PHASE 2 INITIAL BOREHOLE DRILLING AND TESTING, SOUTH BRUCE

WP04C Data Report: Porewater Extraction and Analyses, and Petrographic Analysis for SB_BH01

APM-REP-01332-0319

December 2023

Geofirma Engineering

NUCLEAR WASTE SOCIÉTÉ DE GESTION MANAGEMENT DES DÉCHETS ORGANIZATION NUCLÉAIRES

Nuclear Waste Management Organization 22 St. Clair Avenue East, 4th Floor

22 St. Clair Avenue East, 4th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca

Phase 2 Initial Borehole Drilling and Testing, South Bruce

WP04C Data Report: Porewater Extraction and Analyses, and Petrographic Analysis for SB_BH01

Revision: 0 (FINAL)

NWMO Document: APM-REP-01332-0319

Prepared for:

Nuclear Waste Management Organization 22 St. Clair Avenue East. 4th Floor Toronto, ON, M4T 2S3

Prepared by:

EOFIRMA 1 Raymond St. Suite 200, Ottawa, Ontario K1R 1A2 613.232.2525 613.232.7149 geofirma.com

Project Number: 20-211-1

Document ID: SB_BH01_WP04C_Data_Report_R0

December 18, 2023

Title:	WP04C Data Report: Porewater Extraction and Analyses, and Petrographic Analysis for SB_BH01, Phase 2 Initial Borehole Drilling and Testing, South Bruce					
Client:	Nuclear Waste Management Or	ganization				
Project Number:	20-211-1					
Document ID:	SB_BH01_WP04C_Data_Report_R0					
Revision Number:	0 (FINAL) Date: December 18, 2023					
NWMO Document	APM-REP-01332-0319					
Prepared by:	Chris Morgan, M.A.Sc., P.Geo.					
Reviewed by:	Amy Cartier, B.Sc., G.I.T. and I	an Clark, Ph.D.				
Approved by:	Sean Sterling, M.Sc. P.Eng., P.Geo. – Project Manager - Principal					

Revision Tracking Table

Revision	Revision Release Date	Description of Modifications/Edits
R0A	August 23, 2023	Initial draft release to NWMO for review
R0B	October 23, 2023	Second draft release to NWMO with initial NWMO comments dispositioned
R0	December 18, 2023	Final Release

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 Background	1
	1.2 Geologic Setting	1
	1 3 Technical Objectives	3
2	DESCRIPTION OF ACTIVITIES	4
	2.1 Sample Collection and Preservation	4
	2.1.1 Sample Selection and Collection	4
	2.1.2 Sample Preservation for Paper Absorption, Vacuum Distillation, and Petrography	4
	2.1.3 In-Field Encapsulation for Noble Gases	4
	2.1.4 In-Field Encapsulation for CO ₂ and CH ₄	6
	2.2 Sample Processing and Analyses	6
	2.2.1 Vacuum Distillation	6
	2.2.2 Paper Absorption	6
	2.2.3 Analysis for CO ₂ and CH ₄	7
	2.2.4 Analysis for Noble Gases	7
	2.2.5 Analysis for Radiohalides and Strontium Isotopes	7
	2.3 Mineralogy and Petrography	8
3	RESULTS	9
	3.1 Porewater Geochemistry	9
	3.1.1 Major/Minor Ions and Total Dissolved Solids	9
	3.1.2 Environmental Isotopes	.14
	3.1.3 Radiohalides and Strontium Isotopes	.17
	3.1.4 Noble Gas Concentrations and Isotopes	.19
	3.1.5 Methane (CH ₄) and Carbon Dioxide (CO ₂) Concentrations and Isotopes	.21
	3.1 Mineralogy and Petrography	.21
4	CONCLUSIONS	.24
5	REFERENCES	.26

LIST OF FIGURES

Figure 1 Figure 2	Location of SB_BH01 Drill Site
Figure 3	Profile of Chloride, Sodium, and TDS Concentrations of Porewater from Vacuum Distillation and Paper Absorption, SB_BH01 Core Samples. TDS calculated assuming freshwater density (1000 kg/m ³). Sample SB_BH01_PW048 was noted to have exceptionally low water content and strong degassing during sampling
Figure 4	Profile of Calcium, Magnesium, and Strontium Concentrations in Porewater from Vacuum Distillation, SB_BH01 Core Samples. Sample SB_BH01_PW048 was noted to have exceptionally low water content and strong degassing of methane during sampling.
Figure 5	Profile of Potassium, Bromine, and Boron Strontium Concentrations in Porewater from Vacuum Distillation, SB BH01 Core Samples
Figure 6	¹⁸ O- ² H Cross Plot, SB_BH01 Porewater Samples. Samples SB_BH01_PW048 and SB_BH01_PW055 were noted to have low water content (<0.1% and 0.2%, respectively). Subsamples of SB_BH01 PW055 were combined to have sufficient volume for analysis.
Figure 7	Profile of δ^{18} O and δ^{2} H (Deuterium) of Porewater, SB_BH01 Core Samples. Samples SB_BH01_PW048 and SB_BH01_PW055 were noted to have low water content (<0.1% and 0.2%, respectively). Subsamples of SB_BH01 PW055 were combined to have sufficient volume for analysis
Figure 8	Profile of ³⁶ Cl, ¹²⁹ l, ⁸⁷ Sr/ ⁸⁶ Śr, and ³⁷ Cl Isotopic Results for Porewater from SB_BH01 Core Samples
Figure 9	Profile of Noble Gas (He, Ne, Ar) Concentrations and Isotopes for Porewater from SB BH01 Core Samples, xRa = Air-normalized ³ He/ ⁴ He ratio20
Figure 10	Profile of Methane and Carbon Dioxide Concentrations and Isotopes from SB_BH01 Core Samples
Figure 11	Mineralogical Components, by X-Ray Diffraction, SB_BH01 Core Samples23

APPENDICES

Appendix A	SB_BH01 Porewater (PW), Dissolved Gas (GD), and Noble Gas (NG) Sample Summary
Appendix B	Results Tables for Porewater Characterization Activities at SB_BH01
Appendix C	Mineralogical and Petrological Results for Porewater Samples at SB_BH01

1 INTRODUCTION

Geofirma Engineering Ltd. (Geofirma) completed a drilling and testing program at borehole SB_BH01, northwest of Teeswater, Ontario (Figure 1). This report provides a detailed summary of one component of the Geofirma geoscientific investigation as part of the NWMO Phase 2 Initial Borehole Drilling and Testing Program within the South Bruce site. Specifically, this report describes the activities associated with Geofirma's Work Package 4C (WP04C), which included porewater extraction and analyses, and petrographic analyses for core obtained from borehole SB_BH01.

1.1 Background

Geofirma was retained by the Nuclear Waste Management Organization (NWMO) to complete a drilling and testing program for two deep bedrock boreholes (SB_BH01 and SB_BH02) as part of the NWMO's Phase 2 Geoscientific Preliminary Field Investigations. The full scope of the drilling and testing program for SB_BH01 is described in the Initial Borehole Characterization Plan.

NWMO's process is called the Adaptive Phased Management (APM) plan and comprises multiple phases.

Phase 1 of NWMO's APM plan included preliminary desktop studies using available geoscientific information and a set of key geoscientific characteristics and factors that can be realistically assessed at the desktop phase of the Preliminary Assessment. The Phase 1 Preliminary Assessment of the South Bruce site identified the Cobourg Formation as the preferred host formation for a deep geological repository for used nuclear fuel. The Initial Borehole Drilling and Testing study is a key component of the Phase 2 Geoscientific Preliminary Field Investigations for the NWMO's APM plan.

