PHASE 2 INITIAL BOREHOLE DRILLING AND TESTING, IGNACE AREA

WP05 Data Report – Geophysical Well Logging and Interpretation for Upper 100 m of IG_BH04

APM-REP-01332-0289

September 2021

Wood Plc.

NUCLEAR WASTE SOCIÉTÉ DE GESTION MANAGEMENT DES DÉCHETS ORGANIZATION NUCLÉAIRES

Nuclear Waste Management Organization 22 St. Clair Avenue East, 4th Floor

22 St. Clair Avenue East, 4th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca

Phase 2 Initial Borehole Drilling and Testing, Ignace Area

WP05 Data Report – Geophysical Well Logging and Interpretation for Upper 100 m of IG_BH04. APM-REP-01332-0289

Project Number: SCB1912026 Document Number: SCB1912026-REP-016 R1 NWMO Document Number: APM-REP-01332-0289

Prepared for:

Nuclear Waste Management Organization

6th Floor, 22 St. Clair Avenue East, Toronto, Ontario, M4T 2S3

September 2021

Wood Environment & Infrastructure Solutions a Division of Wood Canada Limited 3450 Harvester Road Burlington, Ontario, L7N 3W5 Canada T: (905) 335-2353 www.woodplc.com

Phase 2 Initial Borehole Drilling and Testing, Ignace Area

WP05 Data Report – Geophysical Well Logging and Interpretation for Upper 100 m of IG_BH04. APM-REP-01332-0289

Project Number: SCB1912026 Document Number: SCB1912026-REP-016 R1 NWMO Document Number: APM-REP-01332-0289

	Pamela Patraskovic	Date:		
Prepared by:	Project Manager, DGI	29 September 2021		
Assembled and Reviewed	Kevin Beattie	Date:		
by:	Work Package 05 Lead	29 September 2021		
	Martin Rawlings	Date:		
Reviewed by:	Data Validation Officer	29 September 2021		
	Simon Gautrey	Date:		
Approved by:	Project Manager	29 September 2021		

Document Revision History

Version	Date	Description
RO	2020-04-14	Issued for Review
R1	2021-09-30	Issued for Approval

Phase 2 Initial Borehole Drilling and Testing, Ignace Area

WP05 Data Report – Geophysical Well Logging and Interpretation for Upper 100 m of IG_BH04. APM-REP-01332-0289

Project Number: SCB1912026 Document Number: SCB1912026-REP-016 R1 NWMO Document Number: APM-REP-01332-0289

Prepared for:

Nuclear Waste Management Organization 6th Floor, 22 St. Clair Avenue East, Toronto, Ontario, M4T 2S3

Prepared by:

Wood Environment & Infrastructure Solutions a Division of Wood Canada Limited 3450 Harvester Road Burlington, Ontario, L7N 3W5 Canada T: (905) 335-2353

September 2021

Third-party disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Wood at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Wood excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance by third parties on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Table of Contents

Page

1 2 2
2
2
3
4
4
5
5
6
6
6
6
7
9
12
12
14
15
· · · · · · · · · ·

List of Tables

Table 1: Geophysical Probes Deployed in IG_BH04	4
Table 2: Anchor Points for Depth Matching	7

List of Figures

Figure 1: Ignace Borehole Site Locations	2
Figure 2: Acoustic and optical televiewer composite plot: final processed data	
Figure 3: Acoustic and optical televiewer feature classification scheme	
Figure 4: Feature picks in IG_BH04, Schmidt plot	14
Figure 5: Data export of feature picks, IG_BH04	

List of Appendices

Appendix A: Continuous Downhole Log of Final Data Appendix B: 30 November 2019 Daily Report Appendix C: ABI (ATV) and OBI (OTV) Data QA/QC Record Sheets and the Signed Off Data Acquisition Form

1.0 Introduction

1.1 Project Overview

DGI Geoscience Inc. (DGI) was contracted by Wood to obtain downhole geophysical information for their client, Nuclear Waste Management Organization (NWMO), on borehole IG_BH04. The Initial Borehole Drilling and Testing project at Ignace, Ontario was part of Phase 2 Geoscientific Preliminary Field Investigations of the NWMO's Adaptive Phased Management (APM) Site Selection Phase. Work by DGI was completed in accordance with the Work Package (WP) 05 Test Plan for IG_BH04, submitted by Wood and approved by NWMO (SCB1912026-PLN-013 I04). The geophysical logging is intended to provide high-quality, high-resolution profiles of a number of rock properties. These will ultimately be used to help assess the local thickness of potentially suitable rock units, the geophysical properties of the rock units at depth, and the presence and types of structural features at depth.

As detailed in the workplan (SCB1912026-PLN-013 I04), in the event of significant groundwater flow in the upper 100 metres, DGI would be mobilized in advance of the completion of the borehole to acquire a subset of parameters on the first 100 metres of data. This situation was encountered during drilling in November 2019 and DGI was mobilized to Site.

The scope of work for the survey of the first 100 metres included: acoustic televiewer, optical televiewer, and natural gamma. Downhole probes utilized were quick link (QL) probes, allowing for natural gamma to be acquired simultaneously with the main parameter for improved depth accuracy.

2.0 Survey Details

2.1 Location

IG_BH04 is located near Ignace, Ontario, approximately 250 km northwest of Thunder Bay, ON. Figure 1 illustrates Site location and borehole location.

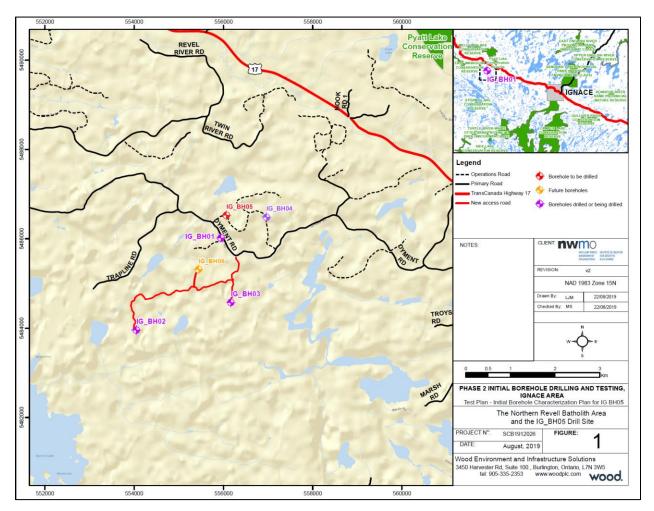


Figure 1: Ignace Borehole Site Locations

2.2 Personnel

Wood WP05 Lead: Simon Gautrey (replaced by Kevin Beattie March 2020)

DGI Project Manager

Alejandro Rojas (replaced by Pamela Patraskovic June 2020)

DGI Field Personnel

Jared Smith (Field Team Leader) Alexi Parinov (Field Technician)

DGI Data Analysts

Roxanne Leblanc (Senior Data Analyst) Steve Reese (Data Analyst)

2.3 Logistics and Operations

DGI completed equipment preparation and bench testing prior to mobilizing the crew and equipment to the project Site. Probes and associated running gear were determined to be in good working condition and passed both DGI's established quality control criteria and the additional quality control criteria outlined in the Test Plan (SCB1912026-PLN-013 I04). The equipment preparation and testing phase was overseen by DGI's Technical Assets Manager, Andrew Torgerson, and DGI's Senior Data Analyst, Roxanne Leblanc.

Equipment and personnel commenced mobilization from Barrie, ON on 25 November 2019. DGI arrived in Ignace on 27 November. Upon meeting with the onsite Wood representative, it was determined that the drilling was still in progress and the borehole was not yet available for survey. DGI was on standby waiting for the conclusion of the drilling until 29 November. Data acquisition commenced on 30 November and took one shift to complete. During the execution of the surveys, DGI operators carried out the survey equipment set up as outlined in the Test Plan (SCB1912026-PLN-013 I04). DGI demobilized from Site on 1 December after confirmation was received from DGI's Senior Data Analyst that data acquired meet the required criteria for data quality.

DGI was on Site from 27 November to 1 December. The work was completed with zero lost time incidences and zero incidents requiring First Aid.

3.0 Acquisition Parameters

Acoustic televiewer, optical televiewer, and natural gamma probes were deployed by DGI on borehole IG_BH04. Acquisition parameters used by DGI were consistent with the requirements outlined in the Test Plan (SCB1912026-PLN-013 I04). Table 1 summarizes the probes used during data acquisition and sections 3.1 through 3.3 detail the theory of operation.

Probe	Manufacturer	Serial Number	Vertical Sample Rate	Horizontal Sample Rate	Logging Direction
Acoustic Televiewer	ALT	182903	2 mm	288 ppt	Up
Optical Televiewer	ALT	170709	2 mm	900 ppt	Up
Natural Gamma	MSI	6568	5 cm	n/a	Up

Table 1: Geophysical Probes Deployed in IG_BH04

3.1 Acoustic Televiewer

The Advanced Logic Technology (ALT) QL40 ABI-2G acoustic televiewer probe, also known as the acoustic borehole imager (ABI), sends out a series of high frequency sonic pulses that are reflected off a rotating mirror. It then receives the echo of those pulses from the borehole wall. By analyzing the amplitude of the echo relative to the original pulse, as well as the time delay between the original pulse and the echo, the ABI generates a series of thin slices of data which it stacks and translates into a pair of continuous images, the Amplitude log and the Travel Time log. Because of varying acoustic impedance between the borehole fluid and the wall rock, the wall rocks and minerals absorb or reflect different amounts of the original sonic pulse that hits them, thus the ABI's Amplitude log shows an image of the varying "hardness/reflectivity" of the borehole wall (along with fluid impacts); these differences are plotted using a colour scale. A fracture/joint, for example, will absorb more of the acoustic signal than the smooth formation. As a result, the fracture/joint will present itself in the acoustic amplitude log as a low amplitude feature. The ABI's Travel Time log is an image plotting the differences in echo delay; for example, an open fracture or void into which the sonic pulse had to travel farther before being reflected will appear in contrast to the nearer borehole wall. Using an assumed constant fluid velocity, the travel time of the pulses can be converted into a distance, meaning the ABI's Travel Time log can be converted into an Acoustic Caliper log, showing the calculated diameter of the borehole.

In order to translate the travel time of each pulse into distance and properly analyze the strength of the pulse echoes, the ABI can only be run in water. Because the ABI does not use an optical camera, the borehole fluid may be murky without adversely impacting the acoustic image quality. Additionally, because of the geometry of the reflections of the pulses, the ABI must be well centered in the borehole. Specialized centralizers are affixed to the ABI to improve centralization of the probe while logging.

Acoustic televiewer data was acquired using ALT's ABI SN 182903.

SCB1912026 | September 2021 | SCB1912026-REP-016 R1 Content property of Wood. Paper copies are uncontrolled. This copy was valid at the time it was printed. Controlled copies can be found on the project server.

