Nuclear Fuel Waste Projections in Canada – 2008 Update

NWMO TR-2008-18

December 2008

M. Garamszeghy

Nuclear Waste Management Organization

NUCLEAR WASTE SOCIÉTÉ DE GESTION MANAGEMENT DES DÉCHETS ORGANIZATION NUCLÉAIRES

Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca

Nuclear Fuel Waste Projections in Canada – 2008 Update

NWMO TR-2008-18

December 2008

M. Garamszeghy Nuclear Waste Management Organization

ABSTRACT

Title:Nuclear Fuel Waste Projections in Canada – 2008 UpdateReport No.:NWMO TR-2008-18Author(s):M. GaramszeghyCompany:Nuclear Waste Management OrganizationDate:December 2008

Abstract

Since the Nuclear Waste Management Organization submitted its Final Study in 2005, there have been a number of planned and proposed nuclear refurbishment and new build initiatives which could extend the projected end of nuclear reactor operation in Canada from about 2034 to about 2085 or beyond.

The important technical features of these recent nuclear initiatives include:

- The amount of used nuclear fuel produced in Canada; and
- The type of used nuclear fuel produced in Canada;

This report summarizes the existing inventory of used CANDU nuclear fuel wastes in Canada as of June 30, 2008 and forecasts the potential future arisings from the existing reactor fleet as well as from proposed new-build reactors.

As of June 30, 2008, a total of 2.0 million used CANDU fuel bundles were in storage at the reactor sites. For the existing reactor fleet, the total used fuel produced to end of life of the reactors ranges from 2.8 to 5.5 million used CANDU fuel bundles (56,000 tonnes of heavy metal (t-HM) to 110,000 t-HM), depending upon decisions taken to refurbish current reactors.

Used fuel produced by potential new-build reactors will depend on the type of reactor and number of units deployed. New-build plans are at various stages of development and the decisions about reactor technology and number of units have not yet been made. If all of the potential units where a formal licence application has already been submitted are constructed, the total additional quantity of used fuel from these reactors could be up to 2.3 million CANDU fuel bundles (37,440 t-HM), or 27,000 PWR fuel assemblies (14,550 t-HM), or 27,000 BWR fuel assemblies (3,384 t-HM).

As decisions on new nuclear build and reactor refurbishment are made by the nuclear utilities in Canada, the forecasted inventory of nuclear fuel waste will be incorporated into future updates of this report.

TABLE OF CONTENTS

ABSTRACT	v
1. INTRODUCTION	1
1.1 BACKGROUND	1
1.2 PURPOSE	1
1.3 SCOPE	1
2. INVENTORY FROM EXISTING REACTORS	2
2.1 CURRENT INVENTORIES	2
2.2 FUTURE FORECASTS	3
3. INVENTORY FROM POTENTIAL NEW-BUILD REACTORS	4
3.1 PROJECTS CURRENTLY UNDERGOING ENVIRONMENTAL ASSESSMENT	5
3.1.1 ONTARIO POWER GENERATION	5
3.1.2 BRUCE POWER	5
3.2 ADDITIONAL PROJECTS UNDER CONSIDERATION	6
3.2.1 ALBERTA	6
3.2.2 NEW BRUNSWICK	6
3.2.3 SASKATCHEWAN	6
3.2.4 ONTARIO	6
3.3 SUMMARY OF NUCLEAR FUEL CHARACTERISTICS FROM NEW-BUILD	_
REACTORS	/
REFERENCES	.10
APPENDIX A: SUMMARY OF EXISTING CANADIAN REACTORS	.11
APPENDIX B: USED FUEL WASTE FORECAST DETAILS	.15

Page

LIST OF TABLES

	Page
TABLE 1: Summary of Nuclear Fuel Waste in Canada as of June 30, 2008	2
TABLE 2: Summary of Projected Nuclear Fuel Waste from Existing Reactors	3
TABLE 3: Summary of Proposed New Reactors	4
TABLE 4: Summary of Fuel Types for Proposed New Reactors	8
TABLE 5: Summary of Fuel Forecasts for Proposed New Reactors	9
TABLE A1: Nuclear Power Reactors	11
TABLE A2: Prototype and Demonstration Power Reactors	12
TABLE A3: Research Reactors	13
TABLE B1: Detailed Used Fuel Forecasts	16

1. INTRODUCTION

1.1 BACKGROUND

The Nuclear Waste Management Organization (NWMO) has a legal obligation to manage all of Canada's used nuclear fuel – that which exists now and that which will be produced in the future.