Borehole SB_BH01 was the first borehole drilled in the South Bruce site as part of the Phase 2 Initial Borehole Drilling and Testing program. SB_BH01 is located approximately 3.5 km northwest of the community of Teeswater, Ontario, and was drilled to 880.84 m below ground surface (m BGS). SB_BH01 was drilled through the entire sedimentary bedrock sequence to approximately 20 m into the Precambrian basement.

1.2 Geologic Setting

The sequence of rocks encountered in the SB_BH01 borehole consist of Paleozoic-aged strata that were deposited within the Michigan Basin northwest of the Algonquin Arch in Southwestern Ontario. The Michigan Basin is a circular-shaped cratonic basin that is composed primarily of shallow marine carbonates, evaporites, and shales that were deposited while eastern North America was in tropical latitudes during the Paleozoic Era (Armstrong and Carter 2010). West of the Algonquin Arch, strata from the Michigan Basin tend to gradually dip westward into the Michigan Basin. Borehole SB_BH01 was drilled through the entire Paleozoic sequence to approximately 20 m into the Precambrian basement, which is composed of high-grade metamorphic rocks of the Grenville Province.

1.3 Technical Objectives

The primary technical objective of the WP04C porewater program was to characterize the fluid chemistry of the sedimentary bedrock at the South Bruce site based on core obtained from boreholes SB_BH01 and SB_BH02. This report has been prepared to provide a detailed summary of the sampling methods, laboratory procedures, and results from the WP04C porewater characterization program that was completed for core obtained from borehole SB_BH01.

Results of the porewater and dissolved gas extraction and analysis work will be used as part of data integration activities (Work Package 10) to assess the age of porewater in the Upper Ordovician shale and limestone formations, as well as obtain evidence of whether the porewater has been in contact with modern surface waters.

2 DESCRIPTION OF ACTIVITIES

2.1 Sample Collection and Preservation

2.1.1 Sample Selection and Collection

Selection and collection of porewater, noble gas, and dissolved gas (CO₂ & CH₄) samples were completed by Geofirma staff during drilling of borehole SB_BH01. Intact sections of core were collected as samples according to NMWO-specified geologic/depth interval targets. Samples were collected such that they were representative of the unit being sampled and did not cross a lithological contact. In addition, samples were generally not taken from the immediate top or bottom of a core run to preserve the ability to re-align adjacent core runs by re-fitting the reference line. All samples were extracted using a hammer and chisel, or at pre-existing mechanical/natural breaks.

As much as possible, the porewater, noble gas, and dissolved gas core samples were preserved within 15 minutes of core retrieval, immediately after core run photography, but prior to core logging. All core samples were weighed and photographed prior to preservation.

Core sample locations and procedures for sample collection are described in detail in the Work Package 3 (WP03) Data Report (Geofirma 2022) and the associated WP04C test plan.

2.1.2 Sample Preservation for Paper Absorption, Vacuum Distillation, and Petrography

Samples for paper absorption, vacuum distillation and petrography were collected as porewater samples and were assigned "PW" sample designation using NWMO's acQuire data management system (e.g., SB_BH01_PW012). A set of two PW samples was collected at each sample location: a 20-30 cm sample for paper absorption and petrography/mineralogy testing, and a second 15 cm sample for vacuum distillation, vacuum distillation leaching, and crush and leach testing. Each set of PW samples was paired with samples for noble gases and dissolved gases (CO₂, CH₄).

The porewater samples were preserved following the standard procedure outline below:

- 1. Wrap in plastic film
- 2. Wrap in Polyethylene (PE) bag;
- 3. Flush with nitrogen, evacuate and heat seal using vacuum sealer;
- 4. Wrap in second PE bag;
- 5. Flush with nitrogen, evacuate and heat seal using vacuum sealer;
- 6. Wrap in aluminum foil pouch;
- 7. Flush with nitrogen, evacuate and heat seal using vacuum sealer.
- 8. Refrigerate sample

2.1.3 In-Field Encapsulation for Noble Gases

Core samples collected for noble gas analysis were assigned a "NG" sample designation in acQuire. Noble gas samples were preserved using purpose-built stainless-steel containers following a specialized procedure that was provided to Geofirma by the Noble Gas Laboratory at the University of

Ottawa. Each noble gas core sample was encapsulated in a stainless steel chamber with a flange fitted to a copper-seated high-vacuum valve. The encapsulation and preservation process for noble gas samples is summarized below:

- 1. Insert core into stainless steel chamber and assemble the chamber.
- 2. Interface chamber with flushing/evacuating manifold.
- 3. Flushing-evacuating follows the **1-2 1-2** method.
 - Fill the chamber with high purity nitrogen until 5 PSI on the gauge, **1 minute**.
 - Evacuate the chamber for **2 minutes**.
 - Fill the chamber with high purity nitrogen until 10 PSI above background/atmospheric pressure, 1 minute.
 - Evacuate the chamber for **2 minutes**.
- 4. Close the valve on the stainless steel chamber. Ensure the vacuum pump is isolated and remove the chamber from the line.
- 5. Place a plug and gasket into the valve at the top of the chamber and tighten.
- 6. Label and store the chambers as required.

Figure 2 provides a schematic of the system that was used to complete encapsulation and preservation of core samples for noble gases at SB_BH01.

Figure 2 Schematic for noble gas core sample encapsulation (Source: University of Ottawa, Noble Gas Isotope Laboratory)

2.1.4 In-Field Encapsulation for CO₂ and CH₄

Samples for CH_4 and CO_2 analyses were collected as dissolved gas samples and were assigned a "DG" sample designation using acQuire. Full diameter core samples for CH_4 and CO_2 analysis were broken into large chunks (< 5 cm) and placed into two IsoJar (Isotech, USA) containers, capped with a septum-fitted cap. While filling the IsoJar containers, high-purity nitrogen gas was flushed into the containers by a needle through the septum to displace air in the containers. The IsoJars were refrigerated after preservation.

2.2 Sample Processing and Analyses

2.2.1 Vacuum Distillation

Porewater isotopes were sampled from core by vacuum distillation. Vacuum distillation was undertaken on core samples, with the outer perimeter removed and a subsample broken to an approximately subcentimeter-size fraction. Of this fraction, approximately 30 g per sample was encapsulated in preweighed vessels and attached to an extraction line. Evacuation was carried out with a cold trap in place to collect evaporated porewater during evacuation of the line.

The samples were then heated with temperature-controlled ovens to 150° C. This temperature has proven to yield reliable results for the Ordovician shales and carbonates at the Bruce Site (Clark et al., 2013) and for the Tournemire argillite (Altinier et al., 2006). Samples were monitored during a 6-hour distillation period after which the recovered porewater was transferred to 12 mL Exetainers with septum for analysis of δ^{18} O and δ^{2} H. These isotopes were measured by off-axis integrated cavity output laser spectroscopy using a Los Gatos Research Inc. (LGR) instrument operating in the Ján Veizer Stable Isotope Laboratory at the University of Ottawa. The water vapour distilled from the core material was condensed in a septum vial and weighed for gravimetric water content. The measured water content was compared with the weight loss in the core material to assess water recovery. Samples are run in quadruplicate, using 30 g splits from a single core sample.

2.2.1.1 Vacuum Distillation Leaching

The primary method for determination of major/minor ion chemistry of the porewaters was the vacuum distillation leaching (VDL) method. The extraction vessel and dry core material following vacuum distillation were rinsed with distilled water into a pre-weighed falcon tube for out-diffusion of porewater salts. The mass of leach water was recorded and then monitored over time until a stable electrical conductivity was attained. The leach water was then filtered and analyzed for major and trace solutes.