3.2 Optical Televiewer

The Advanced Logic Technology (ALT) QL40 OBI-2G optical televiewer probe, also known as the optical borehole imager (OBI), is a sophisticated camera which records images of the borehole wall by focusing down using a 360° wide angle lens and illuminating the borehole wall with an array of LEDs. Thin slices of images are stacked up to form one long continuous 24-bit RGB true colour image of the unwrapped borehole wall. Because the image is a 2-dimensional unwrapped cylinder, planar features (e.g., fractures) intersecting the borehole at an angle appear sinusoidal in the OBI image log.

OBI logs are useful for observing layering, banding, foliation, fractures, voids, and veins in addition to obtaining information on visual characteristics such as oxidation staining, mineral infilling, and alteration. The probe also contains a three-axis magnetometer, an inclinometer, and a three-axis accelerometer that records the azimuth and the tilt of the hole as well as the roll of the probe inside the hole. Because the OBI uses LED lights for illumination, it requires a transparent medium to see through, being either air or clear water. Muddy or murky water can obscure the lens and prevent a clear image so flushing of the borehole at the end of drilling is recommended to improve the clarity of the fluid. The OBI log is run up from the bottom of the borehole to maintain a more constant tension on the wireline and thus a consistent logging speed. A set of specialized centralizers for HQ sized boreholes are affixed to the OBI probe to maintain centralization of the probe while logging.

Optical televiewer data was acquired using ALT's OBI SN 170709.

3.3 Natural Gamma

The Mount Sopris QL40 GAM natural gamma probe provides a measurement, recorded in counts per second (CPS), proportional to the natural radioactivity of the formation. The sample volume for the gamma log is typically material within a 25 to 30 cm radius. In crystalline rock, the gamma log is used principally for lithologic identification based on presence of minerals with natural radioactivity.

The natural gamma probe uses a scintillation sodium iodide crystal to measure the incoming natural gamma radiation from the borehole wall. The gamma-emitting radioisotopes that naturally occur in geologic materials include Potassium 40 and nuclides in the Thorium 232 and Uranium 238 decay series. Potassium 40 occurs within potassium minerals including potassium feldspars. Thorium 232 is typically associated with biotite, sphene, zircon, and other heavy minerals. Uranium 238 is typically associated with granitoid rocks with uranium mineralization.

Natural gamma data was acquired using MSI's GR SN6568.

4.0 Data Processing

4.1 Data Processing Comments

Data was reviewed for quality control and quality assurance by DGI field operators in real time and the survey day. Raw data from the field was uploaded by field technicians at the end of the shift and reviewed by DGI's data analysts for verification that depth discrepancy, data repeatability, and errors were within the tolerance limits specified in the Test Plan (SCB1912026-PLN-013 I04).. After quality control verification was completed, data analysts merged the required survey runs to create a continuous downhole profile, then interpolated and filtered the data and calculated and applied the required depth corrections.

4.1.1 Data Interpolation and Noise Filtering

Data was interpolated to remove null values that were logged using a linear interpolation algorithm. A moving average filter with a filter width of 3 fiducials was subsequently applied to non-RGB logs to reduce noise.

4.1.2 Depth Correction and Verification

Downhole logs were referenced to ground level as described in the Test Plan (SCB1912026-PLN-013 I04). Probes were connected to the wireline and lowered into the casing until the top of the cable head was flush with the top of the casing. Field technicians recorded (1) the initial depth at which the probe was levelled at surface prior to starting the data recording and (2) the final depth at surface after data acquisition was completed. Data analysts calculated the magnitude and direction of the depth shift by subtracting the initial and final values. The run was considered valid if the magnitude of the shift was within the tolerance specified in the Test Plan (SCB1912026-PLN-013 I04). Runs were determined by DGI to be within tolerance limits.

After the linear depth shift was applied to the data set, the cable stretch was calculated for each probe using the methodology outlined in the Test Plan (SCB1912026-PLN-013 I04). The required wireline stretch coefficient was provided by the wireline manufacturer and the probe weight was measured by DGI. The corrected depth was determined from the measured depth using the following equation:

$$D_c = D + \frac{(W \cdot D) + (0.03412 \cdot D^2)}{45,360}$$

where:

 $\begin{array}{l} D_{c} = \textit{Corrected Depth} \ (m) \\ D = \textit{Measured Depth} \ (m) \\ W = \textit{Suspended Weight} \ (kg) = \textit{Probe Weight} \ (kg) + 10.4 \frac{D}{304.8} \end{array}$

The depth values provided for the final data are the corrected depth values in metres.

A natural gamma subsection was added to each probe, providing a common data reference point across the data sets as an additional verification method. This could be used to resolve depth discrepancy issues,

if encountered. The depths of the runs were within the quality control tolerance limits specified by in the Test Plan (SCB1912026-PLN-013 I04), so the natural gamma was not required to resolve depth discrepancy.

Following the application of the cable stretch correction to the acoustic and optical data sets, the two data sets were additionally depth matched to each other. To do this, the parameter with the best zero (i.e., least depth discrepancy) was identified and the second data set was shifted to match. For the data acquired on IG_BH04, the optical televiewer data had the best zero and the acoustic televiewer was matched to the optical televiewer by using features common on both RGB logs. The depth matching points used for this are detailed in Table 2.

Original Depth (m)	Final Depth (m)
16.4975	16.5235
20.6505	20.6725
30.4525	30.4815
32.5945	32.6255
36.5545	36.5925
42.0715	42.1115
42.9365	42.9745
58.2325	58.2685
65.4995	65.5395
72.6805	72.7185
79.8455	79.8985

Table 2: Anchor Points for Depth Matching

4.2 Client Deliverables

Data is provided separately from this report. The data package includes final data, preliminary data, QAQC sheets, raw data, and tool files.

Final Data

IG-BH04_NM_BHOrientation_ATV.xlsx IG-BH04_NM_BHOrientation_OTV.xlsx IG-BH04_WP05_ATVOTV_AZIMUTH-021219_Final.las IG-BH04_WP05_ATVOTV_CALIPER-021219_Final.las IG-BH04_WP05_ATVOTV_GR-021219_Final.las IG-BH04_WP05_ATVOTV_MAGFIELD-021219_Final.las IG-BH04_WP05_ATVOTV_REFLECTIVITY-021219_Final.las IG-BH04_WP05_ATVOTV_TILT-021219_Final.las IG-BH04_WP05_ATVOTV_WINTIME-021219_Final.las

IG-BH04_WP05_ATVOTV-021219_Final.pdf IG-BH04_WP05_ATVOTV-021219_Final.wcl IG-BH04_WP05_FeatureAnalysis_121819.xlsx IG-BH04_WP05_SchmidtPlot_AllFeatures_121819.pdf

Preliminary Data

IG-BH04_WP05_ATVOTV_AZIMUTH-021219_Draft1.las IG-BH04_WP05_ATVOTV_CALIPER-021219_Draft1.las IG-BH04_WP05_ATVOTV_GR-021219_Draft1.las IG-BH04_WP05_ATVOTV_MAGFIELD-021219_Draft1.las IG-BH04_WP05_ATVOTV_REFLECTIVITY-021219_Draft1.las IG-BH04_WP05_ATVOTV_TILT-021219_Draft1.las IG-BH04_WP05_ATVOTV_WINTIME-021219_Draft1.las IG-BH04_WP05_ATVOTV-021219_Draft1.pdf IG-BH04_WP05_ATVOTV-021219_Draft1.WCL IG-BH04_WP05_DepthMatch.txt

QAQC Sheets

IG-BH04_WP05_DGI-RGS_ATV-021219.docx IG-BH04_WP05_DGI-RGS_OTV-021219.docx

Raw Data

IG-BH04_WP05_ATVGR_d1_113019.tfd IG-BH04 WP05 ATVGR d3 113019.tfd IG-BH04 WP05 ATVGR PostEastAzimuth 113019.tfd IG-BH04 WP05 ATVGR PostNorthAzimuth 113019.tfd IG-BH04_WP05_ATVGR_PostRoll_113019.tfd IG-BH04_WP05_ATVGR_PostSouthAzimuth_113019.tfd IG-BH04 WP05 ATVGR PostTiltHorizontal 113019.tfd IG-BH04_WP05_ATVGR_PostTiltVertical_113019.tfd IG-BH04_WP05_ATVGR_PostWestAzimuth_113019.tfd IG-BH04_WP05_ATVGR_PreEastAzimuth_113019.tfd IG-BH04_WP05_ATVGR_PreNorthAzimuth_113019.tfd IG-BH04_WP05_ATVGR_PreRoll_113019.tfd IG-BH04_WP05_ATVGR_PreSouthAzimuth_113019.tfd IG-BH04 WP05 ATVGR PreTiltHorizontal 113019.tfd IG-BH04_WP05_ATVGR_PreTiltVertical_113019.tfd IG-BH04_WP05_ATVGR_PreWestAzimuth_113019.tfd IG-BH04_WP05_ATVGR_u2_113019.tfd IG-BH04_WP05_ATVGR_u4_113019.tfd IG-BH04 WP05 OTVGR d1 113019.tfd IG-BH04_WP05_OTVGR_d3_113019.tfd IG-BH04 WP05 OTVGR PreEastAzimuth 113019.tfd IG-BH04_WP05_OTVGR_PreNorthAzimuth_113019.tfd IG-BH04 WP05 OTVGR PreRoll 113019.tfd

SCB1912026 | September 2021 | SCB1912026-REP-016 R1 Content property of Wood. Paper copies are uncontrolled. This copy was valid at the time it was printed. Controlled copies can be found on the project server.

IG-BH04_WP05_OTVGR_PreSouthAzimuth_113019.tfd IG-BH04_WP05_OTVGR_PreTiltHorizontal_113019.tfd IG-BH04_WP05_OTVGR_PreTiltVertical_113019.tfd IG-BH04_WP05_OTVGR_PreWestAzimuth_113019.tfd IG-BH04_WP05_OTVGR_u2_113019.tfd IG-BH04_WP05_OTVGR_u4_113019.tfd

Tool Files

QL40-ABI2G-182903.sub QL40-GR-6568.sub QL40-OBI2G-170709.sub

4.3 Acoustic and Optical Televiewer – Final Data

The final acoustic and optical televiewer plot provided by DGI is shown in Figure 2. This includes televiewer tilt and azimuth, borehole wall images acquired by the televiewer probes, picked borehole features, fracture frequency, and RQD and synthetic caliper calculated from the acoustic televiewer. Additionally, the gamma acquired with the televiewers is shown. Final data was provided as a continuous log downhole in WellCAD and PDF (Appendix A) format (*IG-BH04_WP05_ATVOTV-021219_Final.pdf and IG-BH04_WP05_ATVOTV-021219_Final.wcl*).