A fundamental tenet of Adaptive Phased Management (APM) is the ongoing incorporation of new learning and knowledge to guide decision making. We must continually monitor new developments and be prepared to adjust our implementation plans as required in light of changes to our operating environment.

APM was proposed in 2005 following an extensive three-year dialogue with Canadian citizens, specialists and Aboriginal people. Since then Canada's energy policy landscape has evolved. New Brunswick, Ontario and even Alberta (heretofore a non-nuclear province) are engaged in discussions about adding to Canada's existing number of nuclear reactors. In Ontario, the debate extends further. Consideration is being given to introducing light water reactors, a technology used elsewhere in the world that produces used nuclear fuel with characteristics different from those which Canadian nuclear operators now manage.

Decisions on new nuclear reactors, recycling or other changes in energy choices will not be made by the NWMO. They will be taken by nuclear operators in conjunction with government and the regulators. It is important that we recognize uncertainties in our operating environment and put in place an active process for ongoing monitoring and review of new developments so that we can adjust our implementation path as may be required.

From a technical perspective APM is flexible. However, from a social perspective it requires the ongoing engagement of Canadians to determine how it is implemented. It will be important that we test the applicability of our existing plans for their social, ethical and technical appropriateness in light of new projections of used fuel types and volumes to be managed. As part of our continuing engagement of Canadians, the NWMO will be discussing with interested individuals and organizations how changing conditions, such as new build, different fuel types or reprocessing should be incorporated into our approach. And, we will continually review, adjust and validate our implementation plans against the changing external environment.

1.2 PURPOSE

The NWMO has made a commitment to publish information on current and future potential inventories of used fuel volumes and types on an annual basis [NWMO, 2008]. This document is the first such annual report.

1.3 SCOPE

This report summarizes the existing inventory of used nuclear fuel wastes in Canada as of June 30, 2008 and forecasts the potential future arisings from the existing reactor fleet as well as from proposed new-build reactors.

2. INVENTORY FROM EXISTING REACTORS

2.1 CURRENT INVENTORIES

Table 1 summarizes the current inventory of nuclear fuel waste in Canada as of June 30, 2008. The inventory is expressed in terms of number of CANDU used fuel bundles and does not include fuel which is currently in the reactors, which is not considered to be "nuclear fuel waste" until it has been discharged from the reactors.

		-			
1	Waste	Wet Storage	Dry Storage	TOTAL	
Location	Owner	(# bundles)	(# bundles)	(# bundles)	Current Status
Bruce A	OPG	370,389	23,040	393,429	 2 units operational, 2 units under refurbishment
Bruce B	OPG	371,911	102,908	474,819	- 4 units operational
Darlington	OPG	331,576	2,304	333,880	- 4 units operational
Douglas Point	AECL	0	22,256	22,256	- permanently shut down
Gentilly 1	AECL	0	3,213	3,213	- permanently shut down
Gentilly 2	HQ	38,381	70,200	108,581	- operational
Pickering A	OPG	205 294	195 746	E01 120	- 2 units operational, 2 units permanently shut down
Pickering B	OPG	393,384	165,740	561,150	- 4 units operational
Point Lepreau	NBPN	40,758	81,000	121,758	 currently undergoing refurbishment
AECL Whiteshell	AECL	0	2,268	2,268	- permanently shut down. See Note (1)
AECL Chalk River	AECL	0	4,886	4,886	(includes fuel from NPD and other CANDU reactors)
	TOTAL	1,548,399	497,821	2,046,220	Total of: - 17 units in operation - 3 units under refurbishment - 5 units permanently shut down

TABLE 1: Summary of Nuclear Fuel Waste in Canada as of June 30, 2008

Notes: data as of June 30, 2008.

AECL = Atomic Energy of Canada Limited

HQ = Hydro-Québec

NBPN = New Brunswick Power Nuclear

OPG = Ontario Power Generation Inc

1) 360 bundles of Whiteshell fuel are standard CANDU bundles. The remaining bundles are various research fuel bundles, similar in size and shape to standard CANDU bundles.