Solute masses, determined from concentration and leach water mass, were normalized to the water mass recovered from distillation to determine total porewater concentrations. Leach water was analyzed (ICP-MS, ICP-OES, IC) for major, minor and trace metals (Na, K, Mg, Ca, Sr, plus AI, Fe, Mn Li, Rb, and Si) as well as major and minor anionic species (B, CI, Br, I, S) in the Geochemistry Laboratory at the University of Ottawa.

2.2.2 Paper Absorption

A second method, paper absorption (PA), was used to complement and allow comparison with the VDL results for porewater samples. The PA method (Celejewski et al., 2014, 2018) was developed for

extraction of mobile porewater for analysis of major anions and cations. The *mobile porewater* is that which is free to flow among the largest pores, and it is a fraction of the *total porewater* which also includes water in clay interlayers and in the electric double layer adjacent to mineral surfaces.

For the PA method, preserved, saturated core sections of minimum 20 cm length were broken in two, and then reassembled with a cellulosic paper placed between the two pieces, and tightly bound. Reassembled cores were left for a period of approximately two months to allow capillary uptake of porewater into the filter paper. When reopened, the recovered filter paper was leached to remove solutes and the leached solution was analyzed (ICP-MS, ICP-OES, IC) to determine the extracted masses of major, and some minor elements (Na, K, Mg, Ca, Li, Sr and Ba) as well as major and minor anionic species (CI, Br, S) at the University of Ottawa. The mass of absorbed water was determined by near-infrared spectrometry, before and after insertion in the core. The mass of extracted water, after 2 months, represents porewater uptake and was used to convert the solute masses to concentrations.

2.2.3 Analysis for CO₂ and CH₄

Headspace gas in the Isojars was periodically analyzed for concentrations of CH₄ and CO₂ by gas chromatography. When stable concentrations were attained (three successive measurements within analytical uncertainty), the headspace was sampled and analyzed for δ^{13} C and δ^{2} H of CH₄ and for δ^{13} C of CO₂ by routine isotope ratio mass spectrometry at Jan Veizer Stable Isotope Laboratory, University of Ottawa.

2.2.4 Analysis for Noble Gases

All noble gas concentrations were measured on a Thermo-Finnigan Helix SFT noble gas mass spectrometer at the University of Ottawa Lalonde noble gas laboratory using aliquots from the stainlesssteel encapsulation chamber. The out-diffused gases were treated with a Ti getter pump maintained at 450° C to remove non-inert gases (principally CH₄ and CO₂). The noble gases were then cryogenically separated by freezing Ar, Kr, and Xe on charcoal traps before sorbing Ne and He on a 5 K cold-head. He and Ne were successively released to the mass spectrometer by ramping the cold-head temperature accordingly. The isotopes of Ar, Kr and Xe were then analyzed.

2.2.5 Analysis for Radiohalides and Strontium Isotopes

Pieces of the core samples were crushed in an aerobic glove box, followed by leaching with an equal mass of deionized and distilled water. These crushed and leached samples were used to extract porewater for radiohalide analyses (¹²⁹I, ³⁶Cl, and δ^{37} Cl). Sampled water for ¹²⁹I was treated to precipitate AgI target material and analyzed by the Dresden AMS laboratory in Germany. Sampled water for ³⁶Cl was treated to precipitate AgCl target material which was subsequently analyzed on a high energy AMS system at the Lawrence Livermore National Laboratories facility in California. Water for δ^{37} Cl analysis and ⁸⁷Sr/⁸⁶Sr isotope ratios for porewater samples were analyzed at Isotope Tracer Technologies Inc., Waterloo. Part of the leached solution extracted using the PA technique was also used for Sr isotope analyses at the Carleton University Isotope Geochemistry and Geochronology Research Centre.

2.3 Mineralogy and Petrography

Mineralogical and petrological analyses were completed on a subset of porewater samples by the University of Ottawa to obtain mineralogical data required for interpretation and geochemical modelling of the porewater results. Rock core samples that were used for PA analyses were also used for the mineralogical and petrophysical analyses. Thin sections were cut for petrographic analyses and a subsample of core was crushed and milled into a powder for x-ray diffraction (XRD).

Using prepared thin sections, optical mineralogy, scanning electron microscope and energy dispersive x-ray spectrometry (SEM-EDS) were completed. SEM-EDS imaging was completed at the University of Ottawa using a JEOL6610LV SEM operated at an accelerating voltage of 20 Kv and equipped with an EDAX EDS system. The XRD analyses were also completed at the University of Ottawa using a Rigaku Ultima IV diffractometer with a monochromatic CuKα radiation at 40 Kv, 200 Ma.

3 RESULTS

3.1 **Porewater Geochemistry**

Results from the SB_BH01 porewater characterization program are summarized in the following section, with select mineralogical, geochemical, and isotopic results presented as profiles with depth. A summary of the porewater sample information, including sample type, depth, and logged primary lithology is included as a table in Appendix A. Complete results from the porewater characterization program are provided in Appendix B.

The results presented in this data report have not been corrected for potential mineral dissolution during analyses, apparent halite undersaturation, or anion exclusion. These processes were shown to impact geochemical results for porewater samples that were collected from the similar strata to what was encountered in SB_BH01 as part of the Ontario Power Generation (OPG) Deep Geological Repository site characterization program (Intera 2011). The Intera (2011) report showed that the relative magnitude of impact from these processes, and the corrections that were required to obtain representative porewater concentrations, depended on the porewater chemistry and the sampled lithology/mineralogy.

Detailed interpretation of the porewater results, including geochemical modelling and correction for mineral dissolution, halite under saturation, and anion exclusion will be completed separately as part of Work Package 10 (Data Integration) activities.

3.1.1 Major/Minor Ions and Total Dissolved Solids

Figure 3 presents depth profiles of chloride (CI), sodium (Na), and calculated total dissolved solids (TDS) measured using both the VDL and PA methods. The TDS values shown in Figure 3 were calculated assuming a fresh-water density and overestimate the true TDS for brackish water to brines that are encountered in many of the samples.

Concentrations of CI and Na are generally low through the shallow Devonian to the top of the Salina Group. Na and CI concentrations in the Guelph Formation were low relative to other samples from the overlying/underlying units. Below the Guelph Formation, porewater concentrations of Na and CI generally increase with depth through the lower Silurian units and the Ordovician-aged shales (Queenston, Georgian Bay, and Blue Mountain formations) to the top of the Cobourg Formation. From the Cobourg Formation to the Shadow Lake Formation, Na and CI concentrations remain high with some scatter.

Since Na and CI generally dominate the ionic composition of porewaters, particularly below the Salina Group, the TDS depth profiles show similar trends to the Na and CI depth profiles. VDL-derived TDS values were below 10 g/L in the Devonian units, between 18-111 g/L in the Salina Group and Guelph Formation, and increased to approximately 250-350 g/L below the Georgian Bay Formation.

Comparison of CI and Na concentrations measured using the VDL and PA methods show substantial variation, with PA-derived concentrations that were 1-3 orders of magnitude higher than corresponding concentrations obtained using the VDL method. Many of the PA-derived concentrations were supersaturated relative to halite solubility. The significant variation in porewater concentrations that is observed between these two methods may reflect differences in the proportional uptake of clay-bound, capillary-bound, and mobile porewaters.

Figure 3 Profile of Chloride, Sodium, and TDS Concentrations of Porewater from Vacuum Distillation and Paper Absorption, SB_BH01 Core Samples. TDS calculated assuming freshwater density (1000 kg/m³). Sample SB_BH01_PW048 was noted to have exceptionally low water content and strong degassing during sampling.

VDL-measured concentrations of Na, Cl, and other major ions were very high and outside of the anticipated range for a porewater sample that was collected at the top of the Sherman Fall Formation (SB_BH01_PW048). Field observations during core logging and sampling indicated strong degassing of methane from the sample. This sample also has the lowest water content in the section (Appendix B).