Nuclear Waste Management Organization

Phase 2 Initial Borehole Drilling and Testing – Ignace Area WP05 Data Report - Geophysical Well Logging and Interpretation for Upper 100 m of IG_BH04. APM-REP-01332-0289

Compan Hole ID: Acquisiti Field Per Data Ana Survey I Notes:	on date(s): sonnel: ysis:	Wood NWMO IG-BH04 Nov. 30th, 2019 J. Smith S. Reese, R. Leb 1	lanc	Total Depth: Surveyed Depth: Hole Diameter: Hole Type: Casing Depth: Fluid Level:	100 m 100 m 96 mm DDH 16.5 m 11 m		UTM X (Easting): UTM Y (Northing): UTM Z (Elevation): Legal Location:	556957.25 5486488.05 443.46 Ignace, ON				
	~	fed with the best zero			epth markers th	LEC	file.					
	Orientation	Gamma				Ac	oustic and Optical Telev	lewer Analysis		* View tad	pole orientation from	HoleID_FeatureAnalysis.
lepth	Tilt (ATV) 0 deg 90 Azimuth (ATV)	Natural Gamma	Image-HS	3D Imag	e Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT 90* 180* 270* 0*	Features - True North Orientation	Freq/meter	RQD	Caliper - min from 1 70 mm
:20m	0 deg 360 Tilt (OTV) 0 deg 90 Azimuth (OTV) 0 deg 360	Natural Gamma Repeat	0° 90° 180°	270° 0° -0°	0°	Feature Picks 90° 180° 270° 0°	-0° 0	Reflective Index		0 counts/m 10	Very Poor Poor Fair Good	Caliper - max from 70 mm Caliper - ave from 70 mm
15.29						The second						
- 144	\$											
.08	R					S.						
.41	5					A disput	2	$ \rightarrow $	•			
	5						\bigcap	R.				
1120						V						_ ,

Figure 2: Acoustic and optical televiewer composite plot: final processed data

The following describes the logs present in the plot:

A. Tilt and Azimuth

Both the acoustic and optical televiewer contain a built-in, high precision deviation sensor that measures the borehole tilt and azimuth during data acquisition.

Tilt: inclination of the borehole measured from the vertical axis. Tilt = 0 degrees corresponds to a vertical borehole; Tilt = 90 degrees indicates a horizontal borehole.

Azimuth: the raw probe azimuth is represented with respect to magnetic north, plotted from 0 to 360 degrees. Note that the azimuth is influenced by magnetics.

B. 3D Acoustic and Image Logs

For visual reference, the unwrapped acoustic and optical images are also plotted in WellCAD as 3D logs. These logs are a three-dimensional outside view of the borehole wall.

SCB1912026 | September 2021 | SCB1912026-REP-016 R1 Content property of Wood.

Paper copies are uncontrolled. This copy was valid at the time it was printed. Controlled copies can be found on the project server.

C. Acoustic Televiewer Logs

Amplitude Normalized

Amplitude of the returned pulse with a high pass normalization filter applied. Highs (orange) represent regions where the formation is smooth or more acoustically reflective, while lows (blue) represent regions where the acoustic signal is being preferentially absorbed by the formation. These regions of absorption typically are the result of fractures present in the formation.

Reflective Index

The median of the acoustic amplitude log per vertical sample interval. This value is indicative of relative rock hardness. As with the amplitude log, low values indicated high absorption/low reflectivity while highs indicate a low absorption/high reflectivity.

Centralized TT

The travel time log filtered and corrected for centralization. Highs indicate that there are open fractures/joints present.

Synthetic Caliper Logs

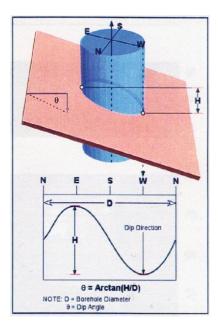
Using the centralized travel time log, the two-way travel time, the probe radius, and an assumed fluid velocity of 1450 m/s, DGI produced a synthetic caliper log by computing a radius value for each recorded travel time data point along the borehole path. Opposite radius values are then added to get the calculated borehole caliper result. This value is displayed as the minimum, maximum, and average value for each vertical interval resulting in three acoustic caliper logs (min, max, and average).

D. Televiewer Rock Quality Designation and Fracture Frequency

DGI generates a Televiewer Rock Quality Designation (RQD) and a Fracture Frequency log for each borehole. This data is displayed in the WellCAD plot as well as exported to Excel format. Both measurements are calculated using the following feature pick classes:

Fracture (High) Fracture (Medium) Fracture (Low)

Freq/m: Fracture frequency per 1 m; the number of occurrences per metre.


Televiewer Rock Quality Designation (RQD): a measure of the drill core quality or intensity of fracturing. This is measured as a percentage of drill core in length of 0.1 metres and is derived from the televiewer feature picks. The RQD was provided at an interval of every 1 m.

RQD	Description
0-25%	Very Poor
25-50%	Poor
50-75%	Fair

WP05 Data Report - Geophysical Well Logging and Interpretation for Upper 100 m of IG_BH04. APM-REP-01332-0289

RQD	Description
75-90%	Good
90-100%	Excellent

4.3.1 Data Processing – Televiewer Feature Classification and Orientation

Planar geological features appear in the unwrapped acoustic and optical televiewer images as sinusoidal waves. From this, the dip and dip direction were determined as follows:

Dip: amplitude of the sinusoid

Dip Direction: radial position of the sine wave minimum

These picked features were provided to the client oriented to true north orientation (this includes correction to true dip as this borehole is inclined). Please note, ABI and OBI imagery are presented oriented to high side. To correct the feature picks to true north orientation, DGI used the tilt and azimuth information collected by the televiewer probes, along with the magnetic declination at Site (-1.43 degrees). The magnetic declination was determined using the Natural Resources Canada website using the following location: Latitude: 49.50° North, Longitude: 92.25° West.

Feature picks were plotted in WellCAD both in projection view ("Feature Picks" Log) and as tadpoles ("Features – True North Orientation" Log).

4.3.2 Data Processing – Televiewer Classification Scheme

The picking criteria established in the Test Plan (SCB1912026-PLN-013 I04) is detailed in Figure 3. Planar geological features were assigned a feature class based on this criteria. Each class is described by a confidence designation (Low, Medium, High).

Only a subset of the features listed in Figure 3 were observed in the data. These include:

Fracture (High) Fracture (Medium) Fracture (Low) Vein (Low)

Nuclear Waste Management Organization

Phase 2 Initial Borehole Drilling and Testing – Ignace Area WP05 Data Report - Geophysical Well Logging and Interpretation for Upper 100 m of IG_BH04. APM-REP-01332-0289

Code:	Structural Description:			
Fol-H	Foliation (High)			
Fol-M	Foliation (Medium)			
Fol-L	Foliation (Low)			
Cleav-H	Cleavage (High)			
Cleav-M	Cleavage (Medium)			
Cleav-L	Cleavage (Low)			
Schist-H	Schistosity (High)			
Schist-M	Schistosity (Medium)			
Schist-L	Schistosity (Low)			
Gneiss-H	Gneissosity (High)			
Gneiss-M	Gneissosity (Medium)			
Gneiss-L	Gneissosity (Low)			
F-H	Fracture (High)			
F-M	Fracture (Medium)			
F-L	Fracture (Low)			
V-H	Vein (High)			
V-M	Vein (Medium)			
V-L	Vein (Low)			
FAP-H	Fold Axial Plane (High)			
FAP-M	Fold Axial Plane (Medium)			
FAP-L	Fold Axial Plane (Low)			
SZBD-H	Shear Zone - Brittle-Ductile (High)			
SZBD-M	Shear Zone - Brittle-Ductile (Medium)			
SZBD-L	Shear Zone - Brittle-Ductile (Low)			
SZD-H	Shear Zone - Ductile (High)			
SZD-M	Shear Zone - Ductile (Medium)			
SZD-L	Shear Zone - Ductile (Low)			
Myl-H	Mylonite (High)			
Myl-M	Mylonite (Medium)			
Myl-L	Mylonite (Low)			
IPS-H	Igneous Primary Structure (High)			
IPS-M	Igneous Primary Structure (Medium)			
IPS-L	Igneous Primary Structure (Low)			
0	Btm of Casing			

Figure 3: Acoustic and optical televiewer feature classification scheme

4.3.3 Data Processing – Data Visualization and Export

Data was provided visualized in a Schmidt plot (IG-BH04_WP05_SchmidtPlot_AllFeatures_121819.pdf) and exported in Excel format (IG-BH04_WP05_FeatureAnalysis_121819.xlsx, IG-BH04_NM_BHOrientation_ATV.xlsx and IG-BH04_NM_BHOrientation_OTV.xlsx).

The Schmidt plot provided as part of the deliverable package is shown in Figure 4. The Schmidt plot generated is a polar projection in the southern hemisphere. Features in the surveyed section of IG_BH04 are included.

The true dip and true north dip direction of each feature was exported to Excel. Figure 5 illustrates the columns included in the Feature Analysis export file. Additionally, the tilt and azimuth channels for both the acoustic and optical televiewer probes were exported with reference to magnetic north orientation (IG-BH04_NM_BHOrientation_ATV.xlsx and IG-BH04_NM_BHOrientation_OTV.xlsx).

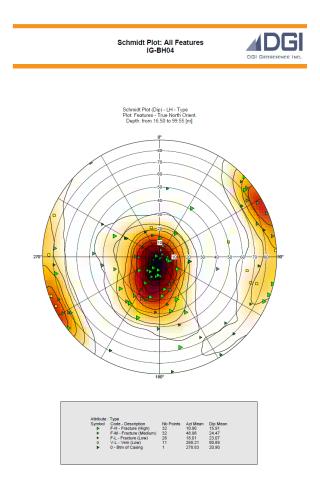


Figure 4: Feature picks in IG_BH04, Schmidt plot

SCB1912026 | September 2021 | SCB1912026-REP-016 R1 Content property of Wood. Paper copies are uncontrolled. This copy was valid at the time it was printed. Controlled copies can be found on the project server.

Hole-ID	Depth [m]	Dip Direction [deg]	Dip [deg]	Aperture [mm]	Туре	Description
IG-BH04	16.5	278.83	20.9	0	0	Btm of Casing
IG-BH04	17.14	80.87	78.89	2.43	F-H	Fracture (High)
IG-BH04	20.25	56.95	17.1	13.26	F-H	Fracture (High)
IG-BH04	23.2	224.83	2.38	0	F-M	Fracture (Medium)
IG-BH04	23.22	106.96	2.63	0	F-H	Fracture (High)
IG-BH04	25.35	10.82	13.93	0	F-M	Fracture (Medium)

Figure 5: Data export of feature picks, IG_BH04

5.0 Quality Control

DGI employed a rigorous QA/QC process to ensure deployed equipment function appropriately. Standard Operating Procedures (SOP) were developed over three key stages: pre-mobilization, on-Site, and post-project. Adherence to SOPs at each stage enabled early detection and resolution when issues were encountered. Prevention is the goal, but identification and contingency plans are equally important when unforeseen challenges occasionally arise.