In addition to the totals shown in Table 1, AECL also has some 21,987 items of research reactor fuels, experimental fuels and partial fuel elements in storage at Chalk River.

Further details on the existing reactors can be found in Appendix A.

2.2 FUTURE FORECASTS

Forecasts of future nuclear fuel waste arisings are given in Table 2. Two scenarios are provided in the forecasts:

- a) Low: the reactors are shut down at the end of the projected life of the fuel channels (i.e. nominal 25 effective full power years (equivalent to about 30 calendar years) of operation);
- b) **High:** the reactors are refurbished with a new set of pressure tubes and other major components, then operated for a further 25 effective full power years (30 calendar years) to a total of 60 calendar years.

Note that these scenarios are constructed for NWMO planning purposes only to provide a range of possible fuel arisings and may differ from the official business plans of the reactor operators. Operation of the reactors, including whether or not to refurbish, are subject to future business planning decisions of the individual reactor operators. Forecasts are expressed in terms of number of used CANDU fuel bundles and are rounded to nearest thousand bundles. Details are provided in Appendix B.

Location	Waste Owner	Total June 2008 (# bundles)	Typical Annual Production (# bundles)	Low Scenario (# bundles)	High Scenario (# bundles)
Bruce A	OPG	393,429	22,500 ⁽¹⁾	484,000	1,041,000 ⁽⁴⁾
Bruce B	OPG	474,819	23,500 ⁽¹⁾	628,000	1,333,000
Darlington	OPG	333,880	23,000 ⁽¹⁾	633,000	1,323,000
Douglas Point	AECL	22,256	0 (2)	22,256	22,256
Gentilly 1	AECL	3,213	0 (2)	3,213	3,213
Gentilly 2	HQ	108,581	4,800	119,000	272,000
Pickering A	OPG	501 120	6,800 ⁽³⁾	720.000	4 474 000
Pickering B	OPG	561,130	13,800 ⁽¹⁾	739,000	1,174,000
Point Lepreau	NBPN	121,758	4,800	121,758	285,000 ⁽⁵⁾
AECL Whiteshell	AECL	2,268	0 (2)	2,268	2,268
AECL Chalk River	AECL	4,886	0 (6)	4,886	4,886
	TOTAL ⁽⁷⁾	2,046,220	99,200	2,758,000	5,461,000

TABLE 2: Summary of Projected Nuclear Fuel Waste from Existing Reactors

Notes:

- 1) Based on 4 reactors operating
- 2) Reactor is permanently shut down and not producing any more fuel
- 3) Based on 2 reactors operating
- 4) All units at Bruce A are assumed to be refurbished and life extended (refurbishment currently under way for 2 units)
- 5) Point Lepreau is currently shut down for refurbishment and is expected to re-start in October 2009
- 6) Future forecasts do not include research fuels. AECL Chalk River does not produce any CANDU fuel bundles.
- 7) Totals may not add exactly due to rounding to nearest 1,000 bundles for future forecasts.

3. INVENTORY FROM POTENTIAL NEW-BUILD REACTORS

There are two categories of proposed new reactor projects:

- a) projects which are currently undergoing an environmental assessment; and
- b) projects which are in the preliminary discussion or consideration phase

This report does not assess the probability of any one these projects proceeding. Execution of the projects rests entirely with the proponent. In addition, the technologies for each project have not yet been selected. The NWMO will continue to monitor the situation and will evaluate the implications and options for the different fuel types as part of the review of the Adaptive Phased Management approach.

Proponent	Location	In-service timing	Reactor Type(s)	Status
OPG	Darlington, Ontario	First unit 2018	4 x ACR 1000 or 4 x AP1000 or 3 x EPR (see note 1)	Selected as site for first 2 reactors by Ontario Government EA underway, EIS report expected to be submitted Q2 2009 [OPG, 2007]
Bruce Power	Bruce Nuclear Power Development, Ontario	First unit 2016	4 x ACR 1000 or 3 x AP1000 or 2 x EPR (see note 1)	EIS report submitted September 2008 [Bruce Power, 2008a]
Bruce Power / Energy Alberta	Northern Lights, Alberta	First unit 2017	4 x ACR 1000 or 3 x AP1000 or 2 x EPR or 2 x ESBWR	Site preparation licence application submitted to CNSC March 2008 [Bruce Power Alberta, 2008]
Bruce Power	Nanticoke, Ontario	First unit after 2020	2 x ACR 1000 or 2 x AP1000 or 2 x EPR	Bruce Power announced intent to start EA, Oct 31, 2008.
Province of New Brunswick	Point Lepreau, New Brunswick	(not publicly announced)	ACR 1000	Feasibility study being conducted [MZConsulting, 2008]
Bruce Power Saskatchewan	Saskatchewan (no specific site selected yet)	First unit 2020	ACR 1000 or AP1000 or EPR	Feasibility study conducted by Bruce Power [Bruce Power, 2008b]