Figure 4 shows depth profiles for porewater concentrations of calcium (Ca), magnesium (Mg), and strontium (Sr) measured by VDL. These three elements show similar depth profiles, with low, increasing concentrations through the shallow bedrock to the top of the Salina Group. Samples from the Guelph Formation to the bottom of the Silurian strata show relatively low concentrations of Ca, Mg, and Sr, compared to the overlying and underlying strata. Except for the anomalous sample collected at the top of the Sherman Fall Formation (SB_BH01_PW048), porewater concentrations of Ca, Mg, and Sr, are stable, or increase gradually from the top of the Queenston Formation to the base of the Kirkfield Formation. Concentrations of Ca, Mg, and Sr are higher in the Coboconk and Gull River relative to porewater in the overlying strata, and then decrease rapidly in the basal Shadow Lake Formation and crystalline rocks of the Precambrian basement.

Figure 5 shows depth profiles for porewater concentrations of potassium (K), bromine (Br), and boron (B) measured by VDL. K and Br show similar trends at shallow to intermediate depths, with relatively low concentrations through the Devonian and Silurian-aged strata and increasing concentrations across the Ordovician shales. Concentrations of K remain high, with some scatter, from the Cobourg through to the Sherman Fall Formation, then decline and stay relatively low in the Coboconk, Shadow Lake, and Precambrian. In contrast, porewater Br concentrations remain relatively consistent across all the Ordovician-aged strata, before dropping off in the Precambrian.

Except for one sample from the middle of the Salina Group (SB_BH01_PW008), boron (B) concentrations in porewater are low through the shallow bedrock to the Guelph Formation. From the Goat Island/Gasport Formation through to the base of the Blue Mountain, B concentrations remain relatively low and stable. Boron concentrations in the Ordovician-aged limestones and the Precambrian are higher and show more scatter than in the overlying strata.

Depth	po	WP10 Formations	Calci	Magnesium (Mg)				Strontium (Sr)				
1:4000 (m along core axis)	Peric	Units & Members	0 mm	● nol/kgw	2000	0	mmol/	'kgw	1000	0	◆ mmol/kgw	30
- 0 -		Overburden										
		Lucas										
- 50 -	vonian	Amherstburg										
100	De	Bois Blanc	Ì									
		Bass Island								*		
— 150 —												
- 200 -		Salina										
— 250 —	Silurian		\							•		
- 300 -		Guelph	•			•						
- 350 -		Goat Island, Gasport Lions Head &	Ì							7		
- 400 -		Fossil Hill Cabot Head Manitoulin	•									
- 450 -		Queenston								ł		
- 500 -			•							•		
- 550 -		Georgian Bay									•	
- 600 -	ician	Blue Mountain	Ť.									
- 650 -	Ordovi	Cobourg (Collingwood) Cobourg (Lower)	Ż				Z				7	
- 700 -	-	Sherman Fall	•		-		-	SB_B	H01_PW0	48	,	
- 750 -		Kirkfield				2				•	*	
- 800 -		Coboconk		>				>				>
950		Gull River	*		>		5					
- 000 -		Shadow Lake Precambrian	•	•		•				•		
	1											

Figure 4 Profile of Calcium, Magnesium, and Strontium Concentrations in Porewater from Vacuum Distillation, SB_BH01 Core Samples. Sample SB_BH01_PW048 was noted to have exceptionally low water content and strong degassing of methane during sampling.

Depth	po	WP10 Formations	Potassium (K) & 0 0 mmol/kgw		Bromine (Br)			Boron (B)		
1:4000 (m along core axis)	Peri	Units & Members			0	0 mmol/kgw 40			mmol/kgw	40
- 0 -	-	Overburden (Quaternary)								
	c	Lucas								
- 50 -	evonia	Amherstburg								
100	ă	Bois Blanc						1		
- 100 -	-	Bass Island								
- 150 -										
- 200 -		Salina								
- 250 -	Silurian		+							
- 300 -		Guelph	k							
- 350 -		Goat Island, Gasport Lions Head &						7		
- 400 -		Fossil Hill Cabot Head	× ×							
- 450 -		Manitoulin		×,		Y		ł		
— 500 — — 550 —		Georgian Bay						+		
- 600 -	ician	Blue Mountain		*		at a		t		
650 -	Ordov	Cobourg (Collingwood) Cobourg		$\overline{\langle}$						
- 700 -		(Lower) Sherman Fall				7				
- 750 -		Kirkfield		1		1		*	<	
- 800 -		Coboconk								
- 850 -		Gull River								•
900 -		Precambrian	•							

Figure 5 Profile of Potassium, Bromine, and Boron Strontium Concentrations in Porewater from Vacuum Distillation, SB_BH01 Core Samples

3.1.2 Environmental Isotopes

Figure 6 shows a cross plot of isotopic ratios for deuterium (²H) and ¹⁸O for porewater extracted by vacuum distillation. The accompanying laboratory report for the environmental isotopes had several results that were flagged due to interpreted trace hydrocarbon contamination, but comparison of the results to trends in a depth profile for δ^2 H and δ^{18} O (Figure 7) suggests that the magnitude of contamination for the impacted samples is not significant.

Except for SB_BH01_PW008, SB_BH01_PW048 and SB_BH01_PW055, the porewater samples tended to plot adjacent to, or below, the global meteoric water line (GWML). When compared to other samples, sample SB_BH01_PW008 was highly depleted in¹⁸O relative to the δ^2 H ratio. Such samples observed in the Bruce DGR program (Intera 2011) were attributed to gypsum hydration. Sample SB_BH01_PW048 from the Sherman Fall was the least depleted in ¹⁸O of the samples that were collected at SB_BH01 and plots far to the right of the GWML. This sample was noted above for its very high Na and CI content, which is possibly an artifact of the very low water content in this sample (less than 0.1 percent). The lab reported that this core was likely compromised, the low water content and ¹⁸O depletion is consistent with evaporation loss.

Figure 6 ¹⁸O-²H Cross Plot, SB_BH01 Porewater Samples. Samples SB_BH01_PW048 and SB_BH01_PW055 were noted to have low water content (<0.1% and 0.2%, respectively). Subsamples of SB_BH01 PW055 were combined to have sufficient volume for analysis.

Figure 7 shows depth profiles for δ^{18} O and δ^{2} H. Samples from the shallow bedrock and the lower Silurian units were the most depleted in both ¹⁸O and ²H. Separating these relatively depleted intervals are samples from the top of the Guelph and Salina Group, which were less depleted in both ¹⁸O and ²H, including notably ²H in sample SB_BH01_PW008 from the middle of the Salina Group. After a sharp increase in ²H at the top of the Queenston Formation, ²H ratios remain relatively stable and become slightly less depleted with depth. There is also a sharp increase in ¹⁸O at the top of the Queenston, followed by steadily increasing concentrations to the Cobourg Formation. Below the Cobourg Formation ¹⁸O ratios show significant scatter, with a generally decreasing trend. Sample SB_BH01_PW048 with enriched ¹⁸O, discussed above, is observed at the top of the Sherman Fall, along with sample SB_BH01_GW055 with enriched ¹⁸O in the upper Coboconk Formation, which also had an effect from very low water content.

Figure 7 Profile of δ^{18} O and δ^{2} H (Deuterium) of Porewater, SB_BH01 Core Samples. Samples SB_BH01_PW048 and SB_BH01_PW055 were noted to have low water content (<0.1% and 0.2%, respectively). Subsamples of SB_BH01 PW055 were combined to have sufficient volume for analysis.