DGI has established a baseline for probes and parameters at the Geologic Survey of Canada's (GSC) Bells Corners Calibration Facility near Ottawa, Canada. The GSC calibration borehole is well understood with detailed core analysis and published papers in support of results. Repeated acquisition of data at this facility has enabled the development of a baseline for each probe's individual functionality based on expected geophysical signatures. DGI has developed a calibration data set, using the GSC facility, to create field calibration procedures that supplement manufacturer recommendations.

To expand the quality and breadth of calibration procedures, DGI has established an additional calibration borehole. DGI has leveraged proven baselines from the GSC Calibration Facility for each probe and parameter by transferring calibration to our own calibration borehole in Levack, Ontario. The exceptional geology of the Levack borehole provides geophysical signatures with extensive variance; well supported by documented drilling data, core analysis, and lab assay. The Levack calibration borehole enables our equipment to be checked for nominal function, calibration, and performance in an environment approximating a project site. Our full calibration infrastructure enables DGI to conduct an auditable logging process for each project from pre-mobilization through to project completion.

Once equipment was mobilized to Site, QA/QC measures were in place to such that field personnel had confidence in equipment functionality. SOPs were defined based on the specific suite of geophysical probes, Site conditions, and overall goals of the client's project. Each geophysical probe had unique measures in place that may include:

- On-Site calibrations to correct for regional variance and/or borehole size;
- Bench tests conducted in the field to verify probes meet baseline values;
- Calibration checks, recorded before and after each survey, if applicable; and
- Transferred calibration enabling establishment of an on-Site calibration borehole with representative geology for long-term projects, if applicable.

DGI operators followed the QA/QC standards defined in the Test Plan (SCB1912026-PLN-013 I04) for the data acquisition of the parameters. Specifically, as per the Test Plan the OBI and ABI operational testing was completed in the field (i.e., no calibration) and operational bench testing of the natural gamma probe was conducted prior to mobilization (i.e., no calibration). DGI operators verified data repeatability and data consistency by collecting repeat runs for each parameter surveyed. The QA/QC runs were at least 10% of the total depth of each survey. Following data acquisition, DGI's senior data analyst further reviewed the data for quality assurance. The optical televiewer image acquired was cloudy due to the fluid in the borehole. However, it was determined that there was no means to improve this image quality at the time. On future data acquisition attempts, DGI recommends additional flushing of the borehole to improve the optical image as the optical image guality is dependent on water clarity. Other data guality standards outlined in the Test Plan (SCB1912026-PLN-013 I04) were met and both the DGI Project Manager and the on-site Wood representative signed off on the data acquired prior to the field crew demobilizing from Site. Please find the Daily Report issued for 30 November 2019 (the day of data collection) in Appendix B and the ABI (ATV) and OBI (OTV) Data QA/QC Record Sheets in Appendix C. Appendix C also includes the data quality control sign-off sheet as provided by DGI data analysts to the Wood representative after the survey was completed.

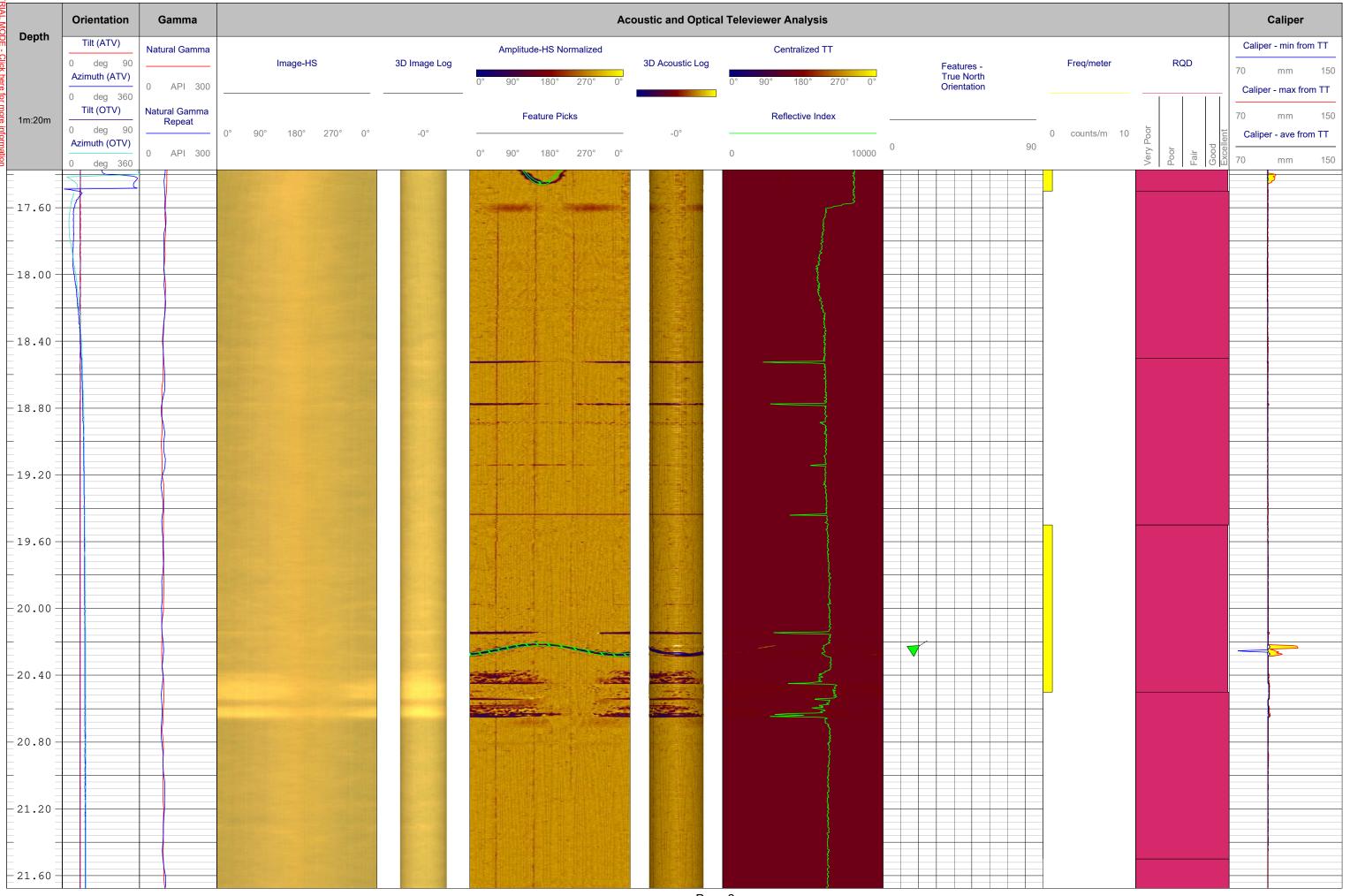
6.0 Conclusions

DGI Geoscience successfully acquired acoustic televiewer, optical televiewer, and natural gamma on IG_BH04 in Ignace, Ontario. The field work occurred between 27 November and 1 December 2019 with no incidents or lost time. The geophysical information derived from the downhole surveys will assist in the characterization of the subsurface at NWMO's area of study. Deliverables have been provided along with this report. Data has been quality assured by DGI's strict quality control procedures. Work was complete in accordance with the standards laid out in the Test Plan (SCB1912026-PLN-013 I04).

