⁻³ (0.020) ^a
²²² Rn	Not relevant	not relevant	not relevant	not relevant
²²³ Ra	(1) ^b	(0.8) ^b	(0.2 · 10 ⁻⁶) ^c	(0.4 · 10 ⁻⁶) ^c
²²⁴ Ra	(22) ^d	(22) ^d	(7.8 · 10 ⁻³) ^e	(0.012) ^e
²²⁶ Ra	29	35	$2.7 \cdot 10^{-3}$	0.014
²²⁷ Ac	(1) ^b	(0.8) ^b	(0.2 · 10 ⁻⁶) ^c	(0.4 · 10 ⁻⁶) ^c
²²⁷ Th	$(1)^{b}$	(0.8) ^b	(0.2 · 10 ⁻⁶) ^c	(0.4· 10 ⁻⁶) ^c
²²⁸ Ra	(22) ^d	(22) ^d	0.29 · 10 ⁻³	0.35 · 10 ⁻³
²²⁸ Th	(22) ^d	(22) ^d	0.96 · 10 ⁻³	3 · 10 ⁻³
²³⁰ Th	19	17	1.9 · 10 ⁻³	0.012
²³¹ Pa	(1) ^b	(0.8) ^b	(0.2 · 10 ⁻⁶) ^c	(0.4 · 10 ⁻⁶) ^c
²³¹ Th	(1) ^b	(0.8) ^b	(0.15 · 10 ⁻³) ^b	$(0.37 \cdot 10^{-3})^{b}$
²³² Th	22	22	0.39 · 10 ⁻³	0.59 · 10 ⁻³
²³⁴ Th	(23) ^f	(18) ^f	(3.3 · 10 ⁻³) ^f	(8.3 · 10 ⁻³) ^f
²³⁴ U	21 (23) ^f	25 (18) ^f	7.3 · 10 ⁻³ (3.3 · 10 ⁻³) ^f	5.1 · 10 ⁻³ (8.3 · 10 ⁻³) ^f
²³⁵ U	0.8 (1) ^b	0.5 (0.8) ^b	0.093 · 10 ⁻³ (0.15 · 10 ⁻³) ^b	$0.20 \cdot 10^{-3} (0.37 \cdot 10^{-3})^{b}$
²³⁸ U	23	18	3.3 · 10 ⁻³	8.3 · 10 ⁻³

Table 4-1: Summary of background and environmental increment values. Note that although most values are concentrations, specific activities are also given for ³H, ¹⁴C, ³⁶Cl and ¹²⁹l.

^a Values in brackets are for ²¹⁰Pb, which should also apply for ²¹⁰Po and ²¹⁰Bi.
 ^b Values in brackets are for ²²⁵U present at 0.72% of the mass of ²³⁸U, and the resulting activity concentrations should apply for ²²³Ra (soil), ²²⁷Ac (soil), ²²⁷Th (soil), ²³¹Th (soil and water) and ²³¹Pa (soil).
 ^c Values in brackets are 500-lower than for ²³⁵U in water, as recommended by Amiro (1992, 1993). This applies for ²²³Ra (water), ²²⁷Ac (water), ²²⁷Th (water) and ²³¹Pa (water).
 ^d Values in brackets are for ²³²Th (soil), which should also apply for ²²⁴Ra (soil), ²²⁸Th (soil) and ²²⁸Ra

(soil).

^e Values in brackets are 20-fold higher than for ²³²Th in water, as recommended by Amiro (1992, 1993). Amiro also recommended this factor for ²²⁸Ra and ²²⁸Th in water, but this 20-fold effect was not supported by the data found for ²²⁸Ra and ²²⁸Th. ^f Values in brackets are for ²³⁸U, which should also apply for ²³⁴Th and ²³⁴U.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the contributions from several individuals and institutions that contributed to this report by providing reports and clarification in the published data. These include, and are not limited to:

AREVA Resources Canada Inc. Atomic Energy of Canada Limited (Whiteshell and Chalk River) Bruce Power Cameco Corporation Clulow, V. of Laurentian University Cornett, J. of Health Canada Ford, K. of Geological Survey of Canada Garrett, R. of Geological Survey of Canada Hydro–Québec Kettles, I. of Geological Survey of Canada Lobb, D. of University of Manitoba Mihok, S. of the Canadian Nuclear Safety Commission New Brunswick Power Ontario Power Generation Sanipelli, B. of ECOMatters Inc. Sheppard, K. of University of Manitoba Stocki, T. of Health Canada Tracy, B. of Health Canada VandenBygaart, B. of Agriculture and Agri-Food Canada

REFERENCES

- AECL Chalk River. 2008. Environmental Monitoring in 2007 at Chalk River Laboratories. Atomic Energy of Canada Limited, Report CRL-509243-ASR-2007 Rev 0 2008. Chalk River, Canada.
- AECL URL. 2008. Environmental Monitoring in 2007 at the Underground Research Laboratory. Atomic Energy of Canada Limited, Report URL-509247-ASR-2007 (URL-GEN-R034) Rev 0 2008. Pinawa, Canada.
- AECL Whiteshell. 2008. Radiological Environmental Monitoring in 2007 at Whiteshell Laboratories. Atomic Energy of Canada Limited, Report WL-509243-ASR-2007 Rev 0 2008. Pinawa, Canada.
- Ahier, B.A. and B.L. Tracy. 1995. Radionuclides in the Great Lakes basin. Environmental Health Perspectives <u>103</u>(SUPPL. 9): <u>89</u>-101.
- Ahier, B.A. and B.L. Tracy. 1997. Evaluating the radiological impact of uranium emissions in Port Hope, Ontario - A comparison of monitoring and modelling results. Journal of Environmental Radioactivity <u>34</u>(2): 187-205.
- Aldahan, A., G. Possnert, V. Alfimov, I. Cato and A. Kekli. 2007a. Anthropogenic ¹²⁹I in the Baltic Sea. Nuclear Instruments and Methods in Physics Research B <u>259</u>: 491–495.
- Aldahan, A., A. Kekli and G. Possnert. 2006. Distribution and sources of ¹²⁹I in rivers of the Baltic region. Journal of Environmental Radioactivity <u>88</u>: 49-73.
- Aldahan, A., V. Alfimov, and G. Possnert. 2007b. ¹²⁹I anthropogenic budget: Major sources and sinks. Applied Geochemistry <u>22(</u>3): 606-18.
- Ali, A.A., B. Ghaleb, M. Garneau, H. Asnong and J. Loisel. 2008. Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by ²¹⁰Pb and ¹³⁷Cs radiometric techniques. Applied Radiation and Isotopes <u>66(10)</u>: 1350-1358.
- Amiro, B.D. 1992. Baseline concentrations of nuclear fuel waste nuclides in the environment. Atomic Energy of Canada Limited, AECL10454, COG 91231. Pinawa, Canada.
- Amiro, B.D. 1993. Protection of the environment from nuclear fuel waste radionuclides: a framework using environmental increments. Science of the Total Environment <u>128</u>: 157-89.
- Andrews, J.N. and J.-C. Fontes. 1991. Importance of the in situ production of ³⁶Cl, ³⁶Ar and ¹⁴C in hydrology and hydrogeochemistry. International Atomic Energy Agency IAEA-SM-319/12: 245-69.
- Andrews, J.N. and J.-C. Fontes. 1993. Comment on "Chlorine 36 dating of very old groundwater, 3, Further results on the Great Artesian Basin, Australia" by T. Torgersen et al. 1991 Water Resources Research <u>29</u>: 1871-74.

- Areva 2008. McClean Lake Operation 2008, Caribou Project Environmental Impact Statement, Appendix VI. AREVA Resource Canada Inc. Saskatoon, Canada.
- Aumann, D. C. and D. Guner. 1999. Determination of ¹²⁹I in soils of Germany using radiochemical neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry <u>242</u>(3): 641-45.
- Barrie, L.A., D. Gregor, B. Hargrave, R. Lake, D. Muir, R. Shearer, B. Tracy and T. Bidleman. 1992. Arctic contaminants: sources, occurrence and pathways. The Science of the Total Environment <u>122</u>: 1-74.
- Baweja, A.S., S.R. Joshi, D.J. Sutherland and B. Olding. 1987. Radiological monitoring activities in the Northwest Territories, Canada. Water Pollution Research Journal of Canada <u>22</u>: 596-603.
- Beasley, T.M., L.W. Cooper, J.M. Grebmeier, L.R. Kilius and H.-A. Synal. 1997. ³⁶Cl and ¹²⁹l in the Yenisei, Kolyma, and Mackenzie Rivers. Environmental Science and Technology <u>31</u>: 1834-6.
- Beer, J. 2004. Cosmogenic radionuclides in ice cores. Advances in Nuclear and Radiochemistry, S.M. Qaim and H.H. Coenen (eds). Proc. Sixth International Conference on Nuclear and Radiochemistry (NRC-6), 29 August to 3 September 2004, Aachen, Germany, 489-492.
- Bentley, H.W., F.M. Phillips, S.N. Davis, S. Gifford, D. Elmore, L.E. Tubbs and H.E. Gove. 1982. Thermonuclear ³⁶Cl pulse in natural water. Letters to Nature <u>300</u>: 737-40.
- Betcher, R.N., M. Gascoyne and D. Brown. 1988. Uranium in groundwaters of southeastern Manitoba, Canada. Canadian Journal of Earth Science <u>25</u>: 2089-103.
- Bird, J.R., R.F. Davie, A.R. Chivas, L.K. Fifield and T.R. Ophel. 1991. Chlorine-36 production and distribution in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology <u>84</u>(1-4): 299-307.
- Blagoeva, R. and L. Zikovsky. 1995. Geographic and vertical distribution of Cs-137 in soils in Canada. Journal of Environmental Radioactivity <u>27</u>: 269-74.
- Bobba, A.G. and S.R. Joshi. 1988 . Groundwater transport of radium-226 and uranium from Port Granby waste management site to Lake Ontario. Nuclear and Chemical Waste Management <u>8</u>(3): 199-209.
- Bobba, A.G. and S.R. Joshi. 1989. Application of an inverse approach to a Canadian radioactive waste disposal site. Ecological Modelling <u>46</u>(3-4): 195-211.
- Bruce Power. 2008. Annual Summary and Assessment of Environmental Radiological Data for 2007. Bruce Power Report B-REP-03419-00008 R000 2008 1-106. Tiverton, Canada.
- Brunskill, G.J. and P. Wilkinson. 1985. Mass balance of uranium-series nuclides in streams and Lake 339 of the Experimental Lakes Area, Ontario, Canada. Proceedings of the International Association for Theoretical and Applied Limnology <u>22</u>: 2469.

- Brunskill, G.J. and P. Wilkinson. 1987. Annual supply of ²³⁸U, ²³⁴U, ²³⁰Th, ²²⁶Ra, ²¹⁰Pb, ²¹⁰Po, and ²³²Th to Lake 239 (Experimental Lakes Area, Ontario) from terrestrial and atmospheric sources. Canadian Journal of Fisheries and Aquatic Sciences <u>44</u>: 215-30.
- Buraglio, N., A. Aldahan and G. Possnert. 2001. ¹²⁹I in lakes of the Chernobyl fallout region and its environmental implications. Applied Radiation and Isotopes <u>55(5)</u>: 715-20.
- Cameco 2007a, McArthur River Operation, Annual Report 2007. Cameco Corporation. Saskatoon, Canada.
- Cameco, 2007b. Key Lake Operation, Annual Report 2007. Cameco Corporation. Saskatoon, Canada.
- Cameco 2008a. Cigar Lake Project., Annual Report 2007. Cameco Corporation. Prepared for Canadian Nuclear Safety Commission, Saskatchewan Ministry of Environment and Saskatchewan Ministry of Advanced Education, Employment and Labour, March 2008, 9 chapters and appendices.
- Cameco 2008b. Rabbit Lake Operation, Annual Environmental Report 2007. Cameco Corporation. Saskatoon, Canada.
- Cameron, E.M. 1980. Geochemical exploration for uranium in northern lakes. Journal of Geochemical Exploration <u>13</u>: 221-50.
- CBCL Limited. 1985. A study of naturally occurring, radionuclide bearing deposits at Portland Creek, Newfoundland. Energy, Mines and Resources Canada, Contract OSQ84-00074: 1-71. Ottawa, Canada.
- Chapra, S.C., A. Dove and D.C. Rockwell. 2009. Great Lakes chloride trends: Long-term mass balance and loading analysis. Journal of Great Lakes Research <u>35</u>: 272-84.
- Cizdziel, J.V., Y. Wei, K.J. Stetzenbach, V.F. Hodge, J. Cline, R. Howley and F.M. Phillips. 2008. Recent measurements of ³⁶Cl in Yucca Mountain rock, soil and seepage. Journal of Radioanalytical and Nuclear Chemistry <u>275</u>(1): 133-44.
- Cloutier, N.R., F.V. Clulow, T.P. Lim and N.K. Dave. 1985. Metal (Cu, Ni, Fe, Co, Zn, Pb) and Ra-226 levels in meadow voles (Microtus pennsylvanicus) living on nickel and uranium mine tailings in Ontario, Canada: environmental and tissue levels. Environmental Pollution <u>10</u>: 19-46.
- Clulow, F.V., M.A. Mirka, N.K. Dave, and T.P. Lim. 1991. ²²⁶Ra and other radionuclides in water, vegetation, and tissues of beavers (*Castor canadensis*) from a watershed containing U tailings near Elliot Lake, Canada. Environmental Pollution <u>69</u>: 277-310.
- Clulow, F.V., N.K. Dave, T.P. Lim and R. Avadhanula. 1998a. Radionuclides (lead-210, polonium-210, thorium-230, and -232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution <u>99</u>: 199-213.

- Clulow, F.V., N.K. Dave, T.P. Lim and R. Avadhanula. 1998b. Radium-226 in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution <u>99</u>: 13-28.
- Cochran, J. K., S.B. Moran, N.S. Fisher, T.M. Beasley and J.M. Kelley. 2000. Sources and transport of anthropogenic radionuclides in the Ob River system, Siberia. Earth and Planetary Science Letters <u>179(1)</u>: 125-37.
- Coker, W.B. 1975. A geochemical orientation survey for uranium; MacNicol, Tustin, Bridges and Docker Townships (52/F/13), Kenora District, Ontario. Department of Energy, Mines and Resources, Open File Report 1-47. Ottawa, Canada.
- Coker, W.B. and I.R. Jonasson. 1977. Geochemical exploration for uranium in the Grenville Province of Ontario. Canadian Mining and Metallurgical Bulletin <u>70</u>(781): 67-75.
- Coker, W.B. and L.G. Closs. 1979. Detailed geochemical studies, Southeastern Ontario. In: Current Research, Part A, Geological Survey of Canada Paper 79-1A: 247-52. Ottawa, Canada.
- Coker, W.B. and R.N.W. DiLabio. 1979. Initial geochemical results and exploration significance of two uraniferous peat bogs, Kasmere Lake, Manitoba. Current Research, Part B, Geological Survey of Canada, Paper 79-1B: 199-206. Ottawa, Canada.
- Corcho Alvarado, J. A., R. Purtschert, K. Hinsby , L. Troldborg, M. Hofer, R. Kipfer, W. Aeschbach-Hertig and H. Arno-Synal. 2005. ³⁶Cl in modern groundwater dated by a multi-tracer approach (³H/³He, SF₆, CFC-12 and ⁸⁵Kr): A case study in quaternary sand aquifers in the Odense Pilot River Basin, Denmark. Applied Geochemistry <u>20(</u>3): 599-609.
- Cornett, R., T. Eve, A.E. Docherty, and E.L. Cooper. 1995. Plutonium in freshwaters: Sources and behaviour in the Ottawa River basin. Applied Radiation and Isotopes <u>46(11)</u>: 1239-43.
- Cornett, R.J., H.R. Andrews, L.A. Chant, W.G. Davies, B.F. Greiner, Y. Imahori, V.T. Koslowsky, T. Kotzer, J.C.D. Milton and G.M. Milton. 1997a. Is ³⁶Cl from weapons' test fallout still cycling in the atmosphere? Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>123</u>(1-4): 378-81.
- Cornett, R.J., J.J. Cramer, H.R. Andrews, L.A. Chant, W. Davies, B.F. Greiner, Y. Imahori, V. Koslowsky, J. McKay, G.M. Milton and J.C.D. Milton. 1996. In situ production of ³⁶Cl in uranium ore: A hydrological assessment tool. Water Resources Research <u>32</u>: 1511-18.
- Cornett, R.J., L. Chant, H.R. Andrews, W.G. Davies, B.F. Greiner, Y. Imahori, V.T. Koslowsky, T. Kotzer, J.C.D. Milton and G.M. Milton. 1997b. ³⁶Cl and ¹²⁹I in teeth and bones. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>123(</u>1-4): 249-53.
- Cornett, R.J., L. Chant and D. Link. 1984. Sedimentation of Pb-210 in Laurentian Shield lakes. Water Pollution Research Journal of Canada <u>19</u>: 97-109.