3.1.3 Radiohalides and Strontium Isotopes

Figure 8 shows depth profiles for radiohalides (¹²⁹I, ³⁶CI, ³⁷CI) and strontium isotopes (⁸⁷Sr/⁸⁶Sr) measured from porewater samples at SB_BH01. The porewater that was analyzed was extracted by crushing and leaching fresh core, except for Sr, where both crush and leach and PA methods were used.

The depth profile of the ³⁶Cl/Cl (Figure 8) shows decreasing proportions of ³⁶Cl from the top of bedrock to the bottom of the Salina Group and the top of the Guelph Formation, where the lowest ratios are observed (~8.5-8.9 x10⁻¹⁶). From the top of the Guelph Formation, proportions of ³⁶Cl increase rapidly to 3.5x10⁻¹⁵ near the top of the Goat Island Formation, and then gradually increase with depth to approximately 6x10⁻¹⁵ in Georgian Bay and Blue Mountain formations. Below the Ordovician shales, proportions of ³⁶Cl decrease with depth to the bottom of the Gull River Formation, and then rapidly increase in the Shadow Lake Formation and Precambrian basement rocks.

The depth profile for ¹²⁹I (Figure 8) shows significant scatter in ¹²⁹I concentrations for porewaters from the shallow bedrock units up to Cabot Head Formation at approximately 401 m. In these shallow samples, ¹²⁹I concentrations vary from below detection limits at ~112 m depth to over 5x10⁶ atoms/kgw in the Guelph Formation. From the Cabot Head formation through to the bottom of the Ordovician shales, ¹²⁹I concentrations are relatively stable between 3.4x10⁵ to 1.4x10⁶ atoms/kgw. In the Ordovician limestones ¹²⁹I concentrations are an order of magnitude lower than in the overlying shale units and show some scatter between 1.8x10⁴ to 2.6x10⁵. An anomalous result was recorded for a sample from the Sherman Fall (SB_BH01_PW048) which had a relatively low ¹²⁹I concentration of 2.8x10³ atoms/kgw.

Strontium isotope ratios of ⁸⁷Sr/⁸⁶Sr were recorded for porewater extracted by both the VDL and PA methods. The PA-derived ⁸⁷Sr/⁸⁶Sr profile (Figure 8) shows gradually increasing proportions of ⁸⁷Sr through the Devonian and Silurian strata until stabilizing near a ratio of 0.71 across all the Ordovician-aged strata. In contrast, the VDL-derived ⁸⁷Sr/⁸⁶Sr profile shows more vertical zonation with sharp changes in the proportion of Sr isotopes near the top of the Cabot Head Formation, at the base of the Ordovician shales, and at the contact with the Precambrian basement rocks. The PA and VDL-derived Sr ratios are similar in the Ordovician shales. In the Ordovician limestones, the PA-derived values are stable near 0.710, while the VDL-derived values show more scatter and are generally lower (~0.709).

Figure 8 also provides a depth profile of isotopic ratios of δ^{37} C for porewater extracted from core samples. There is significant scatter in δ^{37} C ratios for samples from the Devonian and Silurian-aged strata, with ratios ranging from -0.91 to +0.58. Except for the sample from the top of the Sherman Fall (SB_BH01_PW048) samples from the Ordovician strata had positive δ^{37} C ratios between 0-0.5. δ^{37} C ratios in the Ordovician strata generally decrease from 0.44 near the top of the Queenston Formation to near 0.1 in the Coboconk and Gull River formations. The four deepest samples from the Gull River, Shadow Lake, and Precambrian units show slightly enriched δ^{37} C compared to samples from the overlying Ordovician limestones.

Figure 8 Profile of ³⁶Cl, ¹²⁹l, ⁸⁷Sr/⁸⁶Sr, and ³⁷Cl Isotopic Results for Porewater from SB_BH01 Core Samples

3.1.4 Noble Gas Concentrations and Isotopes

Figure 9 provides depth profiles of concentrations and isotopic ratios for select noble gases in porewater samples from SB_BH01. Concentrations of He, Ar, and Ne are reported in cubic centimeters of gas per cubic centimeter of water (cc/ccw). Concentrations of Kr were also measured but are not shown in Figure 9. With a few exceptions, concentrations of He, Ar, and Ne in porewaters generally increase with depth, with the highest concentrations observed in the Ordovician strata spanning from the Georgian Bay Formation to the Shadow Lake Formation.

Results from a subset of the noble gas samples show some evidence of atmospheric contamination. The most impacted sample was SB_BH01_NG016, which was collected near middle of the Georgian Bay Formation. Results for SB_BH01_NG016 indicate significant air contamination, with an air-normalized ³He/⁴He ratio of 0.76. Small amounts of air/drill water contamination are expected due to the sampling method, so further assessment of contamination for each NG sample should be completed as part of subsequent data integration activities (WP10).

A depth profile of air-normalized 3 He/ 4 He ratios (xRa) shows three distinct intervals with similar isotopic ratios of He. Samples from the Bois Blanc and Bass Island have xRa values that are equivalent to or slightly enriched in 3 He relative to air. Samples from the Salina Group to the top of the Sherman Fall Formation have xRa ratios between 0.023-0.045. There is an inflection in the xRa profile around 725 m, below which xRa ratios were between 0.051-0.067.

⁴⁰Ar/³⁶Ar ratios were relatively low (270-390) from the top of rock, through the Devonian and Silurianaged strata, to the Georgian Bay Formation, except for two samples from the Queenston, that were somewhat enriched in ⁴⁰Ar with ⁴⁰Ar/³⁶Ar ratios (560-700). Samples from the Blue Mountain and Cobourg formations had ⁴⁰Ar/³⁶Ar ratios between 820-980, that were somewhat higher than samples from the overlying and underlying strata. The highest ⁴⁰Ar/³⁶Ar ratios were measured on porewater from the Gull River and Shadow Lake formations, which had ratios between 1400-3300. The ⁴⁰Ar/³⁶Ar for porewater from a sample in the Precambrian was 290.

All of the porewater samples from SB_BH01 had ²²Ne/²⁰Ne ratios between 0.09 - 0.11.

Depth	-	WP10	He	lium	eon	Argon			
1:4000	4000 ອິ Formatio		He in Porewater	xRa	Ne in Porewater	22Ne/20Ne	Ar in Porewater	40Ar/36Ar	
(m along core axis)		Members	1e-07 cc/ccw 0.1	0.002 NV 2	1e-07 cc/ccw 0.01	0.05 NV 0.35	0.01 cc/ccw 1000	100 NV 10000	
- 0 -		Overburden (Quaternary)							
	Ę	Lucas							
- 50 -	Devoniar	Amherstburg							
- 100 -		Bois Blanc				Ť			
		Bass Island	X						
- 150 -									
- 200 -		Salina	↓ ↓	•		•		•	
- 250 -	Silurian		ł		•	•	$\boldsymbol{\langle}$	+	
- 300 -		Guelph	t	-	$\mathbf{\mathbf{k}}$	* *		•	
— 350 —		Goat Island, Gasport Lions Head			7	•	1	•	
- 400 -		& Fossil Hill Cabot Head Manitoulin	•	•	+	▲		•	
- 450 -		Queenston	t t	+	+	•	L L		
- 500 -			•			•		-	
- 550 -		Georgian Bay	•	SB_BH01_NG016		+			
- 600 -	cian	Blue Mountain		Ţ		+			
- 650 -	Ordovi	Cobourg (Collingwood) Cobourg		•	}		- F		
- 700 -		(Lower) Sherman Fall	7				2	-	
- 750 -		Kirkfield	L L	+	$\mathbf{\cdot}$	+			
800 -		Coboconk				•			
		Gull River	/		<u>,</u>			×	
- 850 -		Shadow Lake Precambrian	7	• •					
L 900 −									

Figure 9 Profile of Noble Gas (He, Ne, Ar) Concentrations and Isotopes for Porewater from SB_BH01 Core Samples, xRa = Air-normalized ³He/⁴He ratio.