TABLE 3: Summary of Proposed New Reactors

Notes:

1) Selection of reactor type for new-build in Ontario to be made by Ontario Government (Infrastructure Ontario) in 2009.

3.1 PROJECTS CURRENTLY UNDERGOING ENVIRONMENTAL ASSESSMENT

3.1.1 ONTARIO POWER GENERATION

OPG is currently undertaking an environmental assessment (EA) for building up to 4 new reactors at its Darlington site, in Clarington just east of Toronto [OPG, 2007]. The Darlington site has been selected by the Government of Ontario to host the first two new-build reactors in the province, with an expected in service date of 2018. The EA is being conducted for the maximum physical capacity of the site to allow for possible future expansion.

Currently three reactor types are being considered:

- a) AECL Advanced CANDU 1000 (ACR 1000), which is a 1085 MW(e) net heavy water moderated, light water cooled pressure tube reactor. Up to 4 ACR 1000 reactors would be built on the site in two twin unit pairs. This would result in a total lifetime production of approximately 770,400 used fuel bundles (12,480 t-HM).
- b) *Westinghouse AP1000*, which is a 1090 MW(e) net pressurized light water reactor. Up to 4 AP1000 reactors would be built on the site, which would result in a total lifetime production of approximately 10,800 PWR fuel assemblies (5,820 t-HM).
- c) **AREVA EPR**, which is a 1600 MW(e) net pressurized light water reactor. Up to 3 EPR reactors would be built on the site, which would result in a total lifetime production of approximately 9,900 PWR fuel assemblies (5,076 t-HM).

All three reactor designs are considered to be "Generation III+", and are designed to operate for 60 years. The Province, through its Infrastructure Ontario program, will be selecting the preferred vendor in early 2009.

As described below in Section 3.3 (with further details in Appendix C), all three reactor types operate with enriched uranium fuel. The ACR 1000 fuel is similar in size and shape to existing CANDU fuel bundles. The AP1000 and EPR fuel assembly is considerably different from the CANDU fuels in terms of size and mass, but is very similar to conventional pressurized light water reactor fuels used in many other countries around the world.

3.1.2 BRUCE POWER

Bruce Power has submitted its Environmental Impact Statement (EIS) for new-build at the Bruce Power site [Bruce Power, 2008a]. According to their schedule, the first reactor could be inservice as early as 2016. Similar to the OPG case, three reactor types are being considered (up to 4 x ACR 1000, 3 x AP1000, or 2 x EPR), with the final choice of reactor type being made by the Province of Ontario. (It is expected that the same reactor vendor would be chosen for both Bruce Power and OPG.)

The 4 ACR 1000 units would result in a total lifetime production of approximately 770,400 used fuel bundles (12,480 t-HM). The 3 AP1000 units would result in a total lifetime production of approximately 8,100 PWR fuel assemblies (4,365 t-HM). The 2 EPR units would result in a total lifetime production of approximately 6,600 PWR fuel assemblies (3,384 t-HM).