- De Jong, E., D.F. Acton and L.M. Kozak. 1994. Naturally occurring gamma-emitting isotopes, radon release and properties of parent materials of Saskatchewan soils. Canadian Journal of Soil Science <u>74(1)</u>: 47-53.
- DiLabio, R.N.W. and A.N. Rencz. 1980. Relationship between levels of copper, uranium, and lead in glacial sediments and in *Vaccinium uliginosum* at an arctic site enriched with heavy metals. Canadian Journal of Botany <u>58</u>: 2017-24.
- Dunn, C.E. 1981a. The biogeochemical expression of deeply buried uranium mineralization in Saskatchewan, Canada. Journal of Geochemical Exploration <u>15</u>: 437-52.
- Dunn, C.E. 1981b. Reconnaissance level and detailed surveys in the exploration for uranium by a biogeochemical method. Summary of Investigations 1981, Saskatchewan Geological Survey, Misc. Report 81-4: 117-26. Regina, Saskatchewan.
- Dunn, C.E. 1983. Detailed biogeochemical studies for uranium in the NEA/IAEA Athabasca Test Area. In: Cameron, E.M. (Ed) Uranium Exploration in Athabasca Basin, Saskatchewan, Canada. Geological Survey of Canada, Paper 82-11: 259-72. Ottawa, Canada.
- Durham, R.W. and S.R. Joshi. 1980. Recent sedimentation rates, ²¹⁰Pb fluxes, and particle settling velocities in Lake Huron, Laurentian Great Lakes. Chemical Geology <u>31</u>: 53-66.
- Durham, R.W., and S.R. Joshi. 1981. Concentrations of radionuclides in Lake Ontario water from measurements of water treatment plant sludges. Water Research <u>15</u>: 83-86.
- Dyck W. 1978. Uranium and associated elements in water for the Key Lake area, Saskatchewan. In: Paislow, G.R. (Ed) Uranium Exploration Techniques, Special Publication Number 4, Saskatchewan Geological Society 109-159. Regina, Canada.
- Dyck, W. 1980. Uranium, radon, helium and other trace elements and gases in well waters of parts of the St. Lawrence Lowlands, (Ottawa region) Canada. Journal of Geochemical Exploration <u>13</u>: 27-39.
- Dyck, W. and D. Car. 1987. Detailed geochemical studies of a He-U lake anomaly in permafrost, Baker Lake area, N.W.T. Journal of Geochemical Exploration <u>28</u>: 409-29.
- Edwards, I.K., Y.P. Kalra and F.G. Radford. 1981. Chloride determination and levels in the soilplant environment. Environmental Pollution <u>2</u>:109-17.
- Elmore, D., L.E. Tubbs, D. Newman, X.Z. Ma, R. Finkel, K. Nishiizumi, J. Beer, H. Oeschger and M. Andree. 1982. ³⁶Cl bomb pulse measured in a shallow ice core from Dye 3, Greenland. Letters to Nature <u>300</u>: 735-37.
- Fabryka-Martin, J., D.O. Whittemore, S.N. Davis, P.W. Kubik and P. Sharma. 1991. Geochemistry of halogens in the Milk River aquifer, Alberta, Canada. Applied Geochemistry <u>6</u>: 447-64.
- Fabryka-Martin, J., S.N. Davis and D. Elmore. 1987. Applications of ¹²⁹I and ³⁶CI in hydrology. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions With Materials and Atoms <u>29</u>(1-2): 361-71.

- Fehn, U., E.K. Peters, S. Tullai-Fitzpatrick, P.W. Kubik, P. Sharma, R.T.D. Teng, H.E. Gove and D. Elmore. 1992. ¹²⁹I and ³⁶Cl concentrations in waters of the eastern Clear Lake area, California: Residence times and source ages of hydrothermal fluids. Geochimica and Cosmochimica Acta <u>56(5)</u>: 2069-79.
- Garrett, R.G. 2009. Relative spatial soil geochemical variability along two transects across the United States and Canada. Applied Geochemistry <u>24</u>(8): 1405-1415.
- Garrett, R.G., G.E.M. Hall, J.E Vaive and P. Pelchat. 2009. A water-leach procedure for estimating bioaccessibility of elements in soils from transects across the United States and Canada. Applied Geochemistry <u>24(8)</u>:1438-1453.
- Gascoyne, M. 1989. High levels of uranium and radium in groundwaters at Canada's Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada. Applied Geochemistry <u>4</u>: 577-91.
- Gascoyne, M. and J.H. Barber. 1992. The concentrations and mobility of U, Ra, and Rn in a granitic batholith of the Canadian Shield. Atomic Energy of Canada Limited, Report TR-568: 1-17. Pinawa, Canada.
- Gascoyne, M., D.C. Kamineni, and J. Fabryka-Martin. 1992. Chlorine-36 in groundwaters in the Lac du Bonnet granite, southeastern Manitoba, Canada. In: Kharaka, Y.K. and Maest, A.S. (Eds), Water-Rock Interaction, Proceedings of the 7th International Symposium on Water-Rock Interaction, Park City, Utah, 13-18 July 1992, Balkema Publishers. 931-33.
- Gascoyne, M., P. Sharma and P.W. Kubik. 1994. Origin of groundwater salinity in the Lac du Bonnet granite, southeastern Manitoba, from ³⁶Cl measurements. Nuclear Instruments and Methods in Physics Research B <u>92</u>: 389-392.
- Gosse, J.C. and F.M. Phillips. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews <u>20</u>: 1475-560.
- Green, J. R., L.D. Cecil, H.-A. Synal, K.J. Kreutz, C.P. Wake, D.L. Naftz and S.K. Frape. 2000.
 Chlorine-36 and cesium-137 in ice-core samples from mid-latitude glacial sites in the Northern Hemisphere. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>172</u>(1-4): 812-16.
- Hayashi, M., G. van der Kamp and D.L. Rudolph. 1998. Water and solute transfer between a prairie wetland and adjacent uplands, 2.Chloride cycle. Journal of Hydrology <u>207</u>:56-67.
- Heikkinen, K. 1994. Organic matter, iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland. Science of the Total Environment <u>152</u>:81-9.
- Heisinger, B. and E. Nolte. 2000. Cosmogenic in situ production of radionuclides: Exposure ages and erosion rates. 8th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172(1-4): 790-795.

- Hill, A.R. 1986. Nitrate and chloride distribution and balance under continuous potato cropping. Agriculture, Ecosystems and Environment <u>15</u>: 267-80.
- Hou, X., V. Hansen, A. Aldahan, G. Possnert, O.C. Lind and G. Lujaniene. 2009. A review on speciation of iodine-129 in the environmental and biological samples. Analytica Chimica Acta <u>632</u>(2): 181-96.
- Huda, W., A.M. Sourkes and B.L. Tracy. 1988. Chernobyl The radiological impact on Canada. Journal of the Canadian Association of Radiologists <u>39(1)</u>: 37-41.
- Hynes, T.P., R.M. Schmidt, T. Meadley and N.A. Thompson. 1987. The impact of effluents from a uranium mine and mill complex in northern Saskatchewan on contaminant concentrations in receiving waters and sediments. Water Pollution Research Journal of Canada <u>22</u>: 559-69.
- Ivanovich, M., K. Frohlich and M.J. Hendry. 1991. Uranium-series radionuclides in fluids and solids, Milk River aquifer, Alberta, Canada. Applied Geochemistry <u>6</u>: 405-18.
- Jackson, L.E., Jr., F.M. Phillips and E.C. Little. 1999. Cosmogenic ³⁶Cl dating of the maximum limit of the Laurentide Ice Sheet in southwestern Alberta. Canadian Journal of Earth Science <u>36</u>: 1347-56.
- James F. MacLaren Limited. 1979. Investigation and implementation of remedial measures for the reduction of radioactivity found in Bancroft, Ontario and its environs. Report to Atomic Energy Control Board. Willowdale, Canada.
- Jonsson, A., G. Algesten, A.-K. Bergström, K. Bishop, S. Sobek, L.J. Tranvik and M. Jansson. 2007. Integrating aquatic carbon fluxes in a boreal catchment carbon budget. Journal of Hydrology <u>334</u>:141-50.
- Joshi, S.R. 1984. ¹³⁷Cs, ²²⁶Ra and total U in fish from Lakes Ontario, Erie, Huron, and Superior during 1976-1982. Water Pollution Research Journal of Canada <u>19</u>: 110-119.
- Joshi, S.R. 1987. Early Canadian results on the long-range transport of Chernobyl radioactivity. Science of the Total Environment <u>63</u>: 125-37.
- Joshi, S.R. 1991. Radioactivity in the Great Lakes. Science of the Total Environment <u>100</u>: 61-104.
- Joshi, S.R. and R.C. McCrea. 1992. Sources and behavior of anthropogenic radionuclides in the Ottawa River waters. Water, Air and Soil Pollution <u>62</u>(1-2): 167-84.
- Joshi, S.R., R.C. McCrea, B.S. Shukla and J.-C. Roy. 1991. Partitioning and transport of lead-210 in the Ottawa River watershed. Water, Air and Soil Pollution <u>59</u>(3-4): 311-20.
- Kalin, M. 1982. Environmental conditions of two abandoned uranium mill tailings sites in northern Saskatchewan. Saskatchewan Environment, Contract No. 32 (81-82): 1-93. Saskatoon, Canada.

- Kekli, A., A. Aldahan, M. Meili, G. Possnert, N. Buraglio and R. Stepanauskas. 2003. ¹²⁹I in Swedish rivers: Distribution and sources. Science of the Total Environment <u>309</u>(1-3): 161-72.
- Kiss, J.J., E. de Jong, and J.R. Bettany. 1988. The distribution of natural radionuclides in native soils of southern Saskatchewan, Canada. Journal of Environmental Quality <u>17</u>: 437-45.
- Kotzer, T., M. Gascoyne, M. Mukai, J. Ross, G. Waito, G. Milton, and R.J. Cornett. 1998. ³⁶Cl ¹²⁹I and noble gas isotope systematics in groundwaters from the Lac du Bonnet Batholith, Manitoba, Canada. Radiochimica Acta <u>82(1)</u>: 313-18.
- Kronfeld, J., D.I. Godfrey-Smith, D. Johannessen, and M. Zentilli. 2004. Uranium series isotopes in the Avon Valley, Nova Scotia. Journal of Environmental Radioactivity <u>73(</u>3): 335-52.
- Lal, D. 1987 . Cosmogenic nuclides produced in situ in terrestrial solids. Nuclear Instruments and Methods in Physics Research <u>B29</u>: 238-45.
- Landi, A., D.W. Anderson and A.R. Mermut. 2003. Organic carbon storage and stable isotope composition of soil along a grassland to forest environmental gradient in Saskatchewan. Canadian Journal of Soil Science <u>83</u>: 403-14
- Lehmann, B.E. and R. Purtschert. 1997. Radioisotope dynamics the origin and fate of nuclides in groundwater . Applied Geochemistry <u>12</u>: 727-38.
- Letourneau, E.G., D.P. Meyerhof and B. Ahier. 1994. A retrospective of fallout monitoring in Canada. Environment International <u>20(</u>5): 665-73.
- Limson Zamora, M., B.L. Tracy, J.M. Zielinski, D.P. Meyerhof and M.A. Moss. 1998. Chronic ingestion of uranium in drinking water: A study of kidney bioeffects in humans. Toxicological Sciences <u>43</u>(1): 68-77.
- Liu, B., F. Phillips, S. Hoines, A. R. Campbell and P. Sharma. 1995. Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona. Journal of Hydrology <u>168</u>(1-4): 91-110.
- Lupien, M.D. and D. Grondin. 1984. Natural radionuclides in the St. Lawrence River. Water Pollution Research Journal of Canada <u>19(2)</u>: 120-128.
- Macdonald, C.R. and M.J. Laverock. 1998. Radiation exposure and dose to small mammals in radon-rich soils . Archives of Environmental Contamination and Toxicology <u>35(1)</u>: 109-20.
- MacLaren Plansearch. 1987. Transfer parameters in the water/forage/moose pathway. Atomic Energy Control Board, Project No. 84.4.10 pages 1-20, Ottawa, Canada.
- Mahon, D.C. 1982. Uptake and translocation of naturally-occurring radionuclides of the uranium series. Bulletin of Environmental Contamination and Toxicology <u>29(6)</u>: 697-703.

- Mahon, D.C. and R.W. Mathewes. 1983. Uptake of naturally occurring radioisotopes by vegetation in a region of high radioactivity. Canadian Journal of Soil Science <u>63</u>: 281-90.
- Mann, H. and W.S. Fyfe. 1985. Algal uptake of U and some other metals: Implications for global geochemical cycling. Precambrian Research <u>30</u>: 337-49.
- Martz, L.W. and E. De Jong. 1990. Natural radionuclides in the soil of a small agricultural basin in the Canadian Prairies and their association with topography, soil properties and erosion. Catena <u>17</u>: 85-96.
- Matsuzaki, H., Y. Muramatsu, K. Kato, M. Yasumoto and C. Nakano. 2007. Development of ¹²⁹I-AMS system at MALT and measurements of ¹²⁹I concentrations in several Japanese soils. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>259</u>(1): 721-26.
- Maule, C.P. and M.J. Dudas. 1989. Preliminary identification of soil separates associated with fallout ¹³⁷Cs. Canadian Journal of Soil Science <u>69</u>: 171-75.
- McNeely R. 1994. Long-term environmental monitoring of ¹⁴C levels in the Ottawa region. Environment International <u>20</u>: 675-9.
- Michel, F.A., M. Kubasiewicz, R.J. Patterson and R.M. Brown. 1984. Ground water flow velocity derived from tritium measurements in the Gloucester landfill site, Gloucester, Ontario. Water Pollution Research Journal of Canada <u>19</u>: 13-22.
- Michel, R., J. Handl, T. Ernst, W. Botsch, S. Szidat, A. Schmidt, D. Jakob, D. Beltz, L. D. Romantschuk, H.-A. Synal, C. Schnabe, and J. M. Lopez-Gutierrez. 2005. Iodine-129 in soils from Northern Ukraine and the retrospective dosimetry of the iodine-131 exposure after the Chernobyl accident. Science of the Total Environment <u>340</u>(1-3): 35-55.
- Milton, G.M., H.R. Andrews, L.A. Causey, L.A. Chant, R.J.J. Cornett, W G. Davies, B.F. Greiner, V.T. Koslowsky, Y. Imahori, J.W. Kramer, J.W. McKay and J.C.D. Milton. 1994a. Chlorine-36 dispersion in the Chalk River area. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>92</u>: 376-79.
- Milton, G.M., K.J. King, J. Sutton and S. Enright. 1998. Tracer studies of carbon source utilization in a wetland on the Canadian Shield. Applied Geochemistry 13(1): 23-30.
- Milton, G.M., J.C.D. Milton, S. Schiff, P. Cook, T.G. Kotzer and L.D. Cecil. 2003. Evidence for chlorine recycling - hydrosphere, biosphere, atmosphere - in a forested wet zone on the Canadian Shield. Applied Geochemistry <u>18</u>(7): 1027-42.
- Milton, G.M. and S.J. Kramer. 1998. Using ¹⁴C as a tracer of carbon accumulation and turnover in soils. Radiocarbon <u>40</u>(2): 999-1011.

- Milton, G.M., S.J. Kramer, T.G. Kotzer, J.C.D. Milton, H.R. Andrews, L.A. Chant, R.J. Cornett, W.G. Davies, B.F. Greiner, Y. Imahori , V.T. Koslowsky and J.W. McKay. 1997a. C1 36 A potential paleodating tool. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>123</u>(1-4): 371-77.
- Milton, G.M., S.J. Kramer, W.L. Watson and T.G. Kotzer. 2001. Qualitative estimates of soil disturbance in the vicinity of CANDU stations, utilizing measurements of ¹³⁷Cs and ²¹⁰Pb in soil cores. Journal of Environmental Radioactivity <u>55(</u>2): 195-205.
- Milton, J.C.D., G.M. Milton, H.R. Andrews, L.A. Chant, R.J.J. Cornett, W.G. Davies, B.F. Greiner, Y. Imahori, V.T. Koslowsky, T. Kotzer, S.J. Kramer and J.W. McKay. 1997b. A new interpretation of the distribution of bomb-produced chlorine-36 in the environment, with special reference to the Laurentian Great Lakes. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>123</u>(1-4): 382-86.
- Milton, J.C.D., H.R. Andrews, L.A. Chant, R.J.J. Cornett, W.G. Davies, B.F. Greiner, Y. Imahori, V.T. Koslowsky, J.W. McKay and G.M. Milton. 1994b. ³⁶Cl in the Laurentian Great Lakes basin. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>92</u>: 440-444.
- Moran, J.E., S.D. Oktay and P.H. Santschi. 2002. Sources of iodine and iodine 129 in rivers. Water Resources Research <u>38</u>(8): 2401-10.
- Muramatsu, Y. and Y. Ohmomo. 1986. Iodine-129 and iodine-127 in environmental samples collected from Tokaimura-Ibaraki, Japan. Science of the Total Environment <u>48(1-2)</u>: 33-43.
- Muramatsu, Y., S. Yoshida, U. Fehn, S. Amachi and Y. Ohmomo. 2004. Studies with natural and anthropogenic iodine isotopes: Iodine distribution and cycling in the global environment. Journal of Environmental Radioactivity <u>74(</u>1-3): 221-32.
- Muramatsu, Y., Y. Takada, H. Matsuzaki and S. Yoshida. 2008. AMS analysis of ¹²⁹I in Japanese soil samples collected from background areas far from nuclear facilities. Quaternary Geochronology <u>3</u>(3): 291-97.
- Myrick, T.E., B. Berven and F.F. Haywood. 1983. Determination of concentrations of selected radionuclides in surface soil in the U.S. Health Physics <u>45</u>: 631-642.
- Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis, Part 3. Chemical Methods. Soil Science Society of America Book Series 5, Chapter 34, 961-1010.
- Nies, H., D. Obrikat and J. Herrmann. 2000. Recent radionuclide concentrations in the North Sea as a result of discharges from nuclear installations. Kerntechnik <u>65</u>: 195-200
- Nolte, E., P. Krauthan, G. Korschinek, P. Maloszewski, P. Fritz and M. Wolf. 1991. Measurements and interpretations of ³⁶Cl in groundwater, Milk River aquifer, Alberta, Canada. Applied Geochemistry <u>6</u>: 435-45.