3.1.5 Methane (CH₄) and Carbon Dioxide (CO₂) Concentrations and Isotopes

Figure 10 shows depths profiles of methane (CH₄) and carbon dioxide (CO₂) concentrations (in mmol/kgw) measured from degassing of core samples into the headspace of Isojars. Concentrations of CH₄ increased with depth from non-detects in the shallow bedrock to approximately 30 mmol/kgw in the Collingwood member of the Cobourg Formation. The highest concentrations of both CO₂ and CH₄ were reported for a sample near the top of the Sherman Fall Formation (SB_BH01_PW048) that had significant degassing observed at the time of sampling, and which has very low water content. Below the Collingwood member of the Cobourg Formation, CH₄ concentrations were around 10 mmol/kgw in samples from the Cobourg (lower), Sherman Fall, and Kirkfield formations.

The profile of δ^{13} C in CH₄ shows a relative enrichment in ¹³C with depth from approximately -50 ‰ VPDB in samples from the Salina Group to -40 ‰ VPDB in samples from below the Sherman Fall Formation. The profile of δ^{2} H for CH₄ also shows an enrichment in ²H from approximately -250 ‰ VSMOW in samples from the Blue Mountain to -180 ‰ VSMOW in samples from the Gull River and Shadow Lake formations.

 CO_2 concentrations have a more sporadic profile than CH_4 results, with highly variable concentrations in the shallow bedrock to the Cabot Head Formation. Below the Cabot Head Formation, CO_2 concentrations increased gradually to approximately 1.5 mmol/kgw midway through the Blue Mountain Formation. A sharp inflection occurs at the bottom of the Blue Mountain, with lower concentrations of CO_2 in the underlying Cobourg Formation. From the Sherman falls, CO_2 concentrations decrease slightly from around 1.5 mmol/kgw to 0.5 mmol/kgw.

The profile of δ^{13} C in CO₂ shows a relatively stable depth profile with ratios between -3 to -8 ‰ VPDB. Notable deviations from this range are observed in samples from the top of the Salina Group (-16 ‰ VPDB), the Blue Mountain Formation (+5.2 to 5.7 ‰ VPDB), and the Sherman Fall Formation (+3.5 ‰ VPDB).

3.1 Mineralogy and Petrography

Mineralogical and petrographic analyses were completed to obtain sample-specific mineralogical data required for interpretation of the porewater results and reconstructive geochemical modelling. This advanced analyses of porewater results will be completed as part of data integration (WP10) activities, so results from the mineralogical and petrographic testing are not discussed in detail in this data report. The mineralogical testing completed as part of this work package (WP04C) complements more substantial mineralogical testing program that was completed by SGS Laboratories and the British Geologic Survey as part of WP04D.

Figure 11 shows the major mineralogical components (by XRD) for core porewater (PW) samples that were also used for the PA method. Shale samples from the Cabot Head, Queenston, Georgian Bay, and Blue Mountain formations show a variable mineralogy, including significant proportions of clay minerals and quartz. Calcite is the most abundant mineral in samples from the Ordovician limestones, except for the porous dolomite-dominated sample from near the top of the Sherman Fall. The sample from the Shadow Lake shows similar proportions of quartz and clay minerals, consistent with a logged lithology of a silty/shaley sandstone.

Complete results from the mineralogical and petrographic analyses are provided in Appendix C.

Figure 10 Profile of Methane and Carbon Dioxide Concentrations and Isotopes from SB_BH01 Core Samples

1.4000 base 00 	Depth	Depth W/D1		X-Ray Diffraction (XRD) Mineralogy (%)									
0 Overfulning (Salemany) 100 Ucase Manifestione 100 Bass Island 150 Bass Island 280 Salina 280 Salina 280 Salina 280 Gatelinand (Catalinand)	1:4000 (m along core axis)	Period	Formations, Units & Members	0 Calcite		Dolomite	Ankerite	Quartz	Clay	Feldspar	Ottrer 0100		
50 -	- 0 -		Overburden (Quaternary)										
- 50 - 60			Lucas										
A Bons Blance 100 Bass Bland 200 Bass Bland 200 Guelph 300 Guelph 300 Guelph 300 Guelph Guelph Minitodin 450 Guelph Guelph Guelph Guelph <td< td=""><td>- 50 -</td><td>vonia</td><td>Amherstburg</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	- 50 -	vonia	Amherstburg										
100 Base bland		De	Bois Blanc										
150 -	- 100 -		Dana Jaland										
150	-		Bass Island										
200 - Saina - </td <td>- 150 -</td> <td></td>	- 150 -												
200													
Salina	- 200 -		Salina										
250 - 60 300 - Cuelph 300 - Cuelph 400 - - 400 - - - Assport - 100 - - - - - 400 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<			Salina										
300 - Guelph -<	- 250 -	rian											
300 Gaelph 350 Geat bland, Gasport, Lors Head, Sasport, Sa		Silu											
- 350 - Guilph -	- 300 -												
- 350 - 350 - 400 - 350 - 350 - 450			Guelph										
400 Image: Constrained Billing 450 Image: Constrained Billing 450 Image: Constrained Billing 550 Image: Constrained Billing 550 Image: Constrained Billing 600 Image: Constrained Billing 700 Image: Constrained Billing 750 Image: Constrained Billing 6ult Image: Constrained Billing 750 Image: Constrained Billing 6ult Image: Constrained Billing 750 Image: Constrained Billing 6ult	- 350 -		Goat Island, Gasport										
400 Cabot Had Cabot Had Cabot Had 0uenston Cabot Had 0uenston Cabot Had 600 Cabot Had Blue Cabot Had Blue Cabot Had Blue Cabot Had Couenston Cabot Had Georgian Cabot Had Blue Cabot Had Blue Cabot Had Blue Cabot Had Cobourg Cabourdan Cobourg Cabourdan Cobourg Cabourdan Cobourdan Cabourdan Fail Cabourdan Sherman Cabourdan Fail Cabourdan Guil River Cabourdan Shade Cabourdan				Lions Head &									
450 Manitoulin 500 Queenston 550 Georgian Blue Georgian Blue Cobourg (Collowacc) Cobourg (Collowacc) Cobourg (Collowacc) Cobourg Kirkfield Cobourg Kirkfield Cobourg Stadew Stadew	- 400 -		Fossil Hill										
450 Queenston 500 Georgian 550 Georgian 600 Blue Mountain Gourge Cobourg Cobourg (Collingwood) Gourge Cobourg Gourge Fail Fail 750 Gull River 880 Gull River 850 Shadow			Cabot Head Manitoulin										
Gueenston Georgian 550 Georgian Blue Mountain 650 Goburg Cobourg Coburg Cobourg Coburg Cobourg Cobourg Cobourg Georgian Fail Fail 750 Kirkfield 6800 Gobourg Sherman Fail Fail Gobourg Gobourg Gobourg Cobourg Gobourg Goburg Gobourg Gobourg Gobourg Gobourg Gobourg Gobourg Gobourg Gobourg Gobourg Gobourg Gobourg Guil River Guil River 850 Shadow	- 450 -	-	·/										
500 - Georgian Bay -			Queenston Georgian Bay										
 550 - 600 - 600 - 650 - 700 - 770 - 750 - Kirkfield Cobourg Cobourg<!--</td--><td>- 500 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	- 500 -												
- 550 - - Georgian Bay -													
Blue Mountain Cobourg Cobour	- 550 -	-											
 600 - Blue Mountain 650 - 650 - 650 - Cobourg (Collingwood) 700 - 700 - Sherman Fall 750 - Kirkfield 800 - Coboconk Gull River 850 - Shadow Lake 													
Blue Mountain Cobourg Cobourg (Collingwood) Cobourg Cobourg Cobourg (Lower) Sherman Fall Sherman Fall Sherman Goboconk Sherman Goboconk Sherman Sherman Sherman Fall Sherman Sherman Sherman Sherman <t< td=""><td>- 600 -</td><td></td><td>160017</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	- 600 -		160017										
 650 - Gourg (Collingwood) 700 - Sherman Fall 750 - Kirkfield 800 - Coboconk Gull River 850 - Shadow Lake 	_	au	Blue Mountain										
- 700 - Coburg (Lower) -	- 650 -	dovici	Cobourg										
(Lower) Sherman Fall Sherman Fall Sherman Kirkfield Sherman 600 Sherman Gull River Shadow 850 Shadow		ō	Cobourg										
 Sherman Fall 750 - Kirkfield 800 - Coboconk Gull River 850 - Shadow Lake 	- 700 -		(Lower)										
- 750 - Kirkfield Kirkfield Coboconk - 800 - Gull River - 850 - Shadow Lake	_		Sherman Fall										
Kirkfield Kirkfield - 800 - Coboconk Gull River - 850 - Shadow Lake	- 750 -												
- 800 - Coboconk Gull River - 850 - Shadow Lake			Kirkfield										
Gull River - 850 - Shadow Lake	800 -		Coboconk										
- 850 - Shadow Lake	000		Gull River										
Shadow Lake	850												
	- 000 -		Lake										
Precambrian	000		Precambrian										
	900 -												