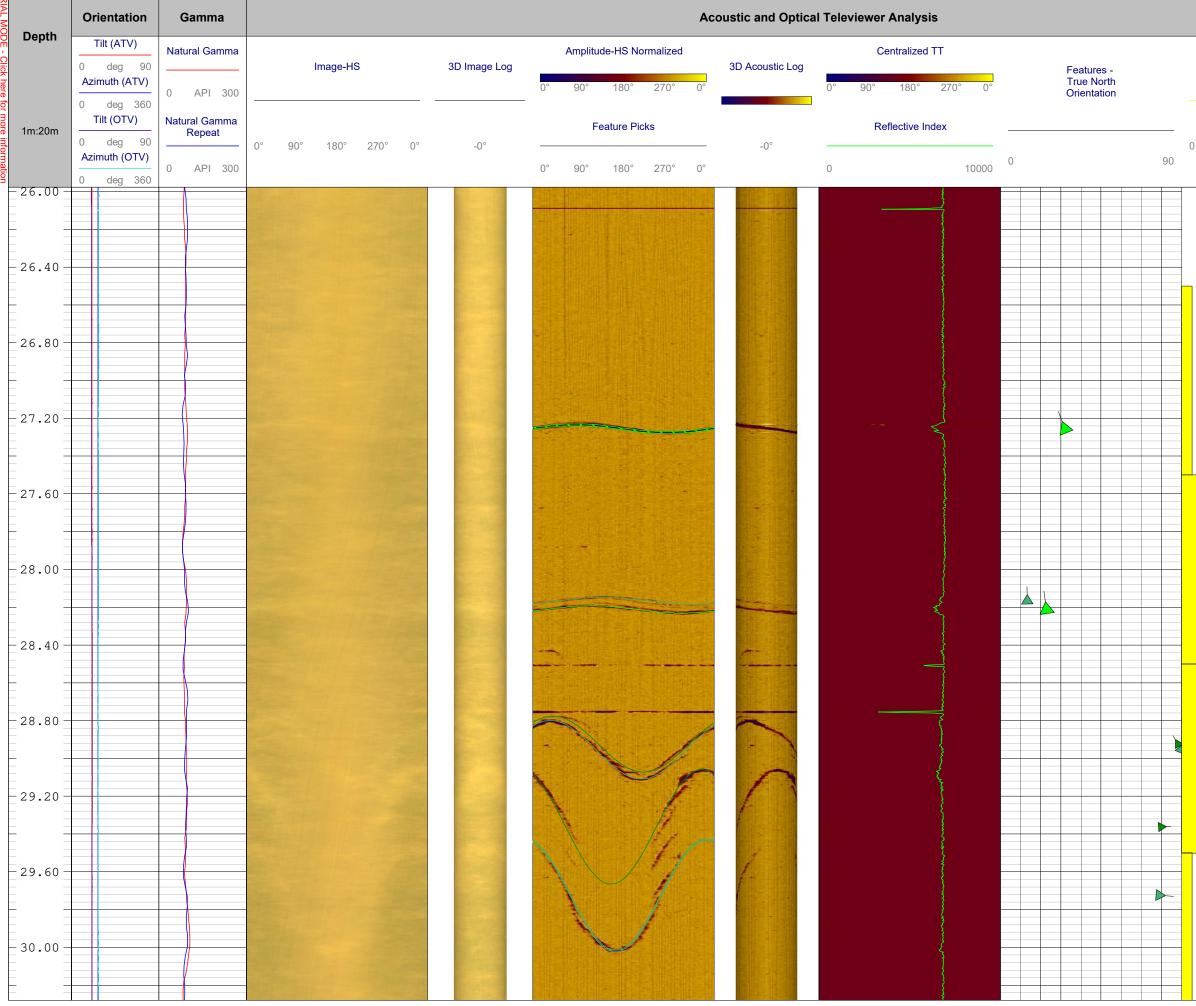
Appendix A

Continuous Downhole Log of Final Data

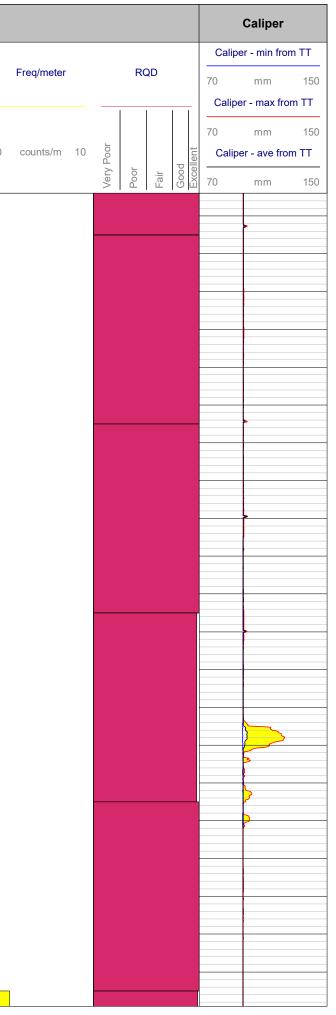
SCB1912026 | September 2021 | SCB1912026-REP-016 R1 Content property of Wood. Paper copies are uncontrolled. This copy was valid at the time it was printed. Controlled copies can be found on the project server.



ACOUSTIC AND OPTICAL TELEVIEWER PLOT


	tion date(s): rsonnel: alysis:	Wood NWMO IG-BH04 Nov. 30th, 2019 J. Smith S. Reese, R. Le 1	eblanc	Total Depth: Surveyed Depth: Hole Diameter: Hole Type: Casing Depth: Fluid Level:	100 m 100 m 96 mm DDH 16.5 m 11 m		UTM X (Easting): UTM Y (Northing UTM Z (Elevatior Legal Location:): 5486488.05		
Notes: Optical tele	eviewer was recorde	ed with the best zer	o. Acoustic televiewer was ma	tched using various dept	th markers tha	at can be found in the attached text f	ile.			
	Fr	acture (High)	Fracture (Medium)	Fracture (Low)	Vein (Low)	LE Btm of Casing	GEND - STRUCTURE TYPE			
	Orientation	Gamma				Ac	coustic and Optical To	eleviewer Analysis		
Depth	Tilt (ATV) 0 deg 90 Azimuth (ATV) 0 deg 360	Natural Gamma 0 API 300	Image-HS	3D Image	e Log 0°	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT ° 90° 180° 270° 0°		Features - True North Orientation
1m:20m	Tilt (OTV)0deg90Azimuth (OTV)	Natural Gamma Repeat 0 API 300	0° 90° 180° 27	0° 0° -0°	0°	Feature Picks 90° 180° 270° 0°	-0° —	Reflective Index	0	90
- 15.20 -	0 deg 360						ŧ			
15.60										
-16.00-							1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			
16.40						Los Alexandre	Antonia			
-16.80								Mart Land		
17.20								and the second		

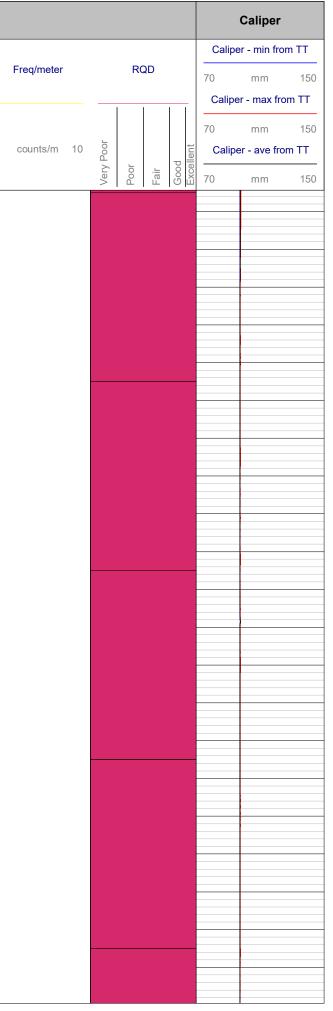
	* Vi	ew ta	dpole	orient	ation	from [I	HoleID]_	FeatureAnaly Caliper	/sis.xlsx
							Cal	iper - min fro	om TT
	Freq/meter			R	JD		70	mm	150
							Cali	iper - max fro	om TT
			<u> </u>				70	mm	150
0	counts/m	10	Very Poor	٥r		Good Excellent	Cal	iper - ave fro	om TT
			Ver	Poor	Fair	Good	70	mm	150
								T	



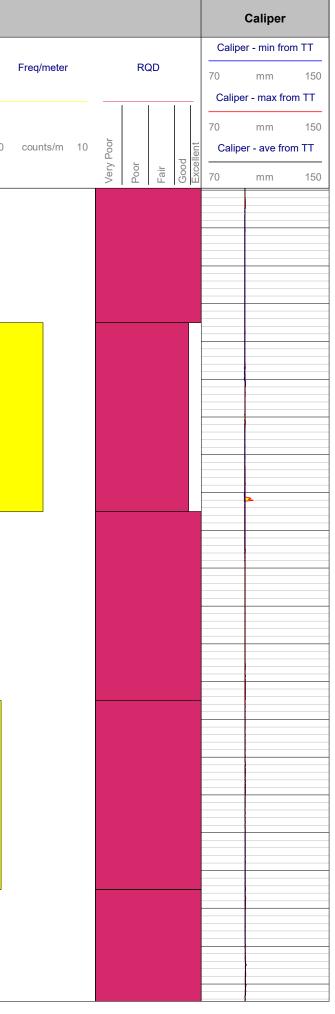
	Orientation	Gamma			Ac	oustic and Optical	Televiewer Analysis			Caliper
Depth	Tilt (ATV)	Natural Gamma			Amplitude-HS Normalized		Centralized TT			Caliper - min from TT
Olick here f	0 deg 90 Azimuth (ATV)	0 API 300	Image-HS	3D Image Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - True North Orientation	Freq/meter RQD	70 mm 150 Caliper - max from TT
1m:20m	0 deg 360 Tilt (OTV) 0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	Feature Picks	-0°	Reflective Index) counts/m 10 5	70 mm 150 Caliper - ave from TT
	Azimuth (OTV)	0 API 300	0 30 100 270 0	-0	0° 90° 180° 270° 0°	-0	0 10000	0 90	Contex W 10 Contex W 10 Contex W 10 Contex M 10 Contex	70 mm 150
22.00-										
22.40-										
22.80										
- 23.20 -										
							NV VV			
23.60										
24.00										
24.40										
24.80										
25.20										
25.60										
						Page	3			


					Caliper	
				Calipe	r - min fror	n TT
Freq/meter	R	QD		70	mm	150
			_	Calipe	r - max fro	m TT
0 counts/m 10	or		lt	70 Calina	mm r - ave froi	150 m TT
	Very Poor Poor	Fair	Good Excellent			
	≫ ĕ	ů.	ΰÛ	70	mm	150
					1	

TRIAL MODE Depth	Orientatio	on	Gamma			Ac	oustic and Optical	Televiewer Analysis		
- 0	Tilt (ATV)	90	Natural Gamma	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	Features - True North	
ck here for more info	Azimuth (AT 0 deg 3 Tilt (OTV) 0 deg	360 90	0 API 300 Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0° Feature Picks	-0°	0° 90° 180° 270° 0° Reflective Index	Orientation	0
rmation	Azimuth (OT		0 API 300			0° 90° 180° 270° 0°		0 10000	0	90
30.40										
30.80										
31.20										
31.60										
32.00										
32.40										
32.80										
33.20							/			
- 33.60 -										
34.00										
- 34.40							Page			

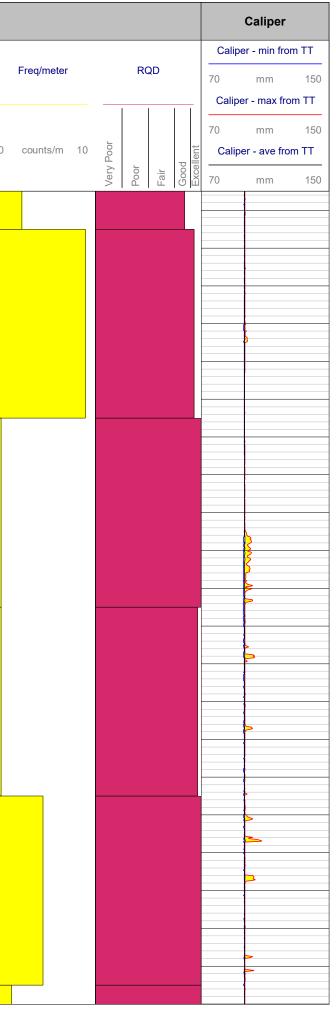


TRIAL																
Depth	Orientation Tilt (ATV)	Gamma						oustic and Optica	al Telev							Caliper
- Clic	0 deg 90	Natural Gamma	Image-HS	3D Image Log	Ampl	itude-HS Normalized		3D Acoustic Log		Centralized TT	Features		Freq/meter	RQD		r - min from TT
k here	Azimuth (ATV)	0 API 300	Ŭ	0 0	0° 90°	180° 270°	0°		0°	90° 180° 270° 0°	Features - True North Orientatior	1				mm 150 - max from TT
for mo	0 deg 360 Tilt (OTV)	Natural Gamma				Feature Picks				Reflective Index					70	mm 150
Te 1m:20m	0 deg 90	Repeat	0° 90° 180° 270° 0°	-0°				-0°					0 counts/m 10	boor		r - ave from TT
rmatior	Azimuth (OTV)	0 API 300			0° 90°	180° 270°	0°		0	10000	0	90		Very P Poor Fair Good Excelle	70	mm 150
														× = = = =		
- 34.80 -																
-35.20-																
			the second second							-						_
-35.60-																
-36.00-																
-36.40-										le la						
-36.80-										A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A C						
50.00																
- 37.20 -																
-37.60-																
- 38.00 -																
- 38.40 -																
					\sum							-				
- 38.80 -																
								Pag	e 6							