- Nolte, E., P. Krauthan, U. Heim, and G. Korschinek. 1990. ³⁶Cl measurements and dating of groundwater samples from the Milk River aquifer. Nuclear Instruments and Methods in Physics Research B <u>52</u>:477-82.
- O'Driscoll, N.J., S.D. Siciliano, D. Peak, R. Carignan and D.R.S. Lean. 2006. The influence of forestry activity on the structure of dissolved organic matter in lakes: Implications for mercury photoreactions. Science of the Total Environment <u>366</u>:880-93.
- Oktay, S.D., P.H. Santschi, J.E. Moran and P. Sharma. 2000. The ¹²⁹Iodine bomb pulse recorded in Mississippi River Delta sediments: Results from isotopes of I, Pu, Cs, Pb, and C. Geochimica et Cosmochimica Acta <u>64(6)</u>: 989-96.
- Oktay, S.D., P.H. Santschi, J.E. Moran and P. Sharma. 2001. ¹²⁹I and ¹²⁷I transport in the Mississippi River. Environmental Science and Technology <u>35(22)</u>: 4470-4476.
- Ontario Ministry of Environment and Energy (OMEE). 1994. Ontario typical range of chemical parameters in soil, vegetation, moss bags and snow. Standards Development Branch, OMEE, ISBN 0-7778-1979-1 Version 1.0a. Toronto, Canada.
- Ontario Power Generation. 2007. 2006 Results of Radiological Environmental Monitoring Programs. Ontario Power Generation Report N-REP-03481-10005-R001 1-136. Toronto, Canada.
- Osborn, G., I. Spooner, J. Gosse and D. Clark. 2007. Alpine glacial geology of the Tablelands, Gros Morne National Park, Newfoundland. Canadian Journal of Earth Science <u>44</u>: 819-34.
- Osburn, W.S. 1965. Primordial radionuclides: their distribution, movement, and possible effect within terrestrial ecosystems. Health Physics <u>11</u>: 1275-95.
- Paliouris, G., H.W. Taylor, R.W. Wein, J. Svoboda and B. Mierzynski. 1995. Fire as an agent of redistribution of fallout ¹³⁷Cs in the Canadian boreal forest. Science of the Total Environment <u>160/161</u>: 153-66.
- Phillips, F. M., J. L. Mattick, T. A. Duval, D. Elmore and P. W. Kubik. 1988. Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resources Research <u>24(11)</u>: 1877-91.
- Pyle, G.G. and F.V. Clulow. 1997. Non-linear radionuclide transfer from the aquatic environment to fish. Health Physics <u>73</u>: 488.
- Pyle, G.G., S.M. Swanson and D.M. Lehmkuhl. 2001. Toxicity of uranium mine-receiving waters to caged fathead minnows, *Pimephales promelas*. Ecotoxicology and Environmental Safety <u>48</u>: 202-14.
- Pyle, G.G., S.M. Swanson, and D.M. Lehmkuhl. 2002. Toxicity of uranium mine receiving waters to early life stage fathead minnows (*Pimephales promelas*) in the laboratory. Environmental Pollution <u>116</u>: 243-55.
- Rao, U. and U. Fehn. 1999. Sources and reservoirs of anthropogenic iodine-129 in western New York. Geochimica et Cosmochemica Acta <u>63</u>:1927-38.

- Rao, U. and U. Fehn. 1997. The distribution of ¹²⁹I around West Valley, an inactive nuclear fuel reprocessing facility in Western New York. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>123(</u>1-4): 361-66.
- Rao, U., U. Fehn, Y. Muramatsu, H. McNeil, P. Sharma and D. Elmore. 2002. Tracing the history of nuclear releases: Determination of ¹²⁹I in tree rings. Environmental Science and Technology <u>36</u>(6): 1271-75.
- Reimann, C., A. Arnoldussen, P. Englmaier, P. Filzmoser, T.E. Finne, R.G. Garrett, F. Koller and Ø. Nordgulen. 2007. Element concentrations and variations along a 120-km transect in southern Norway - Anthropogenic vs. geogenic vs. biogenic element sources and cycles. Applied Geochemistry <u>22</u>(4):851-71.
- Reithmeier, H., V. Lazarev, W. Ruhm and E. Nolte. 2007. ¹²⁹I measurements in lake water for an estimate of regional ¹²⁹I depositions. Science of the Total Environment <u>376(</u>1-3): 285-93.
- Renaud, R., I.D. Clark, T.G. Kotzer, G.M. Milton and D.J. Bottomley. 2005. The mobility of anthropogenic¹²⁹I in a shallow sand aquifer at Sturgeon Falls, Ontario, Canada. Radiochimica Acta <u>93</u>(6): 363-71.
- Rowan, D.J. and J.B. Rasmussen. 1994. Bioaccumulation of radiocesium by fish: the influence of physicochemical factors and trophic structure. Canadian Journal of Fisheries and Aquatic Science <u>51</u>: 2388-410.
- Roy, J.-C., C. Barbeau, J.-E. Cote and J. Turcotte. 1979. A very sensitive sampling method for the measurement of radioactivity in waters from various sources. Nuclear Instruments and Methods <u>160</u>(1): 187-91.
- Roy, J.-C., J.-E. Cote, J. Turcotte, Y. Lanoue, J. Tremblay, S.R. Joshi and R.C. McCrea. 1990. A study of the man-made radioactivity in the Ottawa and St. Lawrence Rivers, Canada. Science of the Total Environment <u>97-98</u>: 207-18.
- Schmidt, A., C. Schnabel, J. Handl, D. Jakob, R. Michel, H.-A. Synal, J. M. Lopez and M. Suter. 1998. On the analysis of iodine-129 and iodine-127 in environmental materials by accelerator mass spectrometry and ion chromatography. Science of the Total Environment <u>223(</u>2-3): 131-56.
- Schumann, R.R. and L.C.S. Gundersen. 1996. Geological and climatic controls on the radon emanation coefficient. Environment International <u>22</u>: S439-S446.
- Schwehr, K.A., P.H. Santshi, J.E. Moran and D. Elmore. 2005. Near-conservative behavior of ¹²⁹I in the Orange County aquifer system, California. Applied Geochemistry <u>20</u>: 1461-72.
- Seki, R., T. Matsuhiro, Y. Nagashima, T. Takahashi, K. Sasa, K. Sueki, Y. Tosaki, K. Bessho, H. Matsumura and T. Miura. 2007. Isotopic ratios of ³⁶CI/CI in Japanese surface soil. Nuclear Instruments and Methods in Physics Research B <u>259</u>(1): 486-90.

- Sheard, J.W. 1986. Distribution of uranium series radionuclides in upland vegetation of northern Saskatchewan. I. Plant and soil concentrations. Canadian Journal of Botany <u>64</u>: 2446-52.
- Sheard, J.W., S.M. Swanson and B.C. Godwin. 1988. Natural uranium series radionuclides in the upland vegetation of northern Saskatchewan and adjacent Northwest Territories. Saskatchewan Research Council Report No. 217 <u>64</u>: 1-262. Saskatoon, Canada.
- Sheppard, M.I. and D.H. Thibault. 1984. Natural uranium concentrations of native plants over a lowgrade ore body. Canadian Journal of Botany <u>62</u>:1069-75.
- Sheppard, M.I. and S.C. Sheppard. 1985. The plant concentration ratio concept as applied to natural U. Health Physics <u>48</u>: 494-500.
- Sheppard, M.I., D.H. Thibault and P.A. Smith. 1989. Iodine dispersion and effects on groundwater chemistry following a release to a peat bog, Manitoba, Canada. Applied Geochemistry <u>4</u>: 425-32.
- Sheppard, S.C., C.A. Grant and C.F. Drury. 2009b. Trace elements in Ontario soils mobility, concentration profiles, and evidence of non-point-source pollution. Canadian Journal of Soil Science <u>89</u>: 489-499.
- Sheppard, S.C., J. Long and B. Sanipelli. 2009a. Field measurements of the transfer factors for iodine and other trace elements. Nuclear Waste Management Organization report NWMO-TR-2009-35 Toronto, Canada.
- Sheppard, S.C. and B. Sanipelli. 2011. Environmental radioactivity in Canada -Measurements. Nuclear Waste Management Organization report NWMO-TR-2011-16. Toronto, Canada.
- Sheppard, S.C., M.I. Sheppard, J.C. Tait and B.L. Sanipelli. 2006. Revision and meta analysis of selected biosphere parameter values for chlorine, iodine, neptunium, radium, radon and uranium. Journal of Environmental Radioactivity <u>89</u>: 115-137.
- Sheppard, S.C., M.I. Sheppard, M. Ilin, J. Tait and B. Sanipelli. 2008. Primordial radionuclides in Canadian background sites: secular equilibrium and isotopic differences. Journal of Environmental Radioactivity <u>99</u>: 933-46.
- Sheppard, S.C., W.G. Evenden and C.R. Macdonald. 1999. Variation among chlorine concentration ratios for native and agronomic plants. Journal of Environmental Radioactivity <u>43</u>:65-76.
- Smith, R.E.H., C.D. Allen and M.N. Charlton. 2004. Dissolved organic matter and ultraviolet radiation penetration in the Laurentian Great Lakes and tributary waters. Journal of Great Lakes Research <u>30</u>:367-80.
- Snyder, G. and U. Fehn. 2004. Global distribution of ¹²⁹I in rivers and lakes: Implications for iodine cycling in surface reservoirs. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>223-224</u>(SPEC. ISS.): 579-86.

- Soil Landscapes of Canada. 2009. Agriculture and Agri-Food Canada, National Soil Database. <u>http://sis.agr.gc.ca/cansis/nsdb/slc/intro.html</u> (accessed Sept 3, 2009).
- Solberg-Johansen, B., R. Clift and A. Jeapes. 1997. Irradiating the environment: Radiological impacts in life cycle assessment. International Journal of Life Cycle Assessment <u>2</u>(1): 16-19.
- Soonawala, N.M. 1979. GS-13 geophysical investigations. In: Report of Field Activities 1979, Manitoba Department of Mines Natural Resources and Environment, Mineral Resources Division 55-67. Winnipeg, Canada.
- Sutherland, R.A. and E. De Jong. 1990. Statistical analysis of γ-emitting radionuclide concentrations for three fields in southern Saskatchewan, Canada. Health Physics <u>58</u>(4): 417-28.
- Suzuki, T., S. Banba, T. Kitamura, S. Kabuto, K. Isogai and H. Amano. 2007. Determination of ¹²⁹I in environmental samples by AMS and NAA using an anion exchange resin disk. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions With Materials and Atoms <u>259</u>(1): 370-3.
- Swanson, S.M. 1983. Levels of ²²⁶Ra, ²¹⁰Pb and ^{total}U in fish near a Saskatchewan uranium mine and mill. Health Physics <u>45</u>: 67-80.
- Swanson, S.M. 1985. Food-chain transfer of U-series radionuclides in a northern Saskatchewan aquatic system. Health Physics <u>49</u>: 747-70.
- Swanson, T.W. and M. L. Caffee. 2001. Determination of ³⁶Cl production rates derived from the well-dated deglaciation surfaces of Whidbey and Fidalgo Islands, Washington. Quaternary Research <u>56</u>: 366-82.
- Szidat, S., A. Schmidt, J. Handl, D. Jakob, W. Botsch, R. Michel, H.-A. Synal, C. Schnabel, M. Suter, J.M. Lopez-Gutierrez, and W. Stade. 2000. Iodine-129: Sample preparation, quality control and analyses of pre-nuclear materials and of natural waters from Lower Saxony, Germany. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>172(</u>1-4): 699-710.
- Thomas, P.A. 1995. Radionuclides in small mammals of the Saskatchewan prairie. Environment Canada, August 1995: 1-249. Saskatoon, Canada.
- Thomas, P.A. 1997. The ecological distribution and bioavailability of uranium-series radionuclides in terrestrial food chains: Key Lake uranium operations, northern Saskatchewan. Environment Canada, Contract #KE507-6-0059/001/EDM: 1-139. Regina, Canada.
- Thomas, P.A. 2000. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -Part I: Distribution and doses. Health Physics <u>78</u>(6): 614-24.
- Tosaki, Y., N. Tase, G. Massmann, Y. Nagashima, R. Seki, T. Takahashi, K. Sasa, K. Sueki, T. Matsuhiro, T. Miura, K. Bessho, H. Matsumura and M. He. 2007. Application of ³⁶Cl as a dating tool for modern groundwater. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms <u>259</u>(1): 479-85.

- Tracy, B.L. and F.A. Prantl. 1983. 25 years of fission product input to Lakes Superior and Huron. Water, Air, and Soil Pollution <u>19(1)</u>: 15-27.
- Tracy, B.L. and F.A. Prantl. 1985. Radiological impact of coal-fired power generation. Journal of Environmental Radioactivity <u>2</u>(2): 145-60.
- Tracy, B.L., F.A. Prantl and J.M. Quinn. 1983. Transfer of ²²⁶Ra, ²¹⁰Pb and uranium from soil to garden produce: Assessment of risk. Health Physics <u>44</u>(5): 469-77.
- Tracy, B.L., F.A. Prantl and J.M. Quinn. 1984. Health impact of radioactive debris from the satellite Cosmos 954. Health Physics <u>47(2)</u>: 225-33.
- VandenBygaart, A.J. and R. Protz. 1995. Gamma radioactivity on a chronosequence, Pinery Provincial Park, Ontario. Canadian Journal of Soil Science <u>75(1)</u>: 73-84.
- VandenBygaart, A.J. and R. Protz. 1999. Gamma radioactivity in podzolic soils of Northern Ontario, Canada. Journal of Environmental Radioactivity <u>42(1)</u>: 51-64.
- VandenBygaart, A.J., R. Protz and D.C. McCabe. 1999. Distribution of natural radionuclides and ¹³⁷Cs in soils of southwestern Ontario. Canadian Journal of Soil Science <u>79(1)</u>: 161-71.
- Van Netten, C. and D.R. Morley. 1982. Differential uptake of U, Mo and Cu, by roots, stalks and seeds of oats grown on uranium-rich soils. International Journal of Environment Studies <u>19</u>: 259-62.
- Van Netten, C. and D.R. Morley. 1983. Uptake of uranium, molybdenum, copper, and selenium by the radish from uranium-rich soils. Archives of Environmental Health <u>38</u>: 172-75.
- Van Oostdam, J., A. Gilman, E. Dewaily, P. Usher, B. Wheatley, H. Kuhnlein, S. Neve, J. Walker, B. Tracy, M. Feeley, V. Jerome and B. Kwavnick. 1999. Human health implications of environmental contaminants in Arctic Canada: A review. Science of the Total Environment <u>230</u>(1-3): 1-82.
- Vertes, A., S. Nagy, and Z. Klencsar. 2003. Handbook of Nuclear Chemistry, Volume 2, Elements and Isotopes - Formation, Transformation, Distribution. Kluwer Academic Publishers. London, UK.
- Veska, E. and B.L. Tracy. 1986. The migration of reactor-produced tritium in Lake Huron. Journal of Environmental Radioactivity <u>4</u>(1): 31-38.
- Veska, E. and R.S. Eaton. 1991. Abandoned Rayrock uranium mill tailings in the Northwest Territories: Environmental conditions and radiological impact. Health Physics <u>60</u>(3): 399-409.
- Waite, D.T., S.R. Joshi and H. Sommerstad. 1988. The effect of uranium mine tailings on radionuclide concentrations in Langley Bay, Saskatchewan, Canada. Archives of Environmental Contamination and Toxicology <u>17</u>(3): 373-80.

- Walker, N.C. 1979. Trace elements in vegetation and soils over the Key Lake uranium-nickel orebody Northern Saskatchewan, Canada. Geochemical Exploration <u>92</u>: 361-69.
- Waller, E. J. and D. Cole. 1999. An environmental radionuclide baseline study near three Canadian naval ports. Health Physics <u>77</u>(1): 37-42.
- Walsh, P.J. 1970. Radiation dose to the respiratory tract of uranium miners A review of the literature. Environmental Research <u>3</u>(1) 14-36.
- Wassenaar, L., R. Aravena, J. Hendry and P. Fritz. 1991. Radiocarbon in dissolved organic carbon, a possible groundwater dating method: case studies from western Canada. Water Resources Research <u>27</u>(8): 1975-86.
- Whicker, F. W. and V. Schultz. 1982. Radioecology: Nuclear Energy and the Environment, Volume 1. CRC Press, Inc.. Boca Raton, USA.
- Wisser, S. 2003. Balancing natural radionuclides in drinking water supply, an investigation in Germany and Canada with respect to geology, radiometry and legislation. PhD Dissertation, Fachbereich Geowissenschaften Der Johannes Gutenberg-Universität. Mainz, Germany.
- Zach, R., J.L. Hawkins and K.R. Mayoh. 1989. Transfer of fallout cesium-137 and natural potassium-40 in a boreal environment. Journal of Environmental Radioactivity <u>10</u>: 19-45.
- Zikovsky, L. 2006. Alpha radioactivity in drinking water in Quebec, Canada. Journal of Environmental Radioactivity <u>88(</u>3): 306-9.
- Zikovsky, L. and R. Blagoeva. 1994a. Dose rate associated with activity of radium-226 in Canadian soils. Journal of Radioanalytical and Nuclear Chemistry <u>185(1)</u>: 127-31.
- Zikovsky, L. and R. Blagoeva. 1994b. Geographic distribution of K-40 in soils in Canada. Journal of Radioanalytical and Nuclear Chemistry <u>187(</u>6): 423-30.