3.2 ADDITIONAL PROJECTS UNDER CONSIDERATION

3.2.1 ALBERTA

Bruce Power Alberta submitted a site preparation licence application to the CNSC in March 2008 to construct up to 4 power reactors in the municipal district of Northern Lights, Alberta, with the first unit being in-service as early as 2017 [Bruce Power Alberta, 2008]. A preferred reactor type was not specified in the licence application, however, four reactor types were included:

- a) AECL ACR 1000 up to 4 ACR 1000 reactors would be built on the site in two twin unit pairs. This would result in a total lifetime production of approximately 770,400 used fuel bundles (12,480 t-HM).
- b) Westinghouse AP1000 up to 3 AP1000 reactors would be built on the site, which would result in a total lifetime production of approximately 8,100 PWR fuel assemblies (4,365 t-HM).
- c) **AREVA EPR** up to 2 EPR reactors would be built on the site, which would result in a total lifetime production of approximately 6,600 PWR fuel assemblies (3,384 t-HM).
- d) **GE ESBWR**, which is a 1535 MW(e) net boiling light water reactor. Up to 2 ESBWR reactors would be built on the site, which would result in a total lifetime production of approximately 27,000 BWR fuel assemblies (3,384 t-HM).

3.2.2 NEW BRUNSWICK

The Province of New Brunswick is currently conducting a feasibility study to construct a second reactor at the Point Lepreau site, based on an ACR 1000 reactor type [MZConsulting, 2008]. No in-service date has been publicly announced yet. The ACR 1000 would result in a total lifetime production of approximately 192,600 used fuel bundles (3,120 t-HM).

3.2.3 SASKATCHEWAN

Bruce Power Saskatchewan is currently conducting feasibility studies for constructing one or more power reactors in the Province of Saskatchewan. No specific site has been selected. The earliest potential in-service date is in the 2020 timeframe. The facility would likely be a single unit and three reactor technologies are being considered [Bruce Power, 2008b]:

- a) **AECL ACR 1000** This would result in a total lifetime production of approximately 192,600 used fuel bundles (3,120 t-HM).
- b) *Westinghouse AP1000* This would result in a total lifetime production of approximately 2,700 PWR fuel assemblies (1,455 t-HM).
- c) **AREVA EPR** This would result in a total lifetime production of approximately 3,300 PWR fuel assemblies (1,692 tonnes of uranium).

3.2.4 ONTARIO

Bruce Power announced on October 31, 2008 that they would be starting an environmental assessment to construct 2 reactors near the Nanticoke site in Ontario. The earliest in-service date for the first reactor is 2018. Three reactor types are being considered:

- a) AECL ACR 1000 2 ACR 1000 reactors would be built on the site in a twin unit pair. This would result in a total lifetime production of approximately 385,200 used fuel bundles (6,240 t-HM).
- b) Westinghouse AP1000 2 AP1000 reactors would be built on the site, which would result in a total lifetime production of approximately 5,400 PWR fuel assemblies (2,910 t-HM).
- c) AREVA EPR 2 EPR reactors would be built on the site, which would result in a total lifetime production of approximately 6,600 PWR fuel assemblies (3,384 tonnes of uranium).

3.3 SUMMARY OF NUCLEAR FUEL CHARACTERISTICS FROM NEW-BUILD REACTORS

Table 4 presents a summary of the major characteristics and quantities of nuclear fuels that are used in the proposed new-build reactor types. Further details can be found in Appendix C.

Table 5 summarizes the total quantity of used fuel that might be produced if all of the reactors where a formal licence application has already been submitted are constructed. Note that the totals correspond to the case where all of the new build reactors are of the same type. In reality, different reactor types might be built in the different locations. The total additional quantity of used fuel from these reactors could be up to 2.3 million CANDU fuel bundles (37,440 t-HM), or 27,000 PWR fuel assemblies (14,550 t-HM), or 27,000 BWR fuel assemblies (3,384 t-HM).

Parameter	ACR 1000	AP1000	EPR	ESBWR
Reactor Type	Horizontal pressure tube, heavy water moderated, light water cooled	Pressurized light water reactor	Pressurized light water reactor	Boiling light water reactor
Net Power [MW(e)]	1085	1090	1600	1535
Fuel type	CANFLEX ACR fuel bundle	Conventional 17x17 PWR fuel design	Conventional 17x17 PWR fuel design	Conventional 10x10 BWR fuel design
Fueling method	On power	Refueling shutdown every 12 to 24 months and replace portion of the core	Refueling shutdown every 12 to 24 months and replace portion of the core	Refueling shutdown every 12 to 24 months and replace portion of the core
Fuel enrichment	Up to 2.5% for equilibrium core	2.4-4.5% avg initial core 4.8% avg for reloads	Up to 5% for equilibrium core	1.7-3.2% avg initial core 4.5% avg for reloads
Fuel dimensions	102.49 mm OD x 495.3 mm OL	214 mm square x 4795 mm OL	214 mm square x 4805 mm OL	140 mm square x 4470 mm OL
Fuel assembly U mass [kg initial U]	16.2	538.3	527.5	126.9
Fuel assembly total mass [kg]	21.5	784.7	784.0	~238
Number of fuel assemblies per core	6,240	157	241	1,132
Fuel load per core [kg initial U]	101,088	84,599	127,128	143,651
Annual used fuel production [t-HM/yr per reactor]	52	24	28.2	28.2
Annual used fuel production [number of fuel assemblies/yr per reactor]	3,210	45	55	225
Lifetime used fuel production [t-HM per reactor]	3,120	1,455	1,692	1,692
Lifetime used fuel production [number of fuel assemblies per reactor]	192,600	2,700	3,300	13,500