	Orientation	Gamma			Ac	oustic and Optical	Televiewer Analysis					Caliper
Depth	Tilt (ATV)	Natural Gamma			Amplitude-HS Normalized		Centralized TT				Calipe	er - min from TT
	0 deg 90 Azimuth (ATV)	0 API 300	Image-HS	3D Image Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - True North Orientation	Freq/meter	RQD	70	mm 150 er - max from TT
1m:20m	0 deg 360 Tilt (OTV) 0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	0°	Feature Picks	-0°	Reflective Index		0 counts/m 10 o	+	70	mm 150 er - ave from TT
	Azimuth (OTV) 0 deg 360	0 API 300			0° 90° 180° 270° 0°		0 10000 0	90	Very Po	Poor Fair Good		mm 150
39.20					\							
39.60 -												
40.00												
40.40-												
40.80												
41.20												
41.60 -												
42.00-												
42.40-					an air an the transmission	1						
42.80-												
						Page	7					

TRIAL MODE		Orientation	Gamma			Ac	oustic and Optical	Televiewer Analysis	
ODE - Clici		Tilt (ATV)0deg90	Natural Gamma	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	Features -
< here for r		Azimuth (ATV) 0 deg 360	0 API 300			0° 90° 180° 270° 0°		0° 90° 180° 270° 0°	Features - True North Orientation
nore 1m:20i		Tilt (OTV) 0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	Feature Picks	-0°	Reflective Index	0
mation		Azimuth (OTV)	0 API 300			0° 90° 180° 270° 0°		0 10000	0 90
-47.6	0								
-48.0	0								
- 48.4	_								Y
-48.8	0								
-49.2	0								
-49.6	0								
50.0	0								
-50.4	0								
-50.8	0								
-51.2	0								
-51.6	0								
L	ı						Page		

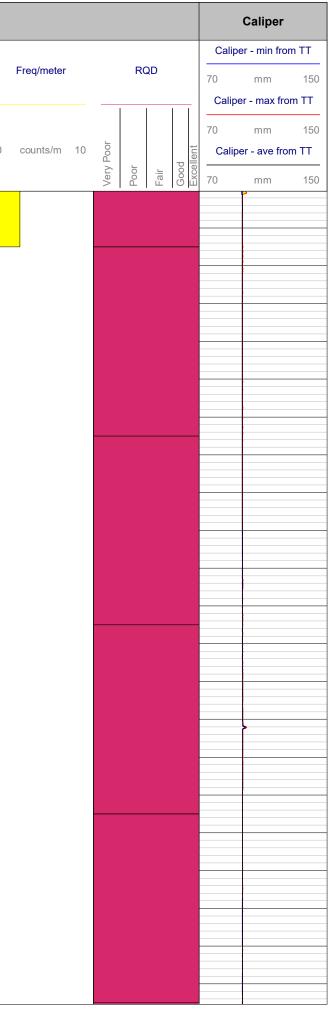
TRIAL MODE Depth	Orientation	Gamma			Ac	oustic and Optical	Televiewer Analysis		
<u>·</u>	Tilt (ATV)	Natural Gamma	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	Features - True North	
ick here for 1m:20m	Azimuth (ATV) 0 deg 360 Tilt (OTV)	0 API 300 Natural Gamma			0° 90° 180° 270° 0° Feature Picks		0° 90° 180° 270° 0° Reflective Index	True North Orientation	
ore 1m:20m	0 deg 90 Azimuth (OTV)	Repeat 0 API 300	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 10000	0	0 90
	0 deg 360								
- 52.00 -									-
52.40									
							Ś		
52.80						Ł			
53.20									
53.60									
54.00									
54.40									
54.80									
55.20									
55.60									
							MM		
56.00						Page	Kreen		

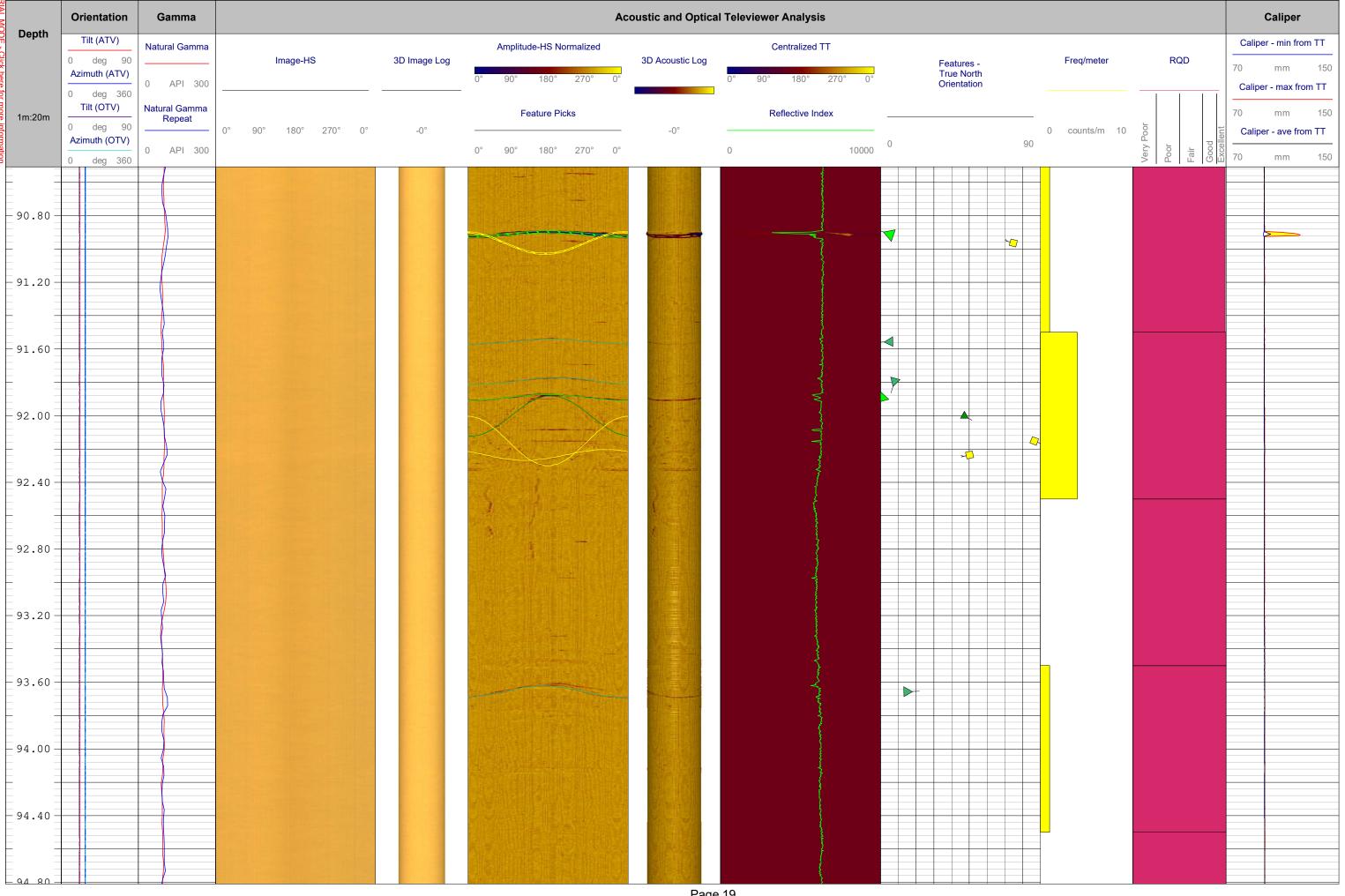

TRIAL MO	Orientation	Gamma			Ac	oustic and Optical	Televiewer Analysis				Caliper
Depth	Tilt (ATV) 0 deg 90 Azimuth (ATV)	Natural Gamma	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	Features - True North Orientation	Freq/meter	RQD	Caliper - min from TT 70 mm 150
ere for more informatio	0 deg 360 Tilt (OTV) 0 deg 90 Azimuth (OTV)	0 API 300 Natural Gamma Repeat 0 API 300	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0° Feature Picks 0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0° Reflective Index 0 10000 0	Orientation		Very Poor Poor Fair Good	Caliper - max from TT 70 mm 150 Caliper - ave from TT 70 mm 150
- 56.40	0 deg 360										
56.80	Image: Section of the sectio										
57.60											
58.00											
- 58.40											
- 58.80 - 59.20											
- 59.60											
60.00						Page	11				

Note // 100/1000 Note // 100/1000<	TRIAL MC	Orientation	Gamma			Ac	oustic and Optical	Televiewer Analysis			Caliper
Number Normal Market Normal Market </th <th>Depth - Click here</th> <th>0 deg 90 Azimuth (ATV)</th> <th></th> <th>Image-HS</th> <th>3D Image Log</th> <th></th> <th>3D Acoustic Log</th> <th></th> <th>Features - True North Orientation</th> <th>Freq/meter RQD</th> <th> 70 mm 150</th>	Depth - Click here	0 deg 90 Azimuth (ATV)		Image-HS	3D Image Log		3D Acoustic Log		Features - True North Orientation	Freq/meter RQD	 70 mm 150
	information	0 deg 360 Tilt (OTV) 0 deg 90 Azimuth (OTV)	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°		-0°			oor air	70 mm 150
	61.20										
	61.60										
	62.00										
	62.40										
	62.80										
	63.20										
	63.60										
	64.00										
	64.40										

	Orientation	Gamma			Ac	oustic and Optica	I Televiewer Analysis							Caliper
Depth	Tilt (ATV)	Natural Gamma			Amplitude-HS Normalized		Centralized TT						Calipe	er - min from TT
2	0 deg 90 Azimuth (ATV)	0 API 300	Image-HS	3D Image Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0	0	Features - True North Orientation		Freq/meter	RQD	70 Calipe	mm 150 er - max from TT
1m:20m	0 deg 360 Tilt (OTV) 0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	Feature Picks	-0°	Reflective Index				0 counts/m 10	5	70	mm 150
	Azimuth (OTV)	0 API 300	0 90 100 270 0	-0	0° 90° 180° 270° 0°	-0	0 1000	0		90	1	Poor Fair Good	-	er - ave from TT mm 150
64.80														
65.20														
65.60-														
66.00														
66.40														
66.80														
67.20														
67.60														
68.00														
68.40-														
68.80														
						Page								

	Orientation	Gamma		Acoustic and Optical Televiewer Analysis											
Depth	Tilt (ATV)	Natural Gamma			Amplitude-HS Normalized		Centralized TT				Caliper - min from TT				
	0 deg 90 Azimuth (ATV)	0 API 300	Image-HS	3D Image Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - True North Orientation	Freq/meter	RQD	70 mm 150 Caliper - max from TT				
1m:20m	0 deg 360 Tilt (OTV) 0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	Feature Picks	-0°	Reflective Index		0 counts/m 10	or	70 mm 150 Caliper - ave from TT				
	Azimuth (OTV)	0 API 300	0 90 100 270 0	-0	0° 90° 180° 270° 0°		0 10000	0	90	Very Po Poor Fair Good	70 mm 150				
69.20															
69.60															
70.00															
70.40															
70.80															
71.20															
71.60															
72.00															
-72.40-															
-72.80-															
73.20 -															