APPENDIX A: COMPARISON TO PREVIOUS ENVIRONMENTAL INCREMENTS

Amiro (1992, 1993) compiled Environmental Increment (EI) values for most of the radionuclides in this report, and the intent of his compilation was also to support assessment of nuclear waste disposal in Canada. In this Appendix we compare the present values with those of Amiro (1992, 1993), in the same order as in the main text of this document.

The soil background and El values are presented in Table A.1, and the water values in Table A.2.

For ³H, Amiro (1992, 1993) apparently based the background estimate on measurements of ³H in vintage wines (already considered vintage in 1954 when the data were published), which was 3×10^{-19} atoms ³H per atom ¹H. This is 0.036 Bq L⁻¹, which is also the EI proposed by Amiro. The background concentration listed by Amiro (1992, 1993) was 0.12 Bq L⁻¹, presumably based on the vintage wines, and because the the ³H in these were isolated from natural sources for many half-lives, these data may not represent true background.

Amiro (1992, 1993) proposed two different EI values for ¹⁴C, both based on specific activity. The background specific activity was 227 Bq (kg C)⁻¹. Using variation found in present day samples, the EI was 1 Bq (kg C)⁻¹. With a longer term perspective, Amiro recommended an EI of 23 Bq (kg C)⁻¹ to encompass variation observed for samples over the past 10^7 a.

Amiro (1992, 1993) did not specifically compute EI values for ¹³⁷Cs, but did compute values for ¹³⁵Cs and in doing this, used data for ¹³⁷Cs. Thus, it was possible to report ¹³⁷Cs values of background and EI from Amiro (1992, 1993), although they are not in the summary tables of those reports.

Radionuclide	Background from this report, (Bq kg ⁻¹ unless indicated)	El from this report, (Bq kg ⁻¹ unless indicated)	Background from Amiro (1992, 1993), (Bq kg ⁻¹ unless indicated)	El from Amiro (1992, 1993), (Bq kg ⁻¹ unless indicated)
³ H	0.04		0.012	3.6 · 10 ⁻³
¹⁴ C ^a	239 Bq (kg C) ⁻¹	17 Bq (kg C) ⁻¹	227 Bq (kg C) ⁻¹	23 Bq (kg C) ⁻¹
³⁶ CI	1.0 Bq (kg Cl)⁻¹	5.6 Bq (kg Cl)⁻¹	not considered	not considered
⁴⁰ K	430	210	370	0.9
⁸⁷ Rb	25	12	55	18
⁹⁰ Sr	2.9	7.3	7	0.5
¹²⁹	0.14 · 10 ⁻³	0.43 · 10 ⁻³	0.03 · 10 ⁻³	0.012 · 10 ⁻³
¹³⁷ Cs	6.5	20	93	66
²¹⁰ Bi	49	110	59	71
²¹⁰ Pb	49	110	59	71
²¹⁰ Po	40 (49) ^b	48 (110) ^b	59	71
²²² Rn	not relevant	not relevant	not relevant	not relevant
²²³ Ra	1	0.8	0.5	1.2
²²⁴ Ra	22	22	16	7
²²⁶ Ra	29	35	26	44
²²⁷ Ac	1	0.8	0.5	1.2
²²⁷ Th	1	0.8	0.5	1.2
²²⁸ Ra	22	22	16	7
²²⁸ Th	22	22	16	7
²³⁰ Th	19	17	26	44
²³¹ Pa	1	0.8	0.5	1.2
²³¹ Th	1	0.8	0.5	1.2
²³² Th	22	22	16	7
²³⁴ Th	23	18	12	26
²³⁴ U	21 (23) ^c	25 (18) ^c	12	26
²³⁵ U	0.8 (1) ^d	0.5 (0.8) ^d	0.5	1.2
²³⁸ U	23	18	12	26

Table A.1: Comparison of background and El concentrations or specific activities in soi
from this report with those proposed by Amiro (1992, 1993).

^a Amiro (1992, 1993) El based on variation over 10⁷ a
 ^b Values in brackets are for ²¹⁰Pb, which should be numerically the same as for ²¹⁰Po and ²¹⁰Bi.
 ^c Values in brackets are for ²³⁸U, which should be numerically the same as for ²³⁴Th and ²³⁴U
 ^d Values in brackets are for 0.72% of the mass of ²³⁸U, and the resulting activity concentrations are the same as for ²²³Ra as well as ²³⁵U, ²³¹Pa (soil), ²²⁷Ac (soil), ²²⁷Th (soil) and ²²³Ra (soil).
Radionuclide	Background from this report, (Bq L ⁻¹ unless indicated)	El from this report, (Bq L ⁻¹ unless indicated)	Background from Amiro (1992, 1993), (Bq L ⁻¹ unless indicated)	El from Amiro (1992, 1993), (Bq L ⁻¹ unless indicated)
³ H	3.2	4.2	0.12	0.036
	239 Bq (kg C) ⁻¹	17 Bq (kg C) ⁻¹	227 Bq (kg C) ⁻¹	23 Bq (kg C) ⁻¹
³⁶ CI	0.96 Bq (kg Cl)⁻¹	5.0 Bq (kg Cl) ⁻¹	not considered	not considered
⁴⁰ K	0.033	0.030	0.050	0.050
⁸⁷ Rb	0.26 · 10 ⁻³	0.62 · 10 ⁻³	0.9 · 10 ⁻³	$0.45 \cdot 10^{-3}$
⁹⁰ Sr	0.015	0.012	0.025	3 · 10 ⁻³
¹²⁹	0.10 · 10 ⁻⁶	0.07 · 10 ⁻⁶	0.03 · 10 ⁻⁶	0.043 · 10 ⁻⁶
¹³⁷ Cs	$1.5 \cdot 10^{-3}$	2.0 · 10 ⁻³	$1.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$
²¹⁰ Bi	$6.4 \cdot 10^{-3}$	0.020	3 · 10 ⁻³	3 · 10 ⁻³
²¹⁰ Pb	6.4 · 10 ⁻³	0.020	3 · 10 ⁻³	3 · 10 ⁻³
²¹⁰ Po	7.1 · 10 ⁻³ (6.4 · 10 ⁻³) ^b	9.2 · 10 ⁻³ (0.020) ^b	3 · 10 ⁻³	3 · 10 ⁻³
²²² Rn	not relevant	not relevant	not relevant	not relevant
²²³ Ra	0.2 · 10 ⁻⁶	0.4· 10 ⁻⁶	0.1 · 10 ⁻⁶	0.2 · 10 ⁻⁶
²²⁴ Ra	7.8 · 10 ⁻³	0.012	4 · 10 ⁻³	10 · 10 ⁻³
²²⁶ Ra	$2.7 \cdot 10^{-3}$	0.014	5 · 10 ⁻³	1 · 10 ⁻³
²²⁷ Ac	0.2 · 10 ⁻⁶	0.4· 10 ⁻⁶	0.1 · 10 ⁻⁶	0.2 · 10 ⁻⁶
²²⁷ Th	0.2 · 10 ⁻⁶	0.4· 10 ⁻⁶	0.1 · 10 ⁻⁶	0.2 · 10 ⁻⁶
²²⁸ Ra	0.29 · 10 ⁻³ (0.015) ^c	0.35 · 10 ⁻³ (0.036) [°]	4 · 10 ⁻³	10 · 10 ⁻³
²²⁸ Th	0.96 · 10 ⁻³ (0.015) ^c	3 · 10 ⁻³ (0.036) [°]	4 · 10 ⁻³	10 · 10 ⁻³
²³⁰ Th	1.9 · 10 ⁻³	0.012 [´]	0.27 · 10 ⁻³	0.25 · 10 ⁻³
²³¹ Pa	0.2 · 10 ⁻⁶	0.4· 10 ⁻⁶	0.1 · 10 ⁻⁶	0.2 · 10 ⁻⁶
²³¹ Th	0.15 · 10 ⁻³	0.37 · 10 ⁻³	0.06 · 10 ⁻³	0.09 · 10 ⁻³
²³² Th	0.39 · 10 ⁻³	0.59 · 10 ⁻³	0.2 · 10 ⁻³	0.5 · 10 ⁻³
²³⁴ Th	3.3 · 10 ⁻³	8.3 · 10 ⁻³	1.3 · 10 ⁻³	2 · 10 ⁻³
²³⁴ U	7.3 · 10 ⁻³ (3.3 · 10 ⁻³) ^d	5.1 · 10 ⁻³ (8.3 · 10 ⁻³) ^d	1.3 · 10 ⁻³	2 · 10 ⁻³
²³⁵ U	0.093 · 10 ⁻³ (0.15 · 10 ⁻³) ^e	0.20 · 10 ⁻³ (0.37 · 10 ⁻³) ^e	0.06 · 10 ⁻³	0.09 · 10 ⁻³
²³⁸ U	3.3 · 10 ⁻³	8.3 · 10 ⁻³	1.3 · 10 ⁻³	2 · 10 ⁻³

Table A.2: Comparison of background and El concentrations or specific activities in water from this report with those proposed by Amiro (1992, 1993).

^a Amiro (1992, 1993) El based on variation over 10⁷ a
^b Values in brackets are for ²¹⁰Pb, which should be numerically the same as for ²¹⁰Po and ²¹⁰Bi.
^c Values in brackets are 20-fold higher than for ²³²Th in water, as recommended by Amiro

(1992, 1993). ^d Values in brackets are for ²³⁸U, which should be numerically the same as for ²³⁴Th and ²³⁴U ^e Values in brackets are for 0.72% of ²³⁸U, which should be numerically the same as for ²²³Ra as well as ²³⁵U, ²³¹Pa (soil), ²²⁷Ac (soil), ²²⁷Th (soil) and ²²³Ra (soil).

APPENDIX B: MAPS OF RADIONUCLIDE CONCENTRATIONS

© Department of Natural Resources Canada - All rights reserved

The following maps are copyright and used here with permission, with the following notice: © Department of Natural Resources Canada - All rights reserved.

The first is the gamma survey coverage map, showing the regions surveyed by air and the survey (flight line) intensity. The next maps are for 40 K, 232 Th and 238 U, separated here into west and east. The maps for 232 Th and 238 U are labelled 'equivalent thorium' and 'equivalent uranium' because the gamma energies used for detection are emissions from short-lived radionuclide progeny rather than direct emissions from 232 Th and 238 U. The assumption of isotopic equilibrium is justified, but for semantic exactness the term 'equivalent' is used. All units are listed as ppm, equivalent to mg kg⁻¹ dry weight basis.

The gamma emissions depicted on these maps represent the surface materials, and so are somewhat dependent on the amount of overburden in the region. Granite outcrops will often show relatively high gamma signatures. Unconsolidated overburden (soil), and especially peat deposits, will have lower gamma signatures because of attenuation by water, organic matter and clay minerals. In terms of biological accessibility and availability of the ⁴⁰K, ²³²Th and ²³⁸U, the granite outcrops may often be less important than the soils and peats even though the gamma signature of the granite outcrops is higher. To illustrate with a large landform, the Hudson's Bay Lowlands approaching Churchill Manitoba are shown in the maps to have relatively low ⁴⁰K, ²³²Th and ²³⁸U concentrations, and these are largely peat lands.

Figure B-1: Index of Airborne Gamma Ray Spectrometry Coverage of Canada.

Figure B-2: Radioactivity map of Canada (West): Potassium. Scale is from 0.03 to 2.6 %K (9 to 800 Bq kg^{-1 40}K) in increments of 0.06% K (19 Bq kg^{-1 40}K).

Figure B-3: Radioactivity map of Canada (East): Potassium. Scale is from 0.03 to 2.6 %K (9 to 800 Bq kg^{-1 40}K) in increments of 0.06% K (19 Bq kg^{-1 40}K).

Figure B-4: Radioactivity map of Canada (West): equivalent Thorium. Scale is from 0.2 to 17 mg kg⁻¹ Th (0.8 to 71 Bq ²³²Th kg⁻¹) in increments of 0.6 mg kg⁻¹ Th (2.4 Bq ²³²Th kg⁻¹).

Figure B-5: Radioactivity map of Canada (East): equivalent Thorium. Scale is from 0.2 to 17 mg kg⁻¹ Th (0.8 to 71 Bq 232 Th kg⁻¹) in increments of 0.6 mg kg⁻¹ Th (2.4 Bq 232 Th kg⁻¹).

Figure B-6: Radioactivity map of Canada (West): equivalent Uranium. Scale is from 0.03 to 2.6 mg kg⁻¹ U (0.4 to 32 Bq 238 U kg⁻¹) in increments of 0.06 mg kg⁻¹ U (0.7 Bq 238 U kg⁻¹).

Figure B-7: Radioactivity map of Canada (East): equivalent Uranium. Scale is from 0.03 to 2.6 mg kg⁻¹ U (0.4 to 32 Bq 238 U kg⁻¹) in increments of 0.06 mg kg⁻¹ U (0.7 Bq 238 U kg⁻¹).

APPENDIX C: DATABASE

The following pages list the data considered, showing the fields from the database that are considered most useful. Each radionuclide is listed separately, in the same order as used in the text above.

Media	Spatial extrapolation	H-3 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Fish	Lake Huron	3.6	Bruce Power 2008
Fish	Lake Huron	4.2	Ontario Power Generation. 2007
Fish	Lake Ontario	5	Ontario Power Generation. 2007
Milk	S. Ontario	4.7	Bruce Power 2008
Produce	S. Ontario	3.5	Bruce Power 2008
Vegetation	S. Ontario	2.7	Ontario Power Generation. 2007
Water	Ontario Shield	<0.6	Sheppard and Sanipelli 2011
Water	Ontario Shield	<0.7	Sheppard and Sanipelli 2011
Water	Ontario Shield	<1	Sheppard and Sanipelli 2011
Water	Ontario Shield	<1.9	Ontario Power Generation. 2007
Water	Ontario Shield	<1.9	Ontario Power Generation. 2007
Water	Lake Superior	<1.9	Ontario Power Generation. 2007
Water	Ontario Shield	1.1	Sheppard and Sanipelli 2011
Water	Western Canada	1.1	Sheppard and Sanipelli 2011
Water	Eastern Canada	1.1	Sheppard and Sanipelli 2011
Water	Ontario Shield	1.3	Sheppard and Sanipelli 2011
Water	Western Canada	1.6	Sheppard and Sanipelli 2011
Water	S. Ontario	1.7	Sheppard and Sanipelli 2011
Water	Lake Ontario	1.7	Ontario Power Generation. 2007
Water	Arctic Canada	1.8	Sheppard and Sanipelli 2011
Water	Eastern Canada	1.9	Sheppard and Sanipelli 2011
Water	Lake Huron	2	Ontario Power Generation. 2007
Water	Western Canada	2	Sheppard and Sanipelli 2011
Water	Lake Erie	2.2	Sheppard and Sanipelli 2011
Water	Ontario Shield	2.4	Sheppard and Sanipelli 2011
Water	Ontario Shield	2.4	Sheppard and Sanipelli 2011
Water	Lake Huron	2.5	Ontario Power Generation. 2007
Water	Ontario Shield	2.5	Letourneau et al. 1994
Water	Lake Ontario	2.6	Ontario Power Generation. 2007
Water	Lake Erie	2.7	Ontario Power Generation. 2007
Water	Lake Huron	2.9	Ontario Power Generation. 2007
Water	Ontario Shield	2.9	Ontario Power Generation. 2007
Water	Ontario Shield	3	AECL Chalk River 2008
Water	Lake Ontario	3.3	Ontario Power Generation. 2007
Water	Lake Huron	3.5	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	H-3 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Water	Lake Ontario	3.6	Ontario Power Generation. 2007
Water	Lake Ontario	3.9	Ontario Power Generation. 2007
Water	Lake Huron	4	Ontario Power Generation. 2007
Water	Ontario Shield	4	Sheppard and Sanipelli 2011
Water	Lake Ontario	4.2	Sheppard and Sanipelli 2011
Water	Ontario Shield	4.4	Sheppard and Sanipelli 2011
Water	Lake Huron	4.5	Ontario Power Generation. 2007
Water	Lake Huron	4.6	Ontario Power Generation. 2007
Water	Lake Ontario	4.8	Ontario Power Generation. 2007
Water	S. Ontario	4.9	Bruce Power 2008
Water	Lake Huron	5	Sheppard and Sanipelli 2011
Water	Lake Superior	5.4	Ahier and Tracy 1995
Water	S. Ontario	5.7	Ontario Power Generation. 2007
Water	S. Ontario	6.3	Ontario Power Generation. 2007
Water	S. Ontario	6.3	Sheppard and Sanipelli 2011
Water	Lake Michigan	6.6	Ahier and Tracy 1995
Water	Lake Ontario	8.7	Ahier and Tracy 1995
Water	Lake Huron	9.1	Ahier and Tracy 1995
Water	Lake Erie	12	Ahier and Tracy 1995
Water	Lake Erie	12	Bruce Power 2008
Water	Arctic Canada	12.2	Baweja et al. 1987
Water	Lake Huron	<20	Veska and Tracy 1986
Water	Arctic Canada	45	Tracy et al. 1984
Water rain	AB/SK/MB	<1.9	Ontario Power Generation. 2007
Water rain	AB/SK/MB	<1.9	Ontario Power Generation. 2007
Water rain	Eastern Canada	2	Ontario Power Generation. 2007
Water rain	Prebomb	3.3	Michel et al. 1984
Water well	S. Ontario	<1.9	Ontario Power Generation. 2007
Water well	Prebomb	0.12	Renaud et al. 2005
Water well	Ontario Shield	3.1	Renaud et al. 2005
Water well	AB/SK/MB	3.5	Nolte et al. 1991