Figure 11 Mineralogical Components, by X-Ray Diffraction, SB_BH01 Core Samples

4 CONCLUSIONS

Geofirma Engineering Ltd. completed sampling and preservation of core samples as part of porewater characterization activities (Work Package 04C) at SB_BH01, the first of two boreholes in the South Bruce site that were drilled as part of the NWMO's Phase 2 Geoscientific Preliminary Field Investigations. The porewater samples were collected and preserved between June 1 to September 16, 2021.

A total of 121 preserved samples were sent to the University of Ottawa for analysis, including:

- 30 pairs of porewater (PW) samples for porewater analysis. Each pair included one PW sample that was used for vacuum distillation leaching (VDL), and a second PW sample that was used for paper absorption (PA) and mineralogical analyses.
- 2 archive (AR) samples as replacements for PW samples that were damaged in transit from the drill site to the laboratory.
- 29 dissolved gas (DG) samples collected in IsoJars[™] for measurement of carbon dioxide and methane concentrations and their associated isotopic ratios (δ²H, δ¹³C).
- 30 noble gas (NG) samples that were encapsulated in air-tight stainless-steel vessels for measurement of noble gas concentrations and isotopic compositions.

Porewater extraction and laboratory testing completed as part of porewater characterization activities for SB_BH01, including the accompanying mineralogical and petrographic testing, was coordinated by the University of Ottawa, with a subset of analyses completed by subcontracted research and commercial laboratories.

Results from the porewater characterization program provide high resolution depth profiles of key porewater parameters, including major/minor ionic composition, environmental isotopes, radiohalides, dissolved gases, and noble gases. Results presented in this report show laboratory-reported values, but were not corrected for mineral dissolution, halite under-saturation, and anion exclusion processes. Detailed interpretation of the porewater results, including geochemical modelling, will be completed separately as part of data integration activities (Work Package 10).

Notable results from the porewater characterization program at SB_BH01 include:

- Comparison of CI and Na concentrations measured using the VDL and PA methods show substantial variation, with PA-derived concentrations that were 1-3 orders of magnitude higher than corresponding concentrations obtained using the VDL method. The variation may reflect differences in the proportional uptake of clay-bound, capillary-bound, and mobile porewaters.
- Na and CI dominate the ionic composition of porewaters, particularly below the Salina Group.
- TDS concentrations calculated assuming a water density of 1000 kg/m³ were below 10 g/L in the Devonian units, between 18-111 g/L in the Salina Group and Guelph Formation and increased values through the lower Silurian and Ordovician aged strata to approximately 250-350 g/L below the Georgian Bay Formation.

- Profiles for environmental isotopes (¹⁸O, ²H), radiohalides (³⁶Cl, ¹²⁹I) and ⁸⁷Sr/⁸⁶Sr in porewater consistently show variation in isotopic ratios with depth across the Paleozoic bedrock sequence. Inflections were generally observed in the depth profiles for these analytes near the top of the Salina Group, near the top of the Ordovician shales (Queenston Formation), and near the top of the Ordovician carbonates (Cobourg Fm).
- A profile of air-normalized ³He/⁴He ratios (xRa) shows three distinct depth intervals with similar He isotopic ratios. Samples from the Bois Blanc and Bass Island have xRa values that are equivalent to or slightly enriched in ³He relative to air, while samples from the Salina Group to the top of the Sherman Fall Formation have xRa ratios between 0.023-0.045. There is an inflection in the xRa profile around 725 m, below which xRa ratios were between 0.051-0.067
- Methane concentrations generally increased with depth, with the highest concentrations observed from samples near the top of the Cobourg Formation and the top of the Sherman Fall Formation. Profiles of δ^{13} C and δ^{2} H in methane show relative enrichment of both isotopes with depth.

5 REFERENCES

Altinier, M.V., S. Savoye, J.-L. Michelot, C. Beaucaire, M. Massault, D. Tessier and N.H. Waber, 2007. The isotopic composition of pore-water from Tournemire argillite (France): An inter-comparison study. Physics and Chemistry of the Earth, Vol. 32, pp. 209-218.

Armstrong, D.K. and Carter T.R, 2010. Special volume 7: the Subsurface Paleozoic Stratigraphy of Southern Ontario (Open file report, 0826-9580; 6191). Ministry of Energy, Northern Development and Mines

Clark, I.D., T. Al, M. Jensen, L. Kennell, M. Mazurek, R. Mohapatra and K.G. Raven, 2013. Paleozoicaged brine and authigenic helium preserved in an Ordovician shale aquiclude. Geology, Vol. 41, pp. 951-954

Celejewski, M, D. Barton and T. Al, 2018. Measurement of Cl–Br ratios in porewater of clay rich rocks – A comparison of the crush and leach and paper absorption methods, Geofluids, Special Issue on Aquitard Fluids and Gases.

Celejewski, M. L. Scott and T. Al, 2014. An absorption method for extraction and characterization of porewater from low-permeability rocks using cellulosic sheets. Applied Geochemistry, Vol. 49, pp. 22-30

Geofirma Engineering Ltd. 2022. WP03 Data Report: Geological and Geotechnical Core Logging, Photography, and Sampling for SB_BH01, Phase 2 Initial Borehole Drilling and Testing, South Bruce. Prepared for: Nuclear Waste Management Organization, Toronto, Ontario. Revision 0.

Intera Engineering Ltd., 2011. Descriptive Geosphere Site Model, OPG's Deep Geologic Repository for Low & Intermediate Level Waste, Report NWMO DGR-TR-2011-24, March.