TRIAL MODE		Orientation		Gamma			Acc	oustic and Optica	I Televiewer Analysis		
0	epth	Tilt (ATV)		atural Gamma	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT		
lick here for		Azimuth (ATV)	- 0	API 300			0° 90° 180° 270° 0°	SB Acoustic Log	0° 90° 180° 270° 0°	Features - True North Orientation	
more 1m	n:20m	Tilt (OTV)	_ Na	atural Gamma Repeat			Feature Picks		Reflective Index		
information		0 deg 90 Azimuth (OTV)	0	API 300	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 10000	0	0 90
D	-	0 deg 360)						<u>}</u>		
- 73	3.60 -								\$ }		
- 74	4.00-										
- 74	4.40 -										
									}		
- 74	1.80-								ر بر	7	
						-30-					
- 75	5.20-										
- 75	5.60 -										
								2			
- 76	5.00-							×.			
- 76	5.40-										
- 76	5.80-							ł			
- 75	7.20-										
	-										
7-	1 60							T	A second s		
								Page	16		



TRIAL MO	Orientation	Gamma			Ac	oustic and Optical	Televiewer Analysis				Ca	aliper
Depth	Tilt (ATV)	Natural Gamma			Amplitude-HS Normalized		Centralized TT				Caliper -	min from TT
Click	0 deg 90		Image-HS	3D Image Log		3D Acoustic Log		Features -	Freq/meter	RQD	70 r	mm 150
here f	Azimuth (ATV)	0 API 300			0° 90° 180° 270° 0°		0° 90° 180° 270° 0°	Features - True North Orientation				max from TT
	0 deg 360 Tilt (OTV)	Natural Gamma			Feature Picks		Reflective Index				70 r	mm 150
1m:20m	0 deg 90	Repeat	0° 90° 180° 270° 0°	-0°		-0°			0 counts/m 10	oor		- ave from TT
rmatic	Azimuth (OTV)	0 API 300			0° 90° 180° 270° 0°		0 10000 0	90		Very P Poor Fair Good		mm 150
<u> </u>	0 deg 360					-1	}			> ʊ ʊ O μ		
						1						
				See.			<pre>}</pre>					
78.00			Care and	Les bills								
						1 E	<pre>{</pre>					
- 78.40 -												
					$\mathbf{\nabla}$							
									_			
78.80				A Disease								
				Rectarda -								
79.20												
				Care and					_			
-79.60-												
			-	- Strend Strends	and the second second	man a sector						
											<u>}</u>	
80.00-												
00 40												
- 80.40												
80.80												
			The second second									
81.20									_			
			ALL ROOM OF THE									
- 81.60-												
		AI.				Page	16					

TRIAL MO	Orientation	Gamma			Ac	oustic and Optica	I Televiewer Analysis				Caliper
Depth	Tilt (ATV)	Natural Gamma			Amplitude-HS Normalized		Centralized TT				Caliper - min from TT
Click here	0 deg 90 Azimuth (ATV)	0 API 300	Image-HS	3D Image Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - True North Orientation	Freq/meter	RQD	70 mm 150 Caliper - max from TT
for more 1m:20m	0 deg 360 Tilt (OTV) 0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	Feature Picks		Reflective Index		0 counts/m 10	or	70 mm 150
formation	Azimuth (OTV)	0 API 300	0° 90° 180° 270° 0°	-0	0° 90° 180° 270° 0°	-0°	0 10000	0 90		Very Po Poor Fair Good	Caliper - ave from TT 70 mm 150
82.00				and the							
82.40											
- 82.80 -											
83.20											
								•			
83.60-											
84.00											
						5					
84.40						the -	مر معد الم	Y			
						3					
- 84.80 -						R					
			THE STAN			3	2				<u>></u>
- 85.20 -						-7					
						1					
85.60						1					
86.00											
						1					
						Page	17				

TRIAL MODE Depth	Orientation	Gamma			Ac	coustic and Optica	I Televiewer Analysis	
- 0	Tilt (ATV) 0 deg 90	Natural Gamma	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	Features -
ck here for	Azimuth (ATV) 0 deg 360	0 API 300			0° 90° 180° 270° 0°		0° 90° 180° 270° 0°	Features - True North Orientation
more 1m:20m	Tilt (OTV) 0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	Feature Picks	-0°	Reflective Index	0
ormation	Azimuth (OTV)	0 API 300			0° 90° 180° 270° 0°		0 10000	0 90
86.40								
86.80							<u></u>	
87.20								
87.60-								
88.00								
88.40								
88.80								
89.20								
89.60								
90.00								
90.40								
ι						Page	10	

Page 19

	Orientation	Gamma			Ac	oustic and Optica	I Televiewer Analysis				Caliper
Depth	Tilt (ATV)	Natural Gamma			Amplitude-HS Normalized		Centralized TT				Caliper - min from TT
	0 deg 90 Azimuth (ATV)	0 API 300	Image-HS	3D Image Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - True North Orientation	Freq/meter	RQD	70 mm 150 Caliper - max from TT
1m:20m	0 deg 90	Natural Gamma Repeat	0° 90° 180° 270° 0°	-0°	Feature Picks	-0°	Reflective Index		0 counts/m 10	at a start	70 mm 150 Caliper - ave from TT
	Azimuth (OTV)	0 API 300		_	0° 90° 180° 270° 0°		0 10000	0 90			70 mm 150
95.20											
95.60-											
96.00-					State of the state		Ş				
96.40-											
96.80							- Arthr				
97.20						C. C.					
97.20											
97.60-					C The second						
					XXX	~					
98.00						X					
					$\Omega \rightarrow$						
98.40-						R					
					- Shall						
98.80-											
						Page	and the second sec				

	Orientation	Gamma			Acc	oustic and Optical	Televiewer Analysis				Caliper
Depth	Tilt (ATV)	Natural Gamma	langer 110		Amplitude-HS Normalized		Centralized TT		En electron	DOD	Caliper - min from TT
	0 deg 90 Azimuth (ATV)	0 API 300	Image-HS 3	3D Image Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270°	Features - True North O° Orientation	Freq/meter	RQD	70 mm 150 Caliper - max from TT
1m:20m	0 deg 360 <u>Tilt (OTV)</u> 0 deg 90	Natural Gamma Repeat			Feature Picks		Reflective Index				70 mm 150
	0 deg 90 <u>Azimuth (OTV)</u> 0 deg 360	0) - 0 API 300	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 10	0000	0 counts/m 10 90	Poor Poor Fair Good Excellent	Caliper - ave from TT 70 mm 150
99.20						No.					

Appendix B

30 November 2019 Daily Report

SCB1912026 | September 2021 | SCB1912026-REP-016 R1 Content property of Wood. Paper copies are uncontrolled. This copy was valid at the time it was printed. Controlled copies can be found on the project server.

wood.

• • •

NWN			
Document No.:	Original Date:	Developed By:	N/OOd
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
RO	04 November 2019	Eliane Cabot	

WP02 & WP03 TEST PLAN- SITE INFRASTRUCTURE AND ACCESS ROAD CONSTRUCTION IGNACE, ONTARIO

Record Number: SCB1912026-FOR-051 191130

Prepared by: Martin Little

Distributed By: Adam Coulson (WP02 Lead) and Eliane Cabot (WP03 Lead)

Start Date / Time: 191130 / 7:00 am End

End Date / Time: 191201 / 7:00 am

Weather:

-11 Degrees C partly clouds Day Shift, -14 Degrees C and clear Night Shift

Health, Safety and Environment incidents

Total number that occurred during this reporting period: _0_

NWM	NWMO Daily Field Report								
Document No.:	Original Date:	Developed By:							
SCB1912026-FOR-051	04 November 2019	Julie Galante	Wood.						
Revision No.:	Revision Date:	Authorized By:							
R0	04 November 2019	Eliane Cabot							

Summary of Work Conc Note: All depths are in me			e unless	s otherwise	e state	ed.		
Work Package and Task	In this reporting period (Y/N)		Description					
WP01 Site Infrastructure	Y			completed ment.	sand	lbagging of	ffence	
WP02 Drilling	Y	Y Day		nce HQ3 9 ne rod	8.20 r Trucł	101.20 m m to 98.20 m to 101.20) m (CR()39)
	N	Night	From :	- m	To:	- m	Total:	- m

NWM	NWMO Daily Field Report								
Document No.:	Original Date:	Developed By:							
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.						
Revision No.:	Revision Date:	Authorized By:							
R0	04 November 2019	Eliane Cabot							

Summary of Work Conducted							
Note: All depths are in me		e unless otherwise stated.					
Work Package and Task	In this reporting period (Y/N)	Description					
		DGI Downhole Survey Ream hole to 11 m					
WP03 Core Logging / Photography / Sampling		Log and photograph CR038 from 95.17 m to 98.20 m Log and photograph CR039 from 98.20 m to 101.20 m Gyro Calibration Gyro Measurement Source Water Sampling (to be shipped on Dec 1 2019) Drill Fluid Sampling					

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
RO	04 November 2019	Eliane Cabot	

Summary of Work Conducted Note: All depths are in metres down-hole unless otherwise stated.			
Work Package and Task	In this reporting period (Y/N)	Description	
WP05 Geophysical Logging	Y	 DGIS Downhole Survey – 1.34m (effective 15.2m because of the HWT casing) to 99.8m with an accuracy of +/-4 cm, which is within the tolerance (ASDE was 1.38 m from a start of 1.34 m). Accumulation of drill cuttings in the last meter of the hole rendered the imaged to cloudy to continue. Set up and Calibration Acoustic Televiewer Survey Optical Televiewer Survey 	
WP06 Hydraulic Testing	N		
WP07 Opportunistic Groundwater Sampling	N		
WP08 Well Sealing	N		
WP09 Instrumentation	N		
WP12 Vertical Seismic Profiling	N		

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Summary of Work Conducted

Note: All depths are in metres down-hole unless otherwise stated.