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	C-14 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
Water	Canada		218Bq/kgC	Wassenaar et al. 1991
Soil	N. Ontario		222Bq/kgC	Milton et al. 2001
Vegetation	S. Ontario		224Bq/kgC	Ontario Power Generation. 2007
Milk	S. Ontario		226Bq/kgC	Bruce Power 2008
Produce	S. Ontario		226Bq/kgC	Bruce Power 2008
Fish	S. Ontario		230Bq/kgC	Ontario Power Generation. 2007
Soil	N. Ontario		232Bq/kgC	Milton et al. 2001
Air	S. Ontario		233Bq/kgC	Bruce Power 2008
Soil	N. Ontario	5.00E+04	233Bq/kgC	Milton and Kramer 1998
Fish	S. Ontario		236Bq/kgC	Bruce Power 2008
Fish	S. Ontario		241Bq/kgC	Ontario Power Generation. 2007
Soil	N. Ontario		255Bq/kgC	Milton et al. 2001
lissue	Global		257Bq/kgC	McNeely 1994
Milk	Global	4 505 . 05	258Bq/kgC	Milton et al. 1998
Soil	N. Ontario	4.50E+05	283Bq/kgC	Milton and Kramer 1998
Soll	N. Ontario	5.00E+04	12	Milton and Kramer 1998
Soll	N. Ontario	4.50E+05	130	Milton and Kramer 1998
Stable ele	ement data			
Water	S. Ontario	2.8		Smith et al. 2004
Water	S. Ontario	8		Smith et al. 2004
Water	Global	10		Heikkinen 1994, Jonsson et al. 2007 and O'Driscoll et al. 2006
Water	Boreal	10		O'Driscoll et al. 2006
Soil	Canada	12000		Soil Landscapes of Canada 2009
Soil	Canada	4.00E+05		Soil Landscapes of Canada 2009
organic				- -

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	CI-36 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
Exposed	AB/SK/MB	26 to 270	0.0004Bq/gCl	Jackson et al. 1999
rock	Eastorn	240		Osborn et al. 2007
rock	Canada	340	0.2E-5Bq/gCl	Osborn et al. 2007
Tissue	Prebomb	1000	0.0013Bg/gCl	Cornett et al. 1997b
Tissue	S. Ontario	na	0.002Bg/gCl	Milton et al. 2003
Tissue	Ontario	1000	0.012Bq/gCl	Cornett et al. 1997b
	Shield		10	
Tissue	S. Ontario	na	0.024Bq/gCl	Milton et al. 1997a,b
Tissue	S. Ontario	na	0.04Bq/gCl	Milton et al. 2003
Water	S. Ontario	11	0.000079Bq/gCl	Sheppard and Sanipelli 2011
Water	Lake Huron	8.8	0.00034Bq/gCl	Sheppard and Sanipelli 2011
Water	Lake Ontario	1.4 to 23	0.00036Bq/gCl	Milton et al. 1994b
Water	Ontario		0.00038Bq/gCl	Sheppard and Sanipelli 2011
Watar	Shield	9.9	0.000470~/~0	Milton at al. 1004b
vvaler	Lake Michigan	1.4 10 23	0.0004764/901	Millon et al. 1994b
Water	Lake Erie	1.4 to 23	0.00048Ba/aCl	Milton et al. 1994b
Water	Lake Ontario	17	0.00068Bg/gCl	Sheppard and Sanipelli 2011
Water	Lake Huron	1.4 to 23	0.00071Bg/gCl	Milton et al. 1994b
Water	Shield	0.45	0.00097Bg/gCl	Cornett et al. 1996
Water		na	0.0013Bg/gCl	Cornett et al. 1997b
Water	Eastern	1.4 to 23	0.0016Bg/gCl	Milton et al. 1994b
	Canada			
Water	Eastern	0.6 to 6	0.001Bq/gCl	Cornett et al. 1997a
	Canada	. –		
Water	Ontario	1.7	0.0045Bq/gCl	Sheppard and Sanipelli 2011
Water	Western	12	0.0076Ba/aCl	Shennard and Saninelli 2011
Water	Canada	1.2	0.007004/901	cheppere and campeli 2011
Water rain	Eastern	0.2	0.0036Bq/gCl	Cornett et al. 1997a
	Canada			
Water well	Prebomb	100 to	0.00002Bq/gCl	Andrews and Fontes 1991
		1200		
Water well	Shield	100 to	0.00003Bq/gCl	Kotzer et al. 1998
	.	10000		
Water well	Shield	17	0.00013Bq/gCl	Gascoyne et al. 1994 (also
Water well	Shield	20		Gascoyne et al. 1992) Kotzer et al. 1998
Water well	Drehomh	20		Andrews and Fontes 1991
		20		
Water well	AB/SK/MR	0 16	0.0007Ra/aCl	Fabryka-Martin 1991
Water well	AB/SK/MB	58	0.0064Ba/aCl	Nolte et al. 1990
Water	Shield	0.45	<u> </u>	Cornett et al 1996
Water	S Ontario	11	9 00F-07	Shennard and Saninelli 2011
Water	Eastern	0.6 to 6	2.F-06	Cornett et al. 1997a
			**	

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	CI-36 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
	Canada			
Water	Lake Superior	1.4 to 23	2.4E-06	Milton et al. 1994b
Water	Lake Huron	8.8	3.00E-06	Sheppard and Sanipelli 2011
Water	Ontario		3.80E-06	Sheppard and Sanipelli 2011
	Shield	9.9		
Water	Lake Michigan	1.4 to 23	4.2E-06	Milton et al. 1994b
Water	Lake Huron	1.4 to 23	4.8E-06	Milton et al. 1994b
Water	Ontario Shield		5.3E-06	Milton et al. 1994a
Water	Lake Erie	1.4 to 23	7.4E-06	Milton et al. 1994b
Water	Ontario Shield	1.7	7.6E-06	Sheppard and Sanipelli 2011
Water	Lake Ontario	1.4 to 23	8.5E-06	Milton et al. 1994b
Water	Western Canada	1.2	8.5E-06	Sheppard and Sanipelli 2011
Water	Lake Ontario	17	1.10E-05	Sheppard and Sanipelli 2011
Water rain	S. Ontario	na	1.1E-06	Milton et al. 2003
Water rain	S. Ontario		1.2E-06	Milton et al. 1994a
Water well	Prebomb	0.60	7.E-07	Milton et al. 2003
Water well	Shield	17	2.20E-06	Gascoyne et al. 1994 (also Gascoyne et al. 1992)
Water well	Shield	20	4.E-06	Kotzer et al. 1998
Water well	Prebomb	na	6.E-06	Bentlev et al. 1982
Water well	AB/SK/MB	20 to 1200	7.E-06	Andrews and Fontes 1991
Water well	AB/SK/MB	0.16	8.3E-06	Fabrvka-Martin 1991
Water well	Prebomb	18	1.10E-05	Lehmann and Purtschert 1997
Water well	Prehomb	7 to 55	1 4F-05	Andrews and Fontes 1991
Water well	Prehomh	58	3 10E-05	Nolte et al. 1990
Water well	Shield	100 to	0.0015	Kotzer et al 1998
	Onicia	10000	0.0010	

Stable element data

Soil	Canada	50
Soil Water rain	Shield Global	230 0.25
Water	Ontario	
14/ - 1	Shield	0.42
vvater	Ontario	1 0
Water	West.	1.2
	Canada	1.2
Water	Great Lakes	1.6

Sheppard et al. 1999, Hill 1986, Edwards et al. 1981 Sheppard et al. 2009a Hayashi et al. 1998, Andrews and Fontes 1993, Cornett et al. 1997a Sheppard and Sanipelli 2011 Sheppard and Sanipelli 2011 Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	CI-36 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
Water	Ontario	. –		Sheppard and Sanipelli 2011
	Shield	1.7		
vvater	Ontario	0.4		Sheppard and Sanipelli 2011
Wator	Eastorn	2.1		Shannard and Saninalli 2011
vvalei	Canada	2 1		Shepparu anu Sahipelii 2011
Water	S Ontario	2.1		Cornett et al. 1996 and 1997a
Water	West	2.0		Shennard and Saninelli 2011
Water	Canada	3.3		
Water	Ontario	0.0		Sheppard and Sanipelli 2011
	Shield	3.3		- FF F
Water	Ontario			Sheppard and Sanipelli 2011
	Shield	3.9		
Water	Shield	4.6		Sheppard et al. 2009a
Water	Shield	5.3		Sheppard et al. 2009a
Water	Arctic			Sheppard and Sanipelli 2011
	Canada	6.1		
Water	Lake Huron	7.6		Sheppard and Sanipelli 2011
Water	Lake Huron	8.8		Sheppard and Sanipelli 2011
Water	West.			Sheppard and Sanipelli 2011
	Canada	9.4		
Water	Ontario			Sheppard and Sanipelli 2011
	Shield	9.9		
Water	S. Ontario	11		Sheppard and Sanipelli 2011
Water	Great Lakes	12		Chapra et al. 2009
Water	N. America	13		Moran et al. 2002
Water	Lake Erie	17		Sheppard and Sanipelli 2011
Water	Lake Ontario	17		Sheppard and Sanipelli 2011
Water	Ontario			Sheppard and Sanipelli 2011
	Shield	18		
Water	Shield	28		Sheppard et al. 2009a
Water	Ontario	•-		Sheppard and Sanipelli 2011
	Shield	37		
Water	Eastern	40		Sheppard and Sanipelli 2011
	Canada	42		Observed and Oscilla all' 0011
vvater	S. Untario	61		Sneppara and Sanipelli 2011

International data

Soil	Japan		0.00043Bq/gCl	Seki et al. 2007
Soil	SW_USA		0.0006Bq/gCl	Cizdziel et al. 2008
Soil	SW_USA	0.5	0.00084Bq/gCl	Phillips et al. 1988
Soil	SW_USA		0.0015Bq/gCl	Cizdziel et al. 2008
Water	SW_USA		2.6E-07	Liu et al. 1995
Water	Boreal	0.4	2.8E-06	Beasley et al. 1997
Water	Boreal	8	4.0E-06	Beasley et al. 1997
Water	SW_USA		2.0E-05	Liu et al. 1995
Water	Coastal		2.5E-5Bq/gCl	Bird et al. 1991

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	CI-36 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
Water	Arid		5.4E-5Bq/gCl	Bird et al. 1991
Water	Europe	100	9.6E-5Bq/gCl	Tosaki et al. 2007
Water	NE_USA		0.00016Bq/gCl	Rao and Fehn 1997
Water	North of 60N		0.0001Bq/gCl	Green et al. 2000
Water	SW_USA		0.00044Bq/gCl	Liu et al. 1995
Water	Boreal	8	0.00048Bq/gCl	Beasley et al. 1997
Water	SW_USA		0.00048Bq/gCl	Liu et al. 1995
Water	Prebomb	0.05	0.0004Bq/gCl	Elmore et al. 1982
Water	Global		0.0006Bq/gCl	Beasley et al. 1997
Water	Asia		0.0015Bq/gCl	Green et al. 2000
Water	NW_USA		0.0047Bq/gCl	Green et al. 2000
Water	Fallout		0.029Bq/gCl	Green et al. 2000
Water well	California	8	0.00035Bq/gCl	Fehn et al. 1992
Soil	Global mid latitudes		6.90E-06	Bird et al. 1991
Soil	SW_USA	0.5	8.80E-07	Phillips et al. 1988
Water	North of 60N		9.50E-08	Green et al. 2000
glacial Water glacial	Asia		1.60E-07	Green et al. 2000
Water glacial	NW_USA		2.90E-07	Green et al. 2000
Water glacial	North of 60N	0.05	4.7E-07	Elmore et al. 1982
Water glacial	Prebomb	na	2.E-06	Andrews and Fontes 1991
Water glacial	Global		2.70E-05	Green et al. 2000
Water rain	Global	0.5	6.E-08	Andrews and Fontes 1993
Water rain	SW_USA	na	2.E-07	Bentley et al. 1982
Water rain	Coastal		2.E-06	Corcho Alvarado et al. 2005
Water well	California	8	2.90E-06	Fehn et al. 1992
Water well	Prebomb	na	4.E-06	Bentley et al. 1982
Water well	Europe	100	1.00E-05	Tosaki et al. 2007

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	K-40 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	Canada	6.5E+03	200	Waller and Cole 1999
Soil	Canada	8.1E+03	250	Waller and Cole 1999
Soil	S. Ontario	8.4E+03	260	VandenBygaart and Protz 1995

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	K-40 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	Eastern	1.0E+04	309	Zikovsky and Blagoeva 1994b
Soil	S. Ontario	1.2E+04	373	Ontario Power Generation 2007
Soil	S. Ontario	1.2E+04	375	Ontario Power Generation 2007
Soil	S. Ontario	1.2E+04	383	Bruce Power 2008
Soil	Shield	1.3E+04	397	Zikovsky and Blagoeva 1994b
Soil	AB/SK/MB	1.3E+04	417	Kiss et al. 1988
Soil	Ontario Shield	1.4E+04	420	VandenBygaart and Protz 1999
Soil	Shield	1.4E+04	420	Zach et al. 1989
Soil	S. Ontario	1.4E+04	449	Ontario Power Generation 2007
Soil	S. Ontario	1.5E+04	460	VandenBygaart et al. 1999
Soil	AB/SK/MB	1.5E+04	470	DeJong et al. 1994
Soil	AB/SK/MB	1.5E+04	480	Kiss et al. 1988
Soil	AB/SK/MB	1.6E+04	490	Sutherland and DeJong 1990
Soil	S. Ontario	1.6E+04	491	Ontario Power Generation 2007
Soil	Canada	1.6E+04	500	Waller and Cole 1999
Soil	AB/SK/MB	1.6E+04	505	Kiss et al. 1988
Soil	AB/SK/MB	1.7E+04	519	Martz and DeJong 1990
Soil	Shield	1.7E+04	537	Zikovsky and Blagoeva 1994b
Soil	AB/SK/MB	1.8E+04	548	Kiss et al. 1988
Soil	AB/SK/MB	1.9E+04	580	Thomas 1995
Soil	S. Ontario	1.9E+04	594	Bruce Power 2008
Soil	AB/SK/MB	2.1E+04	660	DeJong et al. 1994
Soil	S. Ontario	2.4E+04	740	Tracy and Prantl 1985
Soil	S. Ontario	2.5E+04	764	Ontario Power Generation 2007
Soil	S. Ontario	2.5E+04	769	Ontario Power Generation 2007
Soil (beach)	S. Ontario	7.5E+03	232	Ontario Power Generation. 2007
Soil (beach)	S. Ontario	7.6E+03	235	Ontario Power Generation. 2007
Soil (beach)	S. Ontario	7.9E+03	246	Ontario Power Generation. 2007
Soil (beach)	S. Ontario	8.3E+03	258	Ontario Power Generation. 2007
Soil (beach)	S. Ontario	2.2E+04	679	AECL Chalk River 2008
Soil organic	Shield	3.2E+03	100	Zach et al. 1989
Water	Ontario Shield	0.3	0.009	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.4	0.011	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.4	0.012	Sheppard and Sanipelli 2011
Water	East.Canada	0.4	0.013	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.5	0.016	Sheppard and Sanipelli 2011
Water	Lake Superior	0.5	0.017	Rowan and Rasmussen 1994
Water	Great Lakes	0.6	0.019	Rowan and Rasmussen 1994
Water	Ontario Shield	0.6	0.020	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	K-40 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Water	Ottawa River	0.7	0.021	Rowan and Rasmussen 1994
Water	Lake Huron	0.7	0.022	Rowan and Rasmussen 1994
Water	North of 60N	0.8	0.024	Rowan and Rasmussen 1994
Water	Lake Huron	0.9	0.027	Rowan and Rasmussen 1994
Water	West. Canada	0.9	0.027	Sheppard and Sanipelli 2011
Water	East.Canada	0.9	0.027	Sheppard and Sanipelli 2011
Water	Arctic Canada	1.0	0.030	Sheppard and Sanipelli 2011
Water	Ontario Shield	1.0	0.032	Sheppard and Sanipelli 2011
Water	Lake Huron	1.1	0.034	Sheppard and Sanipelli 2011
Water	Lake Huron	1.1	0.035	Sheppard and Sanipelli 2011
Water	Lake Erie	1.2	0.039	Rowan and Rasmussen 1994
Water	Ontario Shield	1.4	0.043	Sheppard and Sanipelli 2011
Water	Lake Ontario	1.5	0.046	Sheppard and Sanipelli 2011
Water	S. Ontario	1.6	0.048	Rowan and Rasmussen 1994
Water	S. Ontario	1.6	0.049	Sheppard and Sanipelli 2011
Water	Lake Erie	1.6	0.050	Sheppard and Sanipelli 2011
Water	Lake Ontario	1.7	0.052	Rowan and Rasmussen 1994
Water	Shield	1.7	0.054	AECL Whiteshell 2008
Water	West. Canada	1.8	0.055	Sheppard and Sanipelli 2011
Water	Ontario Shield	1.9	0.059	Sheppard and Sanipelli 2011
Water	Ontario Shield	1.9	0.060	Sheppard and Sanipelli 2011
Water	AB/SK/MB	2.2	0.069	Rowan and Rasmussen 1994
Water	West. Canada	3.1	0.095	Sheppard and Sanipelli 2011
Water	S. Ontario	3.3	0.101	Sheppard and Sanipelli 2011
Water	Lake Ontario	3.5	0.11	Joshi 1984