WP04C Data Report: Porewater Extraction and Analyses, and Petrographic Analysis for SB_BH01, Phase 2 Initial Borehole Drilling and Testing, South Bruce

Appendix A

SB_BH01 Porewater (PW), Dissolved Gas (DG), and Noble Gas (NG) Sample Summary

Appendix A - SB_BH01 Porewater, Dissolved Gas, and Noble Gas Sample Summary

Comple ID	Comple Tupe	From (m)	To (m)	Data Sampled	Lithology	Commonte
Sample ID	Sample Type	FIOIII (III)	10 (11)	Date Sampled	Lithology	Comments Shipped to LLOttawa as nor NWMO direction for additional analysis as a sample set with
SB_BH01_AR001	AR	43.93	44.17	2021-06-01 10:45	Limestone	
SB BH01 AB013	۸R	270.12	270 / 3	2021-07-20 1/-39	Dolostone	Applyzed in the place of SR_RH01_RW012, which was damaged during transport to LLOttawa
SB_BH01_AR034	AR	638.64	638.88	2021-08-27 21:06	Shale	
SB_BH01_DG001	DG	78.13	78.23	2021-06-15 21:00	Limestone	
SB BH01 DG002	DG	112.05	112.15	2021-06-20 3:30	Dolostone	
SB BH01 DG004	DG	168.56	168.66	2021-07-17 3:00	Shale	Top and bottom depth updated (21-Sep-23) as part of CAR23-008
SB BH01 DG005	DG	203.57	203.71	2021-07-18 9:55	Shale	
SB_BH01_DG006	DG	228.93	229.07	2021-07-19 18:21	Anhydrite	
SB BH01 DG007	DG	264.52	264.64	2021-07-20 13:26	Dolostone	
SB_BH01_DG008	DG	307.6	307.7	2021-07-31 5:43	Limestone	
SB_BH01_DG009	DG	324.49	324.59	2021-08-02 15:40	Dolostone	Top and bottom depth updated (21-Sep-23) as part of CAR23-008
SB_BH01_DG010	DG	345.09	345.19	2021-08-03 6:52	Limestone	
SB_BH01_DG012	DG	401.82	401.95	2021-08-07 22:15	Shale	
SB_BH01_DG013	DG	437.76	437.9	2021-08-10 12:15	Shale	
SB_BH01_DG014	DG	480.02	480.13	2021-08-13 3:40	Shale	Green calcareous shale
SB_BH01_DG015	DG	524.92	525.02	2021-08-15 11:00	Shale	
SB_BH01_DG016	DG	563.96	564.06	2021-08-18 10:45	Shale	Shale interbedded with hard carbonate (calcareous) sand and minor limestone
SB_BH01_DG017	DG	612.24	612.34	2021-08-26 2:31	Shale	
SB_BH01_DG018	DG	631.85	631.95	2021-08-27 8:35	Shale	
SB_BH01_DG019	DG	637.72	637.82	2021-08-27 13:14	Shale	Originally archived, submitted to U Ottawa on Nov 3, 2021
SB_BH01_DG020	DG	650.43	650.55	2021-08-28 1:37	Limestone	
SB_BH01_DG021	DG	666.11	666.22	2021-08-29 12:08	Limestone	
SB_BH01_DG022	DG	684.14	684.25	2021-08-30 2:41	Limestone	Extra time consitius suite from degesing secret stained literature
SB_BH01_DG024		717.66	093.93 717 77	2021-08-30 14:00	Limestone	Extra time sensitive suite from degassing coarse grained limestone
		740 16	749.26	2021-09-02 10:06	Limestone	
		764 27	764 40	2021-09-09 17:25	Limestone	Hard limestone and shales
SB_BH01_DG027	DG	786 35	786.40	2021-09-11 2.45	Limestone	
SB_BH01_DG028	DG	819.6	819 7	2021-09-12 22:29	Limestone	
SB_BH01_DG030	DG	844.03	844 14	2021-09-14 17:35	Limestone	Sample contains intact natural fracture with gynsum infill
SB_BH01_DG032	DG	855 19	855.29	2021-09-15 17:13	Sandstone	Glauconitic sandstone: Shadow Lake sample suite
SB BH01 DG033	DG	872.22	872.35	2021-09-16 17:28	Gneiss	
SB BH01 NG001	NG	78.82	78.92	2021-06-15 21:30	Limestone	
SB BH01 NG002	NG	114.88	114.99	2021-06-20 5:30	Dolostone	
SB BH01 NG004	NG	174.21	174.34	2021-07-17 4:40	Dolostone	Top and bottom depth updated (21-Sep-23/18-Dec-23) as part of CAR23-008
SB_BH01_NG005	NG	205.13	205.27	2021-07-18 13:20	Dolostone	
SB_BH01_NG006	NG	229.13	229.27	2021-07-19 16:35	Shale	
SB_BH01_NG007	NG	264.14	264.3	2021-07-20 11:19	Dolostone	
SB_BH01_NG008	NG	307.47	307.6	2021-07-31 5:38	Limestone	
SB_BH01_NG009	NG	324.1	324.24	2021-08-02 15:45	Dolostone	Top and bottom depth updated (21-Sep-23) as part of CAR23-008
SB_BH01_NG010	NG	345.75	345.86	2021-08-03 11:40	Limestone	
SB_BH01_NG012	NG	403.33	403.45	2021-08-08 2:50	Shale	
SB_BH01_NG013	NG	438.42	438.54	2021-08-10 12:10	Shale	
SB_BH01_NG014	NG	476.59	476.72	2021-08-12 14:50	Shale	
SB_BH01_NG015	NG	525.93	526.05	2021-08-15 14:30	Shale	
SB_BH01_NG016	NG	564.06	564.17	2021-08-18 10:45	Shale	Hard Shale interbedded with carbonate(calcareous) sand and limestone.
SB_BH01_NG017	NG	613.42	613.55	2021-08-26 6:07	Shale	
SB_BH01_NG018	NG	631.3	631.43	2021-08-27 8:30	Snale	
	NG	665.07	666 11	2021-08-28 5:06	Limestone	
	NG	682 50	682 71	2021-00-29 12:08	Limestone	
SB_BH01_NG022	NG	69/ 32	69/ /2	2021-00-50 2:41	Limestono	Extra time sensitive suite from degassing coarse grained limestone
SB_BH01_NG024	NG	718 43	718 57	2021-09-02 16:25	Limestone	
SB_BH01_NG026	NG	748.02	748.16	2021-09-09 17:40	Limestone	
SB_BH01_NG027	NG	764.19	764.32	2021-09-11 2:30	Limestone	Limestone with hard shale layers
SB BH01 NG028	NG	786.6	786.7	2021-09-12 14:01	Limestone	
SB_BH01 NG029	NG	817.6	817.7	2021-09-13 20:45	Limestone	
SB_BH01_NG030	NG	844.23	845.35	2021-09-14 17:59	Limestone	Sample not weighed prior to preservation.
SB_BH01_NG031	NG	852.34	852.45	2021-09-15 6:06	Shale	Conservative early collection of possible Shadow Lake Fm
SB_BH01_NG032	NG	854.71	854.86	2021-09-15 9:05	Sandstone	Weakly glauconitic sand; recollected as NG033
SB_BH01_NG033	NG	855.9	856.06	2021-09-15 11:25	Sandstone	Glauconitic sandstone; Shadow Lake sample suite
SB_BH01_NG034	NG	872.11	872.22	2021-09-16 17:28	Gneiss	
SB_BH01_PW001	PW-VD	78.23	78.47	2021-06-15 21:00	Limestone	
SB_BH01_PW002	PW-VD	112.61	112.85	2021-06-20 3:30	Dolostone	
SB_BH01_PW003	PW-PA	114.08	114.27	2021-06-20 3:30	Dolostone	
SB_BH01_PW006	PW-VD	168.9	169.08	2021-07-17 3:00	Shale	Top and bottom depth updated (21-Sep-23) as part of CAR23-008
SB_BH01_PW007	PW-PA	168.66	168.9	2021-07-17 3:00	Shale	Top and bottom depth updated (21-Sep-23) as part of CAR23-008
SB_BH01_PW008	PW-VD	203