 TABLE 4: Summary of Fuel Types for Proposed New Reactors

Notes:

Data extracted from reference [Bruce Power, 2008a]. Annual and lifetime production numbers have been rounded.

	Darlington,	Bruce Nuclear Power Development,	Northern Lights,	
Reactor	Ontario	Ontario	Alberta	Potential Total
Expected operating period (start of first unit to end of last unit)	2018 to 2085	2016 to 2085	2017 to 2085	2016 to 2085
ACR 1000				
# of reactor units	4	4	4	12
Quantity of fuel (CANDU bundles)	770,400	770,400	770,400	2,311,200
Tonnes of heavy metals (t-HM)*	12,480	12,480	12,480	37,440
AP 1000				
# of reactor units	4	3	3	10
Quantity of fuel (number of assemblies)	10,800	8,100	8,100	27,000
Tonnes of heavy metals (t-HM)	5,820	4,365	4,365	14,550
EPR				
# of reactor units	3	2	2	7
Quantity of fuel (number of assemblies)	9,900	6,600	6,600	23,100
Tonnes of heavy metals (t-HM)	5,076	3,384	3,384	11,844
ESBWR				
# of reactor units	N/A	N/A	2	2
Quantity of fuel (number of assemblies)			27,000	27,000
Tonnes of heavy metals (t-HM)			3,384	3,384

 TABLE 5: Summary of Fuel Forecasts for Proposed New Reactors

Note:

"tonnes of heavy metals" (t-HM) includes uranium and all of the transuranics isotopes produced in the reactor as part of the nuclear reactions via various neutron activation and decay processes.

REFERENCES

- Bruce Power Alberta. 2008. Application for Approval to Prepare a Site for the Future Construction of a Nuclear Power Generating Facility Municipal District of Northern Lights, Alberta. Bruce Power Alberta submission to the Canadian Nuclear Safety Commission, March 2008. Available at <u>www.brucepower.com</u>
- Bruce Power. 2008a. Bruce New Nuclear Power Plant Project Environmental Assessment Environmental Impact Statement. Bruce Power. Available at <u>www.brucepower.com</u>
- Bruce Power. 2008b. Report on Bruce Power's Feasibility Study. Bruce Power. Available at <u>www.brucepower.com</u>
- MZConsulting. 2008. Viability Study for New Nuclear Facilities in New Brunswick. Report prepared for the Government of New Brunswick by MZConsulting. Available at www.gnb.ca/0085/Documents/Executive%20SummaryMZC.doc
- NWMO. 2008. Implementing Adaptive Phased Management 2008 to 2012. Revised June 2008. Nuclear Waste Management Organization. Available at <u>www.nwmo.ca</u>
- OPG. 2007. Project Description for the Site Preparation, Construction and Operation of the Darlington B Nuclear Generating Station Environmental Assessment. Ontario Power Generation report submitted to the Canadian Nuclear Safety Commission. Available at <u>www.opg.com</u>