Rb-87 Media Spatial extrapolation Mass conc. Activity Media Spatial extrapolation (mg/L or conc. Bibliographic sour mg/kg dw) Bq/kg dw) Bq/kg dw)	rce
Water Ontario Shield 0.00122 1.0E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.000118 1.0E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000121 1.0E-04 Sheppard et al. 2009a	
Water West. Canada 0.00130 1.1E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.00130 1.1E-03 Sheppard and Sanipelli 2011	
Water East. Canada 0.00125 1.1E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.000132 1.1E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000131 1.1E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000131 1.1E-04 Sheppard et al. 2009a	
Water S. Ontario 0.00137 1.2E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.000134 1.2E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000144 1.2E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000134 1.2E-04 Sheppard et al. 2009a	
Water West. Canada 0.00151 1.3E-03 Sheppard and Sanipelli 2011	
Water West. Canada 0.00149 1.3E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.00151 1.3E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.000148 1.3E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000146 1.3E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.00157 1.4E-03 Sheppard and Sanipelli 2011	
Water Arctic Canada 0.00161 1.4E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.000158 1.4E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000158 1.4E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000174 1.5E-04 Sheppard et al. 2009a	
Water West. Canada 0.000169 1.5E-04 Sheppard et al. 2009a	
Water West. Canada 0.000169 1.5E-04 Sheppard et al. 2009a	
Water West. Canada 0.000172 1.5E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000183 1.6E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000181 1.6E-04 Sheppard et al. 2009a	
Water West. Canada 0.000182 1.6E-04 Sheppard et al. 2009a	
Water West. Canada 0.000182 1.6E-04 Sheppard et al. 2009a	
Water Untario Shield 0.000192 1.7E-04 Sheppard et al. 2009a	
Water Untario Shield 0.000196 1.7E-04 Sheppard et al. 2009a	
Water West, Canada 0.000212 1.8E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000223 1.9E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000217 1.9E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000249 2.1E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.00282 2.1E-04 Sheppard et al. 2009a	
Water Lake Ontaria 0.00287 2.4E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.000201 2.5E-03 Sheppard and Sanipelli 2011	
Water Ontario Shield 0.00027 2.0E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.000378 3.2E-04 Sheppard et al. 2009a	
Water Ontario Shield 0.00056 3.0E-04 Shepperd and Seriodii 2011	
Water Ontario Shield 0.000471 4 1F-04 Sheppard and Salipelli 2011	

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	Rb-87 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Water	Ontario Shield	0.00005	4.3E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.00005	4.3E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000059	5.1E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000061	5.2E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000063	5.4E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.00678	5.8E-03	Sheppard and Sanipelli 2011
Water	West. Canada	0.000067	5.8E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.00007	6.0E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000763	6.6E-04	Sheppard et al. 2009a
Water	Ontario Shield	0.000077	6.6E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000797	6.9E-04	Sheppard et al. 2009a
Water	Ontario Shield	0.000811	7.0E-04	Sheppard et al. 2009a
Water	Ontario Shield	0.000084	7.2E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000084	7.2E-05	Sheppard et al. 2009a
Water	S. Ontario	0.00089	7.6E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.000088	7.6E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000088	7.6E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.00092	7.9E-04	Sheppard and Sanipelli 2011
Water	Lake Huron	0.00093	8.0E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.000097	8.3E-05	Sheppard et al. 2009a
Water	Lake Erie	0.00098	8.4E-04	Sheppard and Sanipelli 2011
Water	Lake Huron	0.00098	8.4E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.000101	8.7E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000101	8.7E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000104	8.9E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.000103	8.9E-05	Sheppard et al. 2009a
Water	Ontario Shield	0.00111	9.5E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.00011	9.5E-05	Sheppard et al. 2009a
Water	East. Canada	0.00113	9.7E-04	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Sr-90 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	Arctic	0.55	Barrie et al. 1992
Soil	Arctic	1.8	Barrie et al. 1992
Soil	Arctic	2.9	Barrie et al. 1992
Water	Ontario Shield	0.0044	Cornett et al. 1995
Water	S. Quebec	0.0062	Roy et al. 1990
Water	North of 60N	0.015	Tracy et al. 1984
Water	North of 60N	0.015	Van Oostdam et al. 1999
Water	Ontario Shield	0.017	Joshi and McCrea 1992

Water	Ontario Shield	0.019	Roy et al. 1990
Water	Central Canada	0.021	Tracy and Prantl 1983
Water	Central Canada	0.022	Ahier and Tracy 1995
Water	Central Canada	0.024	Joshi 1984
Water	Lake Ontario	0.026	Roy et al. 1990

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	I-129 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
SA rock	Ontario Shield	1.3	0.001Bq/gl	Sheppard and Sanipelli 2011
SA soil	S. Ontario	16.4	0.043Bq/gl	Sheppard and Sanipelli 2011
SA soil	Western	11.6	0.0032Bq/gl	Sheppard and Sanipelli 2011
organic SA soil organic	Canada Ontario Shield		0.0083Bq/gl	Renaud et al. 2005
SA various	S. Ontario	0.1	0.13Bq/gl	Cornett et al. 1997b
SA water	AB/SK/MB	0.16	7.2E-6Bq/gl	⊢abryka-Martin 1991 –
SA water	Prebomb	0.0003	5.4E-5Bq/gl	Renaud et al. 2005
SA water	Shield	0.7 to 3	1E-4Bq/gl	Kotzer et al. 1998
SA water	Shield	0.001 to 0.1	2E-4Bq/gl	Kotzer et al. 1998
SA water	Untario Shield	0.0002	0.0045Bq/gl	Renaud et al. 2005
SA water	vvestern Canada	0.0044	0.016Bq/gl	Sneppard and Sanipelli 2011
SA water	S. Ontario	0.0041	0.021Bq/gl	Sheppard and Sanipelli 2011
SA water	Arctic Canada	0.0015	0.023Bq/gl	Sheppard and Sanipelli 2011
SA water	Lake Ontario	0.0039	0.031Bq/gl	Sheppard and Sanipelli 2011
SA water	Eastern Canada	0.0049	0.039Bq/gl	Sheppard and Sanipelli 2011
SA water	S. Ontario	0.0024	0.044Bq/gl	Sheppard and Sanipelli 2011
SA water	Eastern Canada	0.0016	0.051Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.0013	0.057Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.0021	0.067Bq/gl	Sheppard and Sanipelli 2011
SA water	S. Ontario		0.06Bq/gl	Cornett et al. 1997b
SA water	Western Canada	0.0022	0.082Bq/gl	Sheppard and Sanipelli 2011
SA water	Lake Huron	0.0009	0.093Bq/gl	Sheppard and Sanipelli 2011
SA water	Lake Huron	0.0009	0.093Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.0011	0.095Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.0013	0.11Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.0007	0.11Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.001	0.11Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.001	0.11Bq/gl	Sheppard and Sanipelli 2011
SA water	Western Canada	0.0018	0.12Bq/gl	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.0009	0.14Ba/al	Sheppard and Sanipelli 2011
SA water	Ontario Shield	0.0012	0.15Ba/al	Sheppard and Sanipelli 2011
SA water	Lake Frie	0 0017	0.16Ba/al	Sheppard and Sanipelli 2011
Frnneed	Ontario Shield	0.0017	0.1004/91	Sheppard and Sanipelli 2011
rock		1.3	4.20E-06	
Exposed	Western		••	Sheppard and Sanipelli 2011
rock	Canada	<0.5	7.1E-06	•
Exposed	Western	<0.5	1.20E-05	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	I-129 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
rock	Canada			
Soil	Ontario Shield	<0.5	5.50E-05	Sheppard and Sanipelli 2011
Soil	S. Ontario	<0.5	3.40E-04	Sheppard and Sanipelli 2011
Soil	S. Ontario	16.4	7.0E-04	Sheppard and Sanipelli 2011
Soil	Western			Sheppard and Sanipelli 2011
organic	Canada	11.6	2.2E-05	
Soll	Ontario Shield		2.2E-04	Renaud et al. 2005
Water	Prebomb	0.0003	3.9E-10	Renaud et al. 2005
Water	AB/SK/MB	0.16	1.2E-09	Fabryka-Martin 1991
Water	Shield	0.001 to 0.1	2.E-09	Kotzer et al. 1998
Water	Arctic Canada	0.0015	3.4E-08	Sheppard and Sanipelli 2011
Water	North of 60N		3.5E-08	Rao and Fehn 1999
Water	North America	0.0006	4.E-08	Renaud et al. 2005
Water	North of 60N		5.90E-08	Beasley et al. 1997
Water	Western	0.0044	6.9E-08	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0013	7.4E-08	Sheppard and Sanipelli 2011
Water	Shield	0.7 to 3	8.E-08	Kotzer et al. 1998
Water	Ontario Shield	0.0007	8.0E-08	Sheppard and Sanipelli 2011
Water	Lake Huron	0.0009	8.3E-08	Sheppard and Sanipelli 2011
Water	Lake Huron	0.0009	8.3E-08	Sheppard and Sanipelli 2011
Water	Eastern Canada	0.0016	8.5E-08	Sheppard and Sanipelli 2011
Water	S. Ontario	0.0041	8.7E-08	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0011	1.0E-07	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.001	1.1E-07	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.001	1.1E-07	Sheppard and Sanipelli 2011
Water	S. Ontario	0.0024	1.1E-07	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0009	1.2E-07	Sheppard and Sanipelli 2011
Water	Lake Ontario	0.0039	1.2E-07	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0002	1.2E-07	Renaud et al. 2005
Water	Ontario Shield	0.0013	1.4E-07	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0021	1.4E-07	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0012	1.5E-07	Sheppard and Sanipelli 2011
Water	Western Canada	0.0022	1.8E-07	Sheppard and Sanipelli 2011
Water	Eastern Canada	0.0049	1.9E-07	Sheppard and Sanipelli 2011
Water	Western Canada	0.0018	2.2E-07	Sheppard and Sanipelli 2011
Water	Lake Ontario		2.7E-07	Rao and Fehn 1997
Water	Lake Erie	0.0017	2.8E-07	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	I-129 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
Stable ele	ement data			
Exposed	Western			Shennard and Saninelli 2011
rock	Canada	<0.5		
Exposed	Western			Sheppard and Sanipelli 2011
rock	Canada	<0.5		
Exposed	Ontario Shield			Sheppard and Sanipelli 2011
rock		1.3		
Soil	S.Ontario	<0.5		Sheppard and Sanipelli 2011
Soil	North America	0.99		Rao and Fehn 1999
Soil	Shield	2.4		Sheppard et al. 2009a
Soil	Western	44.0		Sheppard and Sanipelli 2011
Cail	Canada	11.6		Charmond and Carinalli 2011
Soli	S.Ontario	16.4		Sheppard and Sanipelli 2011
Soll	Ontario Shield	<0 F		Sheppard and Sanipelli 2011
Soil	Shield	<0.5		Shennard et al. 1080
organic	Shield	4		Sheppard et al. 1909
Water	North America	0.0002		Rao and Fehn 1999
Water	Ontario Shield	0.0007		Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0009		Sheppard and Sanipelli 2011
Water	Lake Huron	0.0009		Sheppard and Sanipelli 2011
Water	Lake Huron	0.0009		Sheppard and Sanipelli 2011
Water	Ontario Shield	0.001		Sheppard and Sanipelli 2011
Water	Ontario Shield	0.001		Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0011		Sheppard and Sanipelli 2011
Water	Shield	0.0012		Sheppard et al. 2009a
Water	Ontario Shield	0.0012		Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0013		Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0013		Sheppard and Sanipelli 2011
Water	Arctic Canada	0.0015		Sheppard and Sanipelli 2011
Water	Eastern	0.0016		Sheppard and Sanipelli 2011
Water	Lake Frie	0 0017		Sheppard and Sanipelli 2011
Water	Western	0.0018		Sheppard and Sanipelli 2011
Wator	Canada Optorio Shiold	0.0021		Shoppard and Sapipalli 2011
Water	Wostorn	0.0021		Sheppard and Sanipelli 2011
vvaler	Canada	0.0022		
Water	S. Ontario	0.0024		Sheppard and Sanipelli 2011
Water	Shield	0.0038		Sheppard et al. 2009a
Water	Lake Ontario	0.0039		Sheppard and Sanipelli 2011
Water	S. Ontario	0.0041		Sheppard and Sanipelli 2011
Water	Western Canada	0.0044		Sheppard and Sanipelli 2011
Water	Eastern	0.0049		Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	I-129 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
	Canada			
Water	North America	0.0093		Moran et al. 2002
Water	Shield	0.063		Sheppard et al. 2009a
Water	Shield	0.16		Sheppard et al. 1989
Water soil	North America	0.200mg/kg soil		Garrett et al. 2009
		301		
Internatio	onal data			
Sa	Prebomb		6.4E-6Bq/gl	Hou et al. 2009
SA plant	NE USA	0.8	0.045Bq/gl	Rao et al. 2002
SA soil	 Japan	35	0.0047Ba/al	Muramatsu et al. 2008
SA soil	Japan	24	0.012Ba/al	Muramatsu and Ohmomo 1986
SA soil	Japan	7.3	0.018Bg/gl	Matsuzaki et al. 2007
SA soil	Japan	8.9	0.018Bg/gl	Muramatsu et al. 2004
SA soil	North America	0.99	0.019Bq/gl	Rao and Fehn 1999
SA soil	Japan	15	0.026Bq/gl	Suzuki et al. 2007
SA soil	Japan	3	0.054Bq/gl	Muramatsu et al. 2008
SA soil	Russia		0.05Bq/gl	Michel et al. 2005
SA soil	Japan	26	0.086Bq/gl	Muramatsu et al. 2008
SA soil	Europe	2	0.8Bq/gl	Aumann and Gruner 1999
SA various	Prebomb	na	0.0006Bq/gl	Cornett et al. 1997b
SA water	Prebomb		9.6E-6Bq/gl	Kekli et al. 2003
SA water	North of 60N		1.9E-5Bq/gl	Kekli et al. 2003
SA water	California	0.02	6.8E-5Bq/gl	Fehn et al. 1992
SA water	North of 60N		0.00014Bq/gl	Kekli et al. 2003
SA water	Africa	0.0065	0.00042Bq/gl	Snyder and Fehn 2004
SA water	Antarct	0.00056	0.0004Bq/gl	Snyder and Fehn 2004
SA water	AustNZ	0.004	0.00096Bq/gl	Snyder and Fehn 2004
SA water	S. America	0.0014	0.0009Bq/gl	Snyder and Fehn 2004
SA water	C. America	0.0032	0.0015Bq/gl	Snyder and Fehn 2004
SA water	California	0.027	0.0017Bq/gl	Schwehr et al. 2005
SA water	Asia	0.005	0.0034Bq/gl	Snyder and Fehn 2004
SA water	North of 60N	0.0014	0.0048Bq/gl	Snyder and Fehn 2004
SA water	India	0.0009	0.0051Bq/gl	Snyder and Fehn 2004
SA water	North America	0.0093	0.0057Bq/gl	Moran et al. 2002
SA water	Prebomb		0.008Bq/gl	Oktay et al. 2000
SA water	SW_USA	0.0025	0.0096Bq/gl	Moray et al. 1999
SA water	NW_USA	0.0008	0.011Bq/gl	Snyder and Fehn 2004
SA water	Israel	0.0025	0.017Bq/gl	Snyder and Fehn 2004
SA water	SE_USA	0.005	0.019Bq/gl	Oktay et al. 2001
SA water	NE_USA	0.0009	0.055Bq/gl	Moran et al. 1999
SA water	North America	0.0002	0.064Bq/gl	Rao and Fehn 1999
SA water	Japan	0.0066	0.070Bq/gl	Muramatsu and Ohmomo 1986

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	I-129 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
SA water	Europe	0.009	0.10Bq/gl	Szidat et al. 2000
SA water	Europe	0.0024	0.13Bq/gl	Snyder and Fehn 2004
SA water	Europe	0.0002	0.31Bq/gl	Moran et al. 1999
SA water	Europe	0.002	3.0Bq/gl	Szidat et al. 2000
Soil	Prebomb		4.7E-07	Szidat et al. 2000
Soil	North America	0.99	2.2E-05	Rao and Fehn 1999
Soil	Russia		6.E-05	Schmidt et al. 1998
Soil	Japan	3	6.20E-05	Muramatsu et al. 2008
Soil	Russia		1.00E-04	Michel et al. 2005
Soil	Japan	7.3	1.30E-04	Matsuzaki et al. 2007
Soil	Japan	8.9	1.40E-04	Muramatsu et al. 2004
Soil	Japan	35	0.00016	Muramatsu et al. 2008
Soil	Japan	24	1.80E-04	Muramatsu and Ohmomo 1986
Soil	Europe	2	0.002	Aumann and Gruner 1999
Soil	Scandinavia		5.50E-04	Aldahan et al. 2007a
Soil	Japan	26	0.0022	Muramatsu et al. 2008
Water	Russia		1.00E-06	Cochran et al. 2000
Water	SE_USA	0.005	1.10E-07	Oktay et al. 2001
Water	NW_USA	0.0008	1.10E-08	Snyder and Fehn 2004
Water	North of 60N		1.20E-06	Kekli et al. 2003
Water	India	0.0009	1.20E-08	Snyder and Fehn 2004
Water	S. America	0.0014	1.30E-09	Snyder and Fehn 2004
Water	North of 60N		1.70E-07	Kekli et al. 2003
Water	Asia	0.005	1.80E-08	Snyder and Fehn 2004
Water	Antarctica	0.00056	1.90E-09	Snyder and Fehn 2004
Water	Japan		2.00E-07	Aldahan et al. 2007a
Water	North of 60N		2.20E-07	Aldahan et al. 2006
Water	North of 60N		2.20E-08	Aldahan et al. 2007a
Water	ocean		2.50E-08	Oktay et al. 2001
Water	Africa	0.0065	2.80E-09	Snyder and Fehn 2004
Water	SW_USA	0.0025	2.8E-08	Moran et al. 1999
Water	Israel	0.0025	3.00E-08	Snyder and Fehn 2004
Water	Europe	0.0024	3.30E-07	Snyder and Fehn 2004
Water	Russia		3.7E-08	Beasley et al. 1997
Water	Europe	0.001	3.90E-07	Reithmeier et al. 2007
Water	California	0.027	4.70E-08	Schwehr et al. 2005
Water	Japan	0.0066	4.80E-07	Muramatsu and Ohmomo 1986
Water	NE_USA	0.0009	4.8E-08	Moran et al. 1999
Water	C. America	0.0032	5.10E-09	Snyder and Fehn 2004
Water	North of 60N		5.40E-07	Aldahan et al. 2007a
Water	AustNZ	0.004	5.70E-09	Snyder and Fehn 2004
Water	Europe	0.002	5.7E-06	Szidat et al. 2000
Water	North America	0.0093	6.0E-08	Moran et al. 2002
Water	North of 60N	0.0014	6.30E-09	Snyder and Fehn 2004