Work Package and Task	In this reporting period (Y/N)	Description
Other (specify)	Ν	

Technical (other than Work Package work detailed above)	
Approximate start Task Performed and end times	
n/a	n/a

Next 24 hours' activities planned	
Install HWT Casing to 100.77 m (provisional)	

Workers on Site (Consultant, Subs)				
Name	Company	Position	Shift Worked	Hours on Site
Martin Little	Wood	Site Supervisor	Day	12
Michael Anderson	Wood	Drill Supervisor	Day	12
Cynthia Lane	Wood	Core Logger	Day	12
Neil Davidson	Major	Drill Foreman	Day	11

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Workers on Site	e (Consultant,	Subs)		
Name	Company Position		Shift	Hours on
			Worked	Site
Jonathan	Major	Driller	Day	12
Bowering				
Graham Meyer	Major	Driller Helper	Day	12
Jared Smith	DGI	Supervisor	Day	15.75
Alexei Parinov	DGI	Technician	Day	15.75
Shady Hashem	Wood	Construction	Day	3.25
		Manager		
Jack McKay	NWS	Driver	Day	2
Mario Bianchin	Wood	WP07 Lead	Day	12
Andrew Lee	Wood	WP07 Sampling	Day	12
Derek	MCL	Supervisor	Day	0.25
Grandbois				
Braeden Hinds	MCL	Labour	Day	0.25
Jason Boucha	MCL	Labour	Day	4.75
Jimmy	Major	Driller	Night	12
Trunchon				
Kory	Major	Driller Helper	Night	12
D'Entremont				
Frank Grivich	Wood	Drill Supervisor	Night	12
Sepehr Rahimi	Wood	Core Logger	Night	12

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Visitors on Site (NWMO, WLON, Community Members, MNRF, others)				
Name	Affiliation	Purpose	Shift Present	Hours on
				Site
Elise Leroux	NWMO	WP01 to WP10	Day	7

Quality Assurance	
Test Conducted	Reference Documentation
DQC Core Logging,	IG_BH04_WP03_Daily_ DQC_191130_Day_R0
Photography, and	
Sampling	
DQC Daily Drill Record	IG_BH04_WP02_DQC_Daily_Drill_Record_191130_R0
Deviation Cal. Check	IG_BH04_WP02_DQC_Dev_Cal_Check_CR039_191130_R0
CR038 Drill Record	IG_BH04_WP02_DQC_Drill_Record_Form_CR038_191130_R0
CR039 Drill Record	IG_BH04_WP02_DQC_Drill_Record_Form_CR039_191130_R0
Borehole Survey	IG_BH04_WP02_DQC_Borehole_Survey_191130_R0
Tracking	
DQC Fluid Sample List	IG_BH04_WP02 DQC Fluid_Samples_List_R0

Equipment Calibrations	
Calibration Conducted	Reference Documentation
Daily Instrument Calibration Check	IG_BH04_WP02_DQC_Daily_Cal_Form_191130_R0

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Samples Collected				
Sample Type	Sample Name	Number of	Purpose	Sampled For
(e.g., rock core, drill water, etc.)		Bottles / Boxes / Cores	(e.g., archive, porewater, aqueous extraction, etc.)	(e.g., lab name, NWMO)
Drill Water	IG_BH04_DW_001	12	Archive	NWMO

Samples Shipped			
Sample Name	Shipped by	Shipped to	Tracking Number
n/a	n/a	n/a	n/a

Health and Safety

Safety share: Communication, Many different processes scheduled for today, much movement around site, Discuss tasks, hazards, and work plan areas with everyone to avoid disruption to work flow. Ensure SOP's are reviewed and followed if needed.

AHA for GeoMechanical Assessment Via Diamond Drilling, Unloading / Electrical / Water, Downhole Survey, Water Sampling

Environmental

[n/a]

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

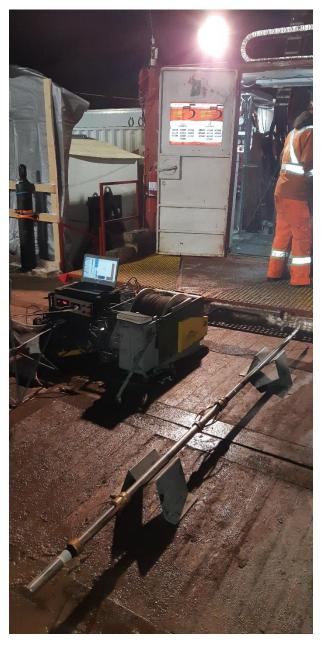
Loss of Process

Tight site constraints.

Non Functional Waste Water Tank on site requires scheduling of vac trucks for removal of waste water from BH-04

WP01 still in progress

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	wood
SCB1912026-FOR-051	04 November 2019	Julie Galante	WOOd.
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	


Photographs

Photograph 1. Verifying passage down hole is clear of obstruction.

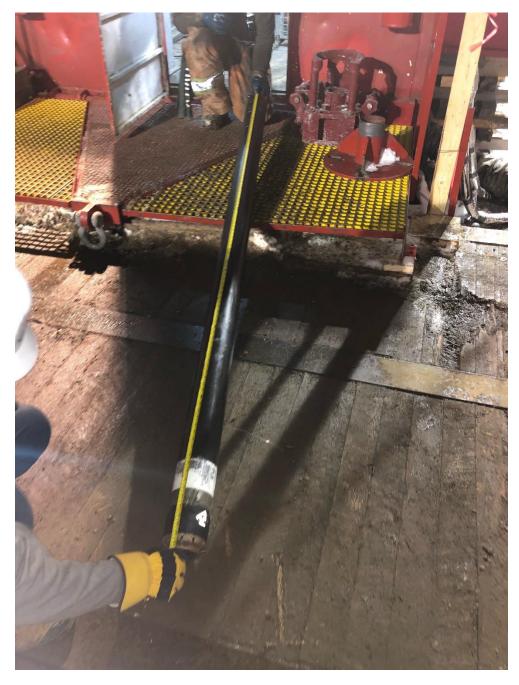
Printed or electronic copies of this document, other than the original found in the project folder, are uncontrolled.

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	wood.
SCB1912026-FOR-051	04 November 2019	Julie Galante	
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Photograph 2. ATV on drill deck prior to deployment.

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	wood.
SCB1912026-FOR-051	04 November 2019	Julie Galante	
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Photograph 3. ATV survey being conducted on drill deck.


Printed or electronic copies of this document, other than the original found in the project folder, are uncontrolled.

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	wood.
SCB1912026-FOR-051	04 November 2019	Julie Galante	
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Photograph 4. HWT casings.

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	
SCB1912026-FOR-051	04 November 2019	Julie Galante	wood.
Revision No.:	Revision Date:	Authorized By:	
R0	04 November 2019	Eliane Cabot	

Photograph 5. Reaming bit and core barrel.

NWMO Daily Field Report			
Document No.:	Original Date:	Developed By:	wood.
SCB1912026-FOR-051 Revision No.:	04 November 2019 Revision Date:	Julie Galante Authorized By:	
R0	04 November 2019	Eliane Cabot	

Photograph 6. Reaming bit.

Printed or electronic copies of this document, other than the original found in the project folder, are uncontrolled.

Appendix C

ABI (ATV) and OBI (OTV) Data QA/QC Record Sheets and the Signed Off Data Acquisition Form

SCB1912026 | September 2021 | SCB1912026-REP-016 R1 Content property of Wood. Paper copies are uncontrolled. This copy was valid at the time it was printed. Controlled copies can be found on the project server.

• • •

Data QA/QC Record Sheet - ATV

Project: ____L-576 Wood - Mississauga NWMO______

Client: ____Wood – Mississauga NWMO______

Date: _____11/30/2019______

Reviewed by: ____Roxanne Leblanc______

PARAMETER: ATV (Acoustic Televiewer)		
Probe (model/sn)	ABI 2G 182903	
Source (sn)	N/A	
Survey File Name:	IG-BH04_WP05_ATVGR_u4_113019.tfd	
Depth Start zero	1.34	
Depth Start data	100.00	
Depth End Data	15.35	
Depth End Zero	1.38	
Data Point Errors (%)	0.034	
Survey File Name:	IG-BH04_WP05_ATVGR_u2_113019.tfd	
Depth Start zero	1.34	
Depth Start data	80.06	
Depth End Data	69.99	
Depth End Zero	1.38	
Data Point Errors (%)	0.04	
QA/QC File Name	IG-BH04_WP05_ATVGR_d1_113019.tfd	
Depth Start zero	1.34	
Depth Start data	1.34	
Depth End Data	80.06	
Depth End Zero	1.38	
Data Point Errors (%)	0.06	

DGI Geoscience Inc.

QA/QC File Name	IG-BH04_WP05_ATVGR_d3_113019.tfd
Depth Start zero	1.34
Depth Start data	69.99
Depth End Data	100.00
Depth End Zero	1.38
Data Point Errors (%)	0.00
Data Repeats (Survey vs QA/QC)	Yes No
Depth Shift Acceptable (Start Zero vs End Zero)	Yes No
Data points errors below 1%	Yes No

Comments:

In order to match the acoustic televiewer to the optical televiewer, DGI uses a depth matching method. DGI will take the televiewer that records the best zero and will use that as a reference log. Then a series of depth points are selected downhole and matched to the other televiewer. Attached is a text file containing these depth matches.

Data QA/QC Record Sheet - OTV

Project: ____L-576 Wood - Mississauga NWMO______

Client: ____Wood – Mississauga NWMO______

Date: _____11/30/2019_____

Reviewed by: ____Roxanne Leblanc______

PARAMETER: OTV (Optical Televiewer)	
Probe (model/sn)	OTV 2G 170709
Source (sn)	N/A
Survey File Name:	IG-BH04_WP05_OTVGR_u4_113019.tfd
Depth Start zero	1.19
Depth Start data	99.08
Depth End Data	15.53
Depth End Zero	1.20
Data Point Errors (%)	0.075
Survey File Name:	IG-BH04_WP05_OTVGR_u2_113019.tfd
Depth Start zero	1.19
Depth Start data	90.86
Depth End Data	79.54
Depth End Zero	1.20
Data Point Errors (%)	0.00
QA/QC File Name	IG-BH04_WP05_OTVGR_d1_113019.tfd
Depth Start zero	1.19
Depth Start data	1.19
Depth End Data	90.86
Depth End Zero	1.20
Data Point Errors (%)	0.00

DGI Geoscience Inc.

QA/QC File Name	IG-BH04_WP05_OTVGR_d3_113019.tfd
Depth Start zero	1.19
Depth Start data	79.54
Depth End Data	99.08
Depth End Zero	1.20
Data Point Errors (%)	0.00
Data Repeats (Survey vs QA/QC)	Yes No
Depth Shift Acceptable (Start Zero vs End Zero)	Yes No
Data points errors below 1%	Yes No
Comments:	

In order to match the acoustic televiewer to the optical televiewer, DGI uses a depth matching method. DGI will take the televiewer that records the best zero and will use that as a reference log. Then a series of depth points are selected downhole and matched to the other televiewer. Optical televiewer quality is poor due to fluid clarity.

Based on IG-BH04 DGI Data QA/QC Record Sheets for ATV and OTV (above), the Project Manager (Alejandro Rojas) and Senior Data Analyst (Roxanne Leblanc) certify that all data was acquired in accordance with WP05 and passes quality control. The crew at site is authorized to demobilize from site.

Alejandro Rojas Project Manager

Roxanne Leblanc

Roxanne Leblanc Senior Data Analyst