APPENDIX A: SUMMARY OF EXISTING CANADIAN REACTORS

Location	Rating (MW(e) net)	Year In- service	Fuel Type*	Current Status		
Bruce Nuclear Power Development, Ontario						
Bruce A – 1	750	1977		Undergoing refurbishment		
Bruce A – 2	750	1977	37 element	Undergoing refurbishment		
Bruce A – 3	750	1978	bundle	Operating		
Bruce A – 4	750	1979		Operating		
Bruce B – 5	795	1984	37 element CANDU	Operating		
Bruce B – 6	822	1985	bundle; 37 element	Operating		
Bruce B – 7	822	1986	"long" bundle; 43 element	Operating		
Bruce B – 8	795	1987	CANFLEX LVRF bundle	Operating		
Darlington, Ontario						
Darlington 1	881	1992	37 element	Operating		
Darlington 2	881	1990	CANDU	Operating		
Darlington 3	881	1993	37 element	Operating		
Darlington 4	881	1993	"long" bundle	Operating		
Gentilly, Quebec						
Gentilly 2	635	1983	37 element CANDU bundle	Operating		
Pickering, Ontario						
Pickering A – 1	515	1971		Operating		
Pickering A – 2	515	1971		Permanently shutdown in 2005		
Pickering A – 3	515	1972		Permanently shutdown in 2005		
Pickering A – 4	515	1973	28 element	Operating		
Pickering B – 5	516	1983	bundle	Operating		
Pickering B – 6	516	1984		Operating		
Pickering B – 7	516	1985		Operating		
Pickering B – 8	516	1986		Operating		
Point Lepreau, New	v Brunswick					
Point Lepreau	635	1983	37 element CANDU bundle	Undergoing refurbishment		

TABLE A1: Nuclear Power Reactors

Note: refer to Appendix C for description of fuel types

Location	Rating (MW(e) net)	Year In- service	Fuel Type	Current Status
Bruce Nuclear Pow	er Development,	, Ontario		
Douglas Point (CANDU PHWR prototype)	206	1968	19 element CANDU bundle	Permanently shut down in 1984; All fuel currently in dry storage on site
Gentilly, Quebec				
Gentilly 1 (CANDU-BLW boiling water reactor prototype)	250	1972	18 element CANDU-BLW bundle	Permanently shut down in 1978; All fuel currently in dry storage on site
Rolphton, Ontario				
NPD (CANDU PHWR prototype)	22	1962	19 element CANDU bundle; various prototype fuel designs (e.g. 7 element bundle)	Permanently shut down in 1987; All fuel currently in dry storage at AECL Chalk River

TABLE A2: Prototy	be and Demonstration	Power Reactors
-------------------	----------------------	-----------------------

TABLE A3: Research Reactors

-	-	-			
Location	Rating (MW(th))	Year In-service	Fuel Type	Comments	
Hamilton, Ontario					
McMaster University	5	1959	(research)	MTR Pool type reactor	
Kingston, Ontario					
Royal Military College	0.02	1985	(research)	(20 kW(th) SLOWPOKE 2)	
Chalk River, Ontario	ט				
NRU	135	1957	(research)	Operating	
NRX	42	1947	(research)	Permanently shut down in 1992	
MAPLE 1	10		-		
MAPLE 2	10		-	never fully commissioned	
ZED-2	250 W(th)	1960	(research)	Operating	
Whiteshell, Manitob	a				
WR-1 (CANDU-OCR organic cooled reactor prototype)	60 MW(th)	1965	36 element CANDU-OCR bundle	Permanently shut down in 1985; All fuel currently in dry storage on site	
Montreal, Quebec					
Ecole polytechnique	0.02	1974	(research)	(20 kW(th) SLOWPOKE 2)	
Halifax, Nova Scotia	a				
Dalhousie University	0.02	1976	(research)	(20 kW(th) SLOWPOKE 2)	
Edmonton, Alberta	Edmonton, Alberta				
University of Alberta	0.02	1977	(research)	(20 kW(th) SLOWPOKE 2)	
Saskatoon, Saskato	chewan				
Saskatchewan Research Council	0.02	1981	(research)	(20 kW(th) SLOWPOKE 2)	

APPENDIX B: USED FUEL WASTE FORECAST DETAILS

Forecasts are based on:

[(June 2008 actuals) + (number of years from June 2008 to end-of-life) * (typical annual production of fuel bundles)] rounded to nearest 1000 bundles

For multi-unit stations, the station total forecast is the sum of the above calculated on a unit-byunit basis.