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	I-129 Activity conc. (Bq/L or Bq/kg dw) or Specific Activity (units as indicated)	Bibliographic source
Water	North of 60N		7.50E-07	Aldahan et al. 2006
Water	Scandinavia		7.70E-07	Buraglio et al. 2001
Water	Europe	0.0002	9.20E-08	Moran et al. 1999
Water	Europe	0.009	9.7E-07	Szidat et al. 2000
Water	North America	0.0002	9.7E-08	Rao and Fehn 1999
Water glacial	North of 60N		4.40E-09	Aldahan et al. 2007a
Water sea	Europe		8.00E-07	Aldahan et al. 2007a
Water sea	Europe		3.00E-06	Aldahan et al. 2007a
Water well	California	0.02	1.40E-09	Fehn et al. 1992

		Cs-137	
Media	Spatial	Activity conc.	Bibliographic source
INICULA	extrapolation	(Bq/L or Bq/kg	
		dw)	
Soil	S. Ontario	0.5	Ontario Power Generation. 2007
Soil	N. Ontario	0.8	VandenBygaart and Protz 1999
Soil	North of 60N	0.83	Barrie et al. 1992
Soil	S. Ontario	0.84	Bruce Power 2008
Soil	S. Ontario	1.4	Ontario Power Generation. 2007
Soil	S. Ontario	1.5	Ontario Power Generation. 2007
Soil	North of 60N	2.7	Barrie et al. 1992
Soil	Shield	3.8	Paliouris et al. 1995
Soil	North of 60N	4.3	Barrie et al. 1992
Soil	S. Ontario	5.8	VandenBygaart and Protz 1995
Soil	AB/SK/MB	5.9	Kiss et al. 1988
Soil	S. Ontario	6	Milton et al. 2001
Soil	S. Ontario	6.3	Bruce Power 2008
Soil	S. Ontario	8	VandenBygaart et al. 1999
Soil	S. Ontario	8.5	Ontario Power Generation. 2007
Soil	S. Ontario	8.6	Ontario Power Generation. 2007
Soil	Atlantic	10	Milton et al. 2001
Soil	Shield	10	Sheppard et al. 2008
Soil	AB/SK/MB	11	Sutherland and DeJong 1990
Soil	BC	11	Waller and Cole 1999
Soil	BC	11	Waller and Cole 1999
Soil	S. Ontario	13	Milton et al. 2001
Soil	Shield	15	Sheppard et al. 2008
Soil	Shield	16	Macdonald and Laverock 1998
Soil	S. Ontario	16	Milton et al. 2001
Soil	S. Ontario	17	Milton et al. 2001
Soil	S. Ontario	17	Milton et al. 2001
Soil	AB/SK/MB	17	Thomas 1995
Soil	AB/SK/MB	18	Maule and Dudas 1989
Soil	Atlantic	20	Waller and Cole 1999
Soil	S. Ontario	25	Milton et al. 2001
Soil	Shield	30	Milton et al. 2001
Soil	Shield	30	Sheppard et al. 2008
Soil	Shield	38	Blagoeva and Zikovsky 1995
Soil	Shield	60	Zach et al. 1989
Soil	S. Ontario	<0.6	Ontario Power Generation. 2007
Soil	Canada	0.15 Chernobyl	Huda et al. 1988
Soil (beach)	S. Ontario	0.4	Ontario Power Generation. 2007
Soil (beach)	S. Ontario	0.4	Ontario Power Generation. 2007
Soil (beach)	S. Ontario	0.5	Ontario Power Generation. 2007
Soil (beach)	S. Ontario	4.5	AECL Chalk River 2008
Soil (beach)	S. Ontario	<0.4	Ontario Power Generation. 2007
Soil oganic	Shield	210	Zach et al. 1989
Soil organic	Shield	240	Paliouris et al. 1995
Soil organic	N. Ontario	290	Ali et al. 2008

Media	Spatial extrapolation	Cs-137 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Water	Lake Ontario	0.00012	Joshi 1987
Water	Lake Huron	0.0002	Rowan and Rasmussen 1994
Water	Lake Erie	0.00077	Rowan and Rasmussen 1994
Water	Lake Ontario	0.00083	Roy et al. 1990
Water	Ottawa River	0.001	AECL Chalk River 2008
Water	Lake Ontario	0.001	Rowan and Rasmussen 1994
Water	Great Lakes	0.0011	Ahier and Tracy 1995
Water	Great Lakes St.Lawrence	0.0011	Joshi 1984
Water	R.	0.0012	Rowan and Rasmussen 1994
Water	Shield	0.0012	Rowan and Rasmussen 1994
Water	Lake Ontario	0.0013	Durham and Joshi 1981
Water	North of 60N St.Lawrence	0.0015	Tracy et al. 1984
Water	R.	0.0017	Roy et al. 1979
Water	Lake Huron	0.0018	Durham and Joshi 1980
Water	Lake Huron	0.0022	Rowan and Rasmussen 1994
Water	Lake Superior	0.0022	Tracy and Prantl 1983
Water	North of 60N	0.0023	Rowan and Rasmussen 1994
Water	Lake Superior	0.0025	Rowan and Rasmussen 1994
Water	Ottawa River	0.0026	Joshi and McCrea 1992
Water	Lake Huron	0.003	Rowan and Rasmussen 1994
Water	Ottawa River	0.003	Roy et al. 1990
Water	Ottawa River	0.0033	Rowan and Rasmussen 1994
Water	North of 60N	0.0042	Baweja et al. 1987
Water	Shield	0.005	AECL Whiteshell 2008
Water	Ottawa River	<0.0032	Cornett et al. 1995
Water	Ottawa River	0.001	Letourneau et al. 1994
Water rain	N. Ontario	0.021	Joshi 1987

		Ph-210	
Media	Spatial	Activity conc.	Bibliographic source
	extrapolation	(Bq/L or Bq/kg dw)	
Soil	Ontario Shield	2.5	Cornett et al. 1984
Soil	Shield	10	Thomas 1997
Soil	Shield	<20	Sheppard et al. 2008
Soil	Shield	<20	Thomas 2000
Soil	Shield	20	Sheard 1986
Soil	Shield	24	McClean Lake Operations 2008
Soil	Shield	28	Macdonald and Laverock 1998
Soil	Shield	30	Brunskill and Wilkinson 1987
Soil	S. Ontario	30	Milton et al. 2001
Soil	S. Ontario	30	Milton et al. 2001
Soil	S. Ontario	30	Tracy and Prantl 1985
Soil	S. Ontario	50	Sheppard and Sanipelli 2011
Soil	Ontario Shield	50	Milton et al. 2001
Soil	Shield	50	Sheard et al. 1988
Soil	Canada	50	Sheppard et al. 2008
Soil	AB/SK/MB	54	Thomas 1995
Soil	Shield	60	Sheppard et al. 2008
Soil	Shield	100	Brunskill and Wilkinson 1987
Soil	BC	109	Mahon and Mathewes 1983
Soil	Shield	120	Sheard 1986
Soil	S. Ontario	140	Sheppard and Sanipelli 2011
Soil	S. Ontario	140	Tracy et al. 1983
Soil	Ontario Shield	200	Milton et al. 2001
Soil	Shield	250	Thomas 1997
	Western		
Soil	Canada	310	Sheppard and Sanipelli 2011
Soil Soil	Ontario Shield	800	Cornett et al. 1984
organic Soil	Shield	250	Thomas 2000
organic Soil	Shield	270	Thomas 2000
organic	N. Ontario	450	Ali et al. 2008
Water	Lake Huron	<0.0002	Durham and Joshi 1980
Water	Lake Huron	0.0005	Joshi 1991
Water	N. Ontario Eastern	0.001	Clulow et al. 1998a
Water	Canada Eastern	0.002	Lupien and Grondin 1984
Water	Canada	0.0024	Lupien and Grondin 1984
Water	Shield Fastern	0.0026	Brunskill and Wilkinson 1987
Water	Canada	0.003	Lupien and Grondin 1984
Water	Ottawa River	0.0034	Joshi et al. 1991
Water	Ottawa River	0.0034	Joshi and McCrea 1992
Water	Ottawa River	0.0036	Lupien and Grondin 1984
Water	Shield	0.0045	Brunskill and Wilkinson 1985
Water	Eastern	0.005	Lupien and Grondin 1984

Media	Spatial extrapolation	Pb-210 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
	Canada		
Water	Shield	<0.01	McClean Lake Operations 2008
Water	BC	<0.019	Mahon 1982
Water	BC	<0.019	Mahon and Mathewes 1983
Water	Shield	<0.019	Swanson 1983
Water	Shield	<0.02	Cameco 2008a
Water	AB/SK/MB	<0.02	Cameco 2007a
Water	AB/SK/MB	<0.02	Cameco 2007a
Water	North of 60N	<0.02	Veska and Eaton 1991
Water	Shield	<0.04	Waite et al. 1988
Water	N. Ontario	0.02	Clulow et al. 1998a
Water	AB/SK/MB	0.02	Key Lake Operations Report 2007
Water	Shield	0.031	Swanson 1985
Water	Shield	0.04	Kalin 1982
Water	North of 60N	0.07	Veska and Eaton 1991
Water	Shield	0.086	Hynes et al. 1987
Water			
rain	AB/SK/MB	0.076	Thomas 1997

Media	Spatial extrapolation	Po-210 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	Shield	14	McClean Lake Operations 2008
Soil	Shield	20	Sheard 1986
Soil	Shield	20	Sheppard et al. 2008
Soil	Shield	30	Thomas 1997
Soil	Shield	31	Thomas 2000
Soil	Canada	38	Sheppard et al. 2008
Soil	AB/SK/MB	40	Thomas 1995
Soil	Shield	60	Sheppard et al. 2008
Soil	Shield	130	Sheard 1986
Soil Soil	Shield	150	Thomas 1997
organic Soil	Shield	150	Thomas 2000
organic Soil	Shield	220	Thomas 2000
organic	Shield	450	Ali et al. 2008
Water	Shield	0.0025	McClean Lake Operations 2008
Water	Shield	0.0041	Brunskill and Wilkinson 1987
Water	Shield	0.0045	Brunskill and Wilkinson 1985
Water	Shield	<0.005	Cameco 2008a
Water	AB/SK/MB	0.005	Cameco 2007a
Water	AB/SK/MB	0.006	Cameco 2007a
Water	BC	0.008	Mahon 1982
Water	AB/SK/MB	0.01	Cameco 2007b
Water	BC	0.012	Mahon and Mathewes 1983
Water Water	Shield	0.049	Hynes et al. 1987
rain	Shield	0.031	Thomas 1997

Media	Spatial extrapolation	Ra-226 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	Ontario Shield	2.5	Cornett et al. 1984
Soil	Ontario Shield	9	Brunskill and Wilkinson 1987
Soil	Shield Eastern	9.7	Zikovsky and Blagoeva 1994a
Soil	Canada	14.3	Zikovsky and Blagoeva 1994a
Soil	N. Ontario	16	James F. MacLaren 1979
Soil	Shield	20	Sheppard et al. 2008
Soil	Ontario Shield	20	Sheppard and Sanipelli 2011
Soil	Shield	25	Sheppard et al. 2008
Soil	Shield Northern	26	McClean Lake Operations 2008
Soil	Shield	28	Thomas 1997
Soil	S. Ontario N. SK and	30	Sheppard and Sanipelli 2011
Soil	NWT Eastern	30	Sheard et al. 1988
Soil	Canada	30	Sheppard et al. 2008
Soil	S. Ontario	30	Tracy and Prantl 1985
Soil	Prairies	31	Martz and DeJong 1990
Soil	North of 60N	31.9	Zikovsky and Blagoeva 1994a
Soil	Prairies	32	Sutherland and DeJong 1990
Soil	Shield	35	Thomas 1997
Soil	N. Ontario	<37	Cloutier et al. 1985
Soil	Canada	37	Myrick et al. 1983
Soil	AB/SK/MB	37	Thomas 1995
Soil	Shield	37	Thomas 2000
Soil	S. Ontario	40	Sheppard and Sanipelli 2011
Soil	Shield	46	Macdonald and Laverock 1998
Soil	Shield	53	Sheard 1986
Soil	BC	77	Mahon and Mathewes 1983
Soil	S. Ontario	96	Tracy et al. 1983
Soil Soil	Shield	170	Sheard 1986
organic Soil	Shield	38	Thomas 2000
organic Soil	Shield	40	Coker and DiLabio 1979
organic	Shield	90	Thomas 2000
SUII	vvesiern	350	Shennard and Saninolli 2011
Water	Ottowo Divor	0.0006	Union and Crondin 1084
vvaler	Cilawa River	0.0000	
Water	Canada	0 00006	Lupien and Grondin 1984
	Eastern	0.00000	
Water	Canada	0.00015	Lupien and Grondin 1984
Mater	Eastern	0.00045	Lunion and Crandin 1001
vvater	Canada	0.00015	Luplen and Grondin 1984

Media	Spatial extrapolation	Ra-226 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Motor	Eastern	0.00025	Lupion and Crandin 1094
Water	Callaua Optorio Shiold	0.00025	Lupien and Grondin 1984 Brunskill and Wilkinson 1985
Water		0.00026	Durber and looki 1000
Water		<0.00037	
Water	Shield	< 0.005	Verke and Esten 1001
Water		<0.005	Mahan and Mathewas 1982
Water	BC		Mahon 1082
Water	DC Lako Huron	<0.0007	
Water		0.0007	Bobba and Joshi 1988, 1989
Water	Ontario Shield	0.001	Brunskill and Wilkinson 1987
Water	Lake Ontario	0.0012	
Water	Lake Ontario	0.0012	Joshi 1984
Water	North of 60N	0.00157	Baweia et al 1987
Water	Lake Ontario	0.00137	Durbam and Joshi 1981
Water	Shield	0.0028	McClean Lake Operations 2008
Water	Ontario Shield	0.0020	Pyle and Clulow 1997
Water	Ottawa River	0.0048	Joshi and McCrea 1992
Water	Ottawa River	0.0048	Joshi et al. 1991
Water	Shield	0 0049	Swanson 1983
Water	AB/SK/MB	0.005	Cameco 2007a
Water	Shield	0.0057	AECL URL 2008
Water	AB/SK/MB	0.006	Cameco 2007a
Water	Shield	0.006	Cameco 2008b
Water	Ontario Shield	0.0073	Clulow et al. 1998b
Water	AB/SK/MB	0.009	Cameco 2007b
Water	Ontario Shield	0.01	MacLaren Plansearch 1987
Water	Ontario Shield	0.012	Clulow et al. 1991
Water	Shield	0.015	Swanson 1985
Water	North of 60N	0.04	Veska and Eaton 1991
Water	Shield	0.043	Kalin 1982
Water	Shield	0.05	Hynes et al. 1987
Water	Ontario Shield	0.1	James F. MacLaren 1979
Water			
rain	Shield	0.0038	Thomas 1997
Water		0.000	0
Well	AB/SK/MB	0.009	Cameco 2007a
well	Shield	0.05	Gascovne and Barber 1002
Water	UTIEN	0.05	Cascoyne and Darber 1992
well	Shield	0.17	Gascoyne 1989

Media	Spatial extrapolation	Ra-228 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	S. Ontario	20	Sheppard and Sanipelli 2011
Soil	S. Ontario	36	Tracy and Prantl 1985
Soil	Shield	<40	Sheppard et al. 2008
Soil	S. Ontario	40	Sheppard and Sanipelli 2011
Soil	Shield	40	Sheppard et al. 2008
Soil	Shield	40	Sheppard et al. 2008
Water	Eastern Canada	0.00008	Lupien and Grondin 1984
Water	Ottawa River	0.00018	Lupien and Grondin 1984
Water	Eastern Canada	0.00025	Lupien and Grondin 1984
Water	Eastern Canada	0.00025	Lupien and Grondin 1984
Water	CRL	0.00044	Roy et al. 1979
Water	Eastern Canada	0.00045	Lupien and Grondin 1984
Water	Lake Ontario	0.00094	Durham and Joshi 1981
Media	Spatial extrapolation	Th-228 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
---------	--------------------------	---	------------------------------
Soil	Shield	<20	Sheppard et al. 2008
Soil	Ontario Shield	23	James F. MacLaren 1979
Soil	Ontario Shield	36	Brunskill and Wilkinson 1987
Soil	Shield	40	Sheppard et al. 2008
Soil	Shield	50	Sheppard et al. 2008
Soil			
organic	Western Canada	20	Sheppard and Sanipelli 2011
Water	Lake Michigan	0.000028	Joshi 1991
Water	Eastern Canada	0.0005	Lupien and Grondin 1984
Water	Eastern Canada	0.0005	Lupien and Grondin 1984
Water	Eastern Canada	0.0007	Lupien and Grondin 1984
Water	Eastern Canada	0.0007	Lupien and Grondin 1984
Water	Lake Ontario	0.001	Durham and Joshi 1981
Water	Ottawa River	0.0013	Joshi and McCrea 1992
Water	Eastern Canada	0.0014	Lupien and Grondin 1984
Water	CRL	0.0014	Roy et al. 1979
Water	Shield	0.0021	Pyle and Clulow 1997
Water	Ontario Shield	0.003	Clulow et al. 1998a
Water	Shield	<0.01	Waite et al. 1988
Water	Shield	<0.011	Swanson 1983