End-of-life (EOL) dates are determined from the following scenario details:

a) "Low" scenario:

- the reactors are shut down at the end of the projected life of the fuel channels (i.e. nominal 25 effective full power years (equivalent to 30 calendar years) of operation);
- reactors that have been permanently shut down do not restart;
- reactors that have been previously refurbished and are still operating, will operate to the end of their current expected service life;
- reactors which are currently undergoing refurbishment do not restart;

b) High scenario:

- all reactors (except those mentioned below) are refurbished with a new set of
 pressure tubes and other major components, then operated for a further 25 effective
 full power years (30 calendar years) to a total of 60 calendar years.;
- reactors that have been permanently shut down do not restart;
- reactors that have been previously refurbished and are still operating, will operate to the end of their current expected service life;

Note that forecasts are based on conservative NWMO planning assumptions and may differ from the business planning assumptions used by the reactor operators.

TABLE	B1: Detailed	Used Fuel	Forecasts
-------	---------------------	-----------	-----------

			Total to June 2008	Typical Annual Production	Low Scenario (~30 yrs)		High Scenario (~60 yrs)	
Location	Unit	Startup	(# bundles)	(# bundles)	End-of-life	(# bundles)	End-of-life	(# bundles)
Bruce A	1	1977	393,429	22,500	1998	484,000	2037	1,041,000
	2	1977			1998		2037	
	3	1978			2011		2038	
	4	1979			2015		2039	
Bruce B	5	1984	474,819	23,500	2014	628,000	2044	1,333,000
	6	1985			2015		2045	
	7	1986			2016		2046	
	8	1987			2017		2047	
Darlington	1	1992	333,880	23,000	2022	633,000	2052	1,323,000
	2	1990			2020		2050	
	3	1993			2023		2053	
	4	1993			2023		2053	
Douglas Point		1968	22,256	0	1984	22,256	1984	22,256
Gentilly 1		1972	3,213	0	1978	3,213	1978	3,213
Gentilly 2		1983	108,581	4,800	2011	119,000	2043	272,000
Pickering A	1	1971	581,130	6,800	2021	739,000	2021	1,174,000
	2	1971			2005		2005	
	3	1972			2005		2005	
	4	1973			2021		2027	
Pickering B	5	1983		13,800	2013		2043	
	6	1984			2014		2044	
	7	1985			2015		2045	
	8	1986			2016		2046	
Point Lepreau		1983	121,758	4,800	2008	121,758	2043	285,000
AECL Whiteshell		1965	2,268	0	1985	2,268	1985	2,268
AECL Chalk River			4,886	0		4,886		4,886
TOTALS			2,046,220	99,200		2,758,000		5,461,000

Reactor currently under refurbishment

Note: forecasts are rounded to nearest 1,000 bundles

Reactor permanently shut down

Reactor previously refurbished

APPENDIX C: DESCRIPTION OF FUEL TYPES C.1 FUELS FROM EXISTING REACTORS

Construction:

- bundle is composed of 43 elements (fuel pins), arranged in 4 concentric rings with 1 element in the inner most central ring, 7 elements in the second ring, 14 elements in the third ring and 21 elements in the outer ring

- construction includes end plates, spacers and bearing pads to improve flow characteristics and maintain structural integrity

Comments:

- used in Bruce B reactors

C.2 FUELS FROM POTENTIAL NEW-BUILD REACTORS

- Each fuel assembly consists of 264 fuel rods, 24 guide thimbles, and 1 instrumentation tube arranged within a 17 x 17 matrix supporting structure. The instrumentation thimble is located in the center position and provides a channel for insertion of an in-core neutron detector, if the fuel assembly is located in an instrumented core position. The guide thimbles provide channels for insertion of either a rod cluster control assembly, a gray rod cluster assembly, a neutron source assembly, a burnable absorber assembly, or a thimble plug, depending on the position of the particular fuel assembly in the core.

Comments:

- used in Westinghouse AP1000 reactors

- The BWR fuel assembly consists of a fuel bundle and a channel. The fuel bundle contains the fuel rods and the hardware necessary to support and maintain the proper spacing between the fuel rods. The channel is a Zircaloy box which surrounds the fuel bundle to direct the core coolant flow through the bundle and also serves to guide the movable control rods.

- Each fuel bundle consists of a 10x10 array of 78 full length fuel rods, 14 part length rods (which span roughly two-thirds of the active core), two large central water rods and 8 tie rods.

Comments:

- used in GE ESBWR reactors