Media	Spatial extrapolation	Th-230 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	Shield	9	McClean Lake Operation 2008
Soil	Ontario Shield	11	Brunskill and Wilkinson 1987
Soil	Shield	20	Sheppard et al. 2008
Soil	Shield	30	Sheppard et al. 2008
Soil	Shield	40	Sheppard et al. 2008
Water	Ontario Shield	0.00017	Brunskill and Wilkinson 1987
Water	Ontario Shield	0.00026	Brunskill and Wilkinson 1985
Water	Ontario Shield	0.0049	Pyle and Clulow 1997
Water	Shield	<0.01	Cameco 2008a
Water	Shield	<0.011	Swanson 1983
Water	Shield	<0.036	Hynes et al. 1987
Water	Ontario Shield	0.01	Clulow et al. 1998a
Water	Shield	0.01	McClean Lake Operation 2008

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	Th-232 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	S. Ontario	0.7	2.7	VandenBygaart and Protz 1995
Soil	S. Ontario	1.6	6.6	VandenBygaart et al. 1999
Soil	Ontario Shield	2.9	12	Sheppard and Sanipelli 2011
Soil	Shield	2.9	12	VandenBygaart and Protz 1999
Soil	AB/SK/MB	4.4	18	Kiss et al. 1988
Soil	Shield	4.9	<20	Sheppard et al. 2008
Soil	Western Canada	4.9	20	Sheppard and Sanipelli 2011
Soil	S. Ontario	5.0	20	Sheppard and Sanipelli 2011
Soil	Ontario Shield	5.4	22	Brunskill and Wilkinson 1987
Soil	AB/SK/MB	5.9	24	Kiss et al. 1988
Soil	S. Ontario	6.3	26	Sheppard and Sanipelli 2011
Soil	AB/SK/MB	6.6	27	Kiss et al. 1988
Soil	AB/SK/MB	6.6	27	Thomas 1995
Soil	AB/SK/MB	6.9	28	DeJong et al. 1994
Soil	AB/SK/MB	7.4	30	Kiss et al. 1988
Soil	AB/SK/MB	7.4	30	Sutherland and DeJong 1990
Soil	Canada	7.9	32	Myrick et al. 1983
Soil	S. Ontario	8.8	36	Tracy and Prantl 1985
Soil	Canada	9.2	37	Garrett 2009
Soil	Shield	9.8	40	Sheppard et al. 2008
Soil	AB/SK/MB	10.3	42	DeJong et al. 1994
Soil	Eastern Canada	11.0	45	Sheppard et al. 2008
Soil	Global			Reimann et al. 2007
Surface material	Shield	19	77	Soonawala, 1979
Water	Eastern Canada	2.0E-05	8.2E-05	Sheppard and Sanipelli 2011
Water	Lake Huron	2.2E-05	9.0E-05	Sheppard and Sanipelli 2011
Water	Ontario Shield	2.7E-05	1.1E-04	Sheppard and Sanipelli 2011
Water	Lake Huron	3.4E-05	1.4E-04	Sheppard and Sanipelli 2011
Water	Western Canada	3.9E-05	1.6E-04	Sheppard and Sanipelli 2011
Water	Eastern Canada	5.4E-05	2.2E-04	Sheppard and Sanipelli 2011
Water	Lake Erie	5.6E-05	2.3E-04	Sheppard and Sanipelli 2011
Water	Shield	6.1E-5	2.5E-4	Brunskill and Wilkinson 1987
Water	Shield	6.4E-5	2.6E-4	Brunskill and Wilkinson 1985
Water	Lake Ontario	6.9E-05	2.8E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	7.1E-05	2.9E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	7.4E-05	3.0E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	8.8E-05	3.6E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	1.1E-04	4.5E-04	Sheppard and Sanipelli 2011
Water	S. Ontario	1.2E-04	4.9E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	1.3E-04	5.3E-04	Sheppard and Sanipelli 2011
Water	Western Canada	1.4E-04	5.7E-04	Sheppard and Sanipelli 2011
Water	S. Ontario	1.5E-04	6.2E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	1.9E-04	7.8E-04	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	Th-232 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Water	Western Canada	2.1E-04	8.6E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	2.2E-04	9.0E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield	2.7E-04	1.1E-03	Sheppard and Sanipelli 2011
Water	Arctic Canada	2.9E-04	1.2E-03	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.000491	0.002	Clulow et al. 1998a
Water	Ontario Shield	0.000540	0.0022	Pyle and Clulow 1997
Water	Shield		<0.011	Swanson 1983

Media	Spatial extrapolation	U-234 Activity conc. (Bq/L or Bq/kg dw) or activity ratio (units given)	Bibliographic source
Cail	Chield	04	Brunskill and Wilkinson
501	Shield	21	1987
Soil	Shield	0.92 act ratio U234/U238	CBCL 1985
			Brunskill and Wilkinson
Soil	Shield	1.05 act ratio U234/U238	1987
			Brunskill and Wilkinson
Water	Shield	0.0036	1987
Water	Shield	0.0076	Kronfeld et al. 2004
Water	AB/SK/MB	0.014	Ivanovich et al. 1991
Water	AB/SK/MB	1.08 act ratio U234/U238	Ivanovich et al. 1991
Water	Shield	1.15 act ratio U234/U238	Kronfeld et al. 2004
			Brunskill and Wilkinson
Water	Shield	1.20 act ratio U234/U238	1987
Water			
well	Shield	3.0	Gascoyne 1989
Water			-
well	Shield	2.6 act ratio U234/U238	Gascoyne 1989

Media	Spatial	Mass conc.	U-235	Bibliographic source
Media	extrapolation	(mg/L or mg/kg dw)	(Ba/L or Ba/ka dw)	
A11	all	ilig/kg uw)	0.72% of Ll pat	Amiro 1992
All	Ontario		0.72% 01 U-Hat	Amiro 1992
Soil	Shield	0.0053	0.42	Sheppard and Sanipelli 2011
Soil	BC		0.5	Waller and Cole 1999
Soil	BC		0.8	Waller and Cole 1999
Soil	S. Ontario	0.012	0.98	Sheppard and Sanipelli 2011
Soil	S. Ontario	0.014	1.1	Sheppard and Sanipelli 2011
Soil	Canada		13	Waller and Cole 1999
Soil	Western	58	460	Shenpard and Sanipelli 2011
organic	Canada	0.0	100	
Water	Eastern Canad	а	1.00E-05	Lupien and Grondin 1984
Water	Ontario Shield		1.70E-05	Sheppard and Sanipelli 2011
Water	Ontario Shield		2.00E-05	Sheppard and Sanipelli 2011
Water	Ontario Shield		2.30E-05	Sheppard and Sanipelli 2011
Water	Ontario Shield		2.80E-05	Sheppard and Sanipelli 2011
Water	Eastern Canad	а	4.00E-05	Lupien and Grondin 1984
Water	Western Canad	la	4.90E-05	Sheppard and Sanipelli 2011
Water	Western Canad	la	5.90E-05	Sheppard and Sanipelli 2011
Water	Eastern Canad	а	6.10E-05	Sheppard and Sanipelli 2011
Water	Ontario Shield		6.20E-05	Sheppard and Sanipelli 2011
Water	Eastern Canad	а	7.00E-05	Lupien and Grondin 1984
Water	Lake Ontario		7.30E-05	Sheppard and Sanipelli 2011
Water	Ontario Shield		7.40E-05	Sheppard and Sanipelli 2011
Water	Ontario Shield		7.70E-05	Sheppard and Sanipelli 2011
Water	Eastern Canad	а	1.00E-04	Lupien and Grondin 1984
Water	Lake Huron		1.10E-04	Sheppard and Sanipelli 2011
Water	Eastern Canad	а	1.20E-04	Lupien and Grondin 1984
Water	Lake Huron		1.40E-04	Sheppard and Sanipelli 2011
Water	Ontario Shield		1.50E-04	Sheppard and Sanipelli 2011
Water	Lake Erie		2.10E-04	Sheppard and Sanipelli 2011
Water	Eastern Canad	а	2.60E-04	Sheppard and Sanipelli 2011
Water	S. Ontario		3.70E-04	Sheppard and Sanipelli 2011
Water	S. Ontario		3.80E-04	Sheppard and Sanipelli 2011
Water	Arctic Canada		4.10E-04	Sheppard and Sanipelli 2011
Water	Western Canad	da	7.20E-04	Sheppard and Sanipelli 2011

8.20E-04

0.66% of Unat atom ratio

Sheppard and Sanipelli 2011

Lupien and Grondin 1984

Water

Water

Ontario Shield

Eastern Canada

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	U-238 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Soil	Shield	0.4	5	Sheppard et al. 2008
Soil	Shield	0.6	7.2	Thomas 1997
Soil	Shield	0.6	7	Thomas 2000
Soil	Ontario Shield	0.73	9.1	Sheppard and Sanipelli 2011
Soil	Shield	1.1	14	McClean Lake Operation 2008
Soil	N. SK and NWT	1.2	15	Sheard et al. 1988
Soil	Shield	1.4	17	Sheard 1986
Soil	Shield	1.6	20	Dunn 1981b
Soil	Ontario Shield	1.6	20	Brunskill and Wilkinson 1987
Soil	AB/SK/MB	1.6	20	Kiss et al. 1988
Soil	S. Ontario	1.7	21	Sheppard and Sanipelli 2011
Soil	S. Ontario	1.8	22	OMEE 1994
Soil	Shield	1.8	22	Sheppard et al. 2008
Soil	S. Ontario	1.9	23	Sheppard and Sanipelli 2011
Soil	AB/SK/MB	1.9	23	DeJong et al. 1994
Soil	Shield	1.9	24	Sheppard and Thibault 1984, Sheppard and Sheppard 1985
Soil	North of 60N	<2	25	DiLabio and Rencz 1980
Soil	Shield	2	25	Dunn 1981a and 1983
Soil	S. Ontario	2	25	Tracy et al. 1983 Van Netten and Morley 1983, also
Soil	BC	2	25	1982
Soil	Shield	2	25	Walker 1979
Soil	AB/SK/MB	2.05	25	Thomas 1995
Soil	AB/SK/MB	2.3	28	DeJong et al. 1994
Soil	AB/SK/MB	2.4	30	Kiss et al. 1988
Soil	Canada	2.4	30	Schumann and Gundersen 1996
Soil	North America	2.5	31	Garrett 2009
Soil	AB/SK/MB	2.5	31	Kiss et al. 1988
Soil	AB/SK/MB	2.6	32	Sutherland and DeJong 1990
Soil	Shield	2.6	32	Sheppard et al. 2008
Soil	AB/SK/MB	2.6	33	Kiss et al. 1988
Soil	Canada	2.9	36	Myrick et al. 1983
Soil	Shield	3.5	42	Thomas 1997
Soil	Shield	4.5	56	CBCL 1985
Soil	Shield	6.7	83	Sheard 1986
Soil	BC	6.96	86	Mahon and Mathewes 1983
Soil organic	Shield	1	12	Coker and DiLabio 1979
Soil organic	Shield	1.1	14	Thomas 2000
Soil organic	Shield	2.5	31	CBCL 1985
Soil organic	Shield	3.5	43	Thomas 2000
Soil organic	Shield	4.9	61	Dunn 1981a
Soil organic	Western Canada	780	9700	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	U-238 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Surficial material	Shield	5.9	73	Soonawala, 1979
Water	Eastern Canada	0.000012	0.00015	Lupien and Grondin 1984
Water	Ottawa River	0.00002	0.00025	Limson Zamora et al. 1998
Water	Ontario Shield	0.000031	0.00038	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.000033	0.00041	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.000040	0.00050	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.00005	0.00060	Sheppard and Sanipelli 2011
Water	Ottawa River	0.000065	0.0008	Lupien and Grondin 1984
Water	North of 60N	0.00006	0.001	Dyck and Car 1987
Water	S. Ontario	0.00007	0.001	Coker and Jonasson 1977
Water	Lake Superior	0.00008	0.001	Ahier and Tracy 1995
Water	Ontario Shield	0.00008	0.001	Cameron 1980
Water	Shield	0.0001	0.001	Cameco 2008a
Water	AB/SK/MB	0.0001	0.001	Cameco 2007a
Water	AB/SK/MB	0.0001	0.001	Cameco 2007a
Water	Shield	0.0001	0.001	Rabbit Lake Operation 2007
Water	Western Canada	0.000089	0.0011	Sheppard and Sanipelli 2011
Water	Western Canada	0.00010	0.0012	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.00010	0.0012	Sheppard and Sanipelli 2011
Water	Eastern Canada	0.00010	0.0012	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.00012	0.0015	Sheppard and Sanipelli 2011
Water	Lake Ontario	0.00012	0.0015	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.00013	0.0016	Sheppard and Sanipelli 2011
Water	North of 60N	0.00016	0.002	Baweja et al. 1987
Water	Ontario Shield	0.00017	0.002	Coker 1975
Water	Lake Huron	0.00020	0.0025	Sheppard and Sanipelli 2011
Water	Eastern Canada	0.00023	0.0028	Lupien and Grondin 1984
Water	Lake Huron	0.00023	0.0029	Sheppard and Sanipelli 2011
Water	Shield	0.00023	0.003	Pyle et al. 2001
Water	Eastern Canada	0.00024	0.003	Lupien and Grondin 1984
Water	Shield	0.00025	0.003	Thomas 1997
Water	Shield	0.00027	0.003	Kronfeld et al. 2004
Water	Ontario Shield	0.00025	0.0031	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0003	0.0031	Brunskill and Wilkinson 1987
Water	Eastern Canada	0.00029	0.0036	Lupien and Grondin 1984
Water	Shield	0.0003	0.004	McClean Lake Operations EIS 2008
Water	Ontario Shield	0.00032	0.004	Coker and Closs 1979
Water	Lake Erie	0.00035	0.0043	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0004	0.0045	Brunskill and Wilkinson 1985
Water	Lake Michigan	0.00038	0.005	Ahier and Tracy 1995
Water	Lake Huron	0.00039	0.005	Ahier and Tracy 1995
Water	Lake Ontario	0.00042	0.005	Ahier and Tracy 1995
Water	Eastern Canada	0.00045	0.0056	Sheppard and Sanipelli 2011

Media	Spatial extrapolation	Mass conc. (mg/L or mg/kg dw)	U-238 Activity conc. (Bq/L or Bq/kg dw)	Bibliographic source
Water	Shield	<0.0005	0.006	CBCL 1985
Water	Lake Ontario	0.0005	0.006	Joshi 1984
Water	North of 60N	0.0005	0.006	Veska and Eaton 1991
Water	Lake Eire	0.00059	0.007	Ahier and Tracy 1995
Water	North of 60N	0.0006	0.007	Veska and Eaton 1991
Water	S. Ontario	0.00063	0.0078	Sheppard and Sanipelli 2011
Water	S. Ontario	0.00065	0.0081	Sheppard and Sanipelli 2011
Water	Arctic Canada	0.00071	0.0088	Sheppard and Sanipelli 2011
Water	AB/SK/MB	0.0007	0.009	Dyck 1978
Water	Lake Ontario	0.0007	0.009	Joshi 1991
Water	Shield	0.0009	0.011	Pyle et al. 2002
Water	Ontario Shield	0.001	0.012	Clulow et al. 1998a
Water	AB/SK/MB	0.001	0.013	Ivanovich et al. 1991
Water	Western Canada	0.0013	0.016	Sheppard and Sanipelli 2011
Water	Ontario Shield	0.0014	0.017	Sheppard and Sanipelli 2011
Water	Eastern Canada	0.0014	0.017	Zikovsky 2006
Water	AB/SK/MB	0.0014	0.017	Cameco 2007b
Water	S. Ontario	0.00146	0.018	Mann and Fyfe 1985
Water	Shield	<0.0019	0.024	Hynes et al. 1987
Water	Shield	0.0022	0.027	Swanson 1985
Water	Shield	0.0032	0.040	AECL URL 2008
Water	Shield	0.0052	0.064	Swanson 1983
Water, well	AB/SK/MB	0.0001	0.001	Cameco 2007a
Water, well	Ontario Shield	0.0014	0.017	Dyck 1980
Water, well	Ontario Shield	0.0024	0.03	Wisser 2003
Water, well	Ontario Shield	0.0033	0.041	Wisser 2003
Water, well	Shield	0.0048	0.06	AECL Whiteshell 2008
Water, well	Shield	0.0065	0.081	Betcher et al. 1988
Water, well	Shield	0.092	1.14	Gascoyne 1989
Water, well	Shield	0.093	1.15	Gascoyne and Barber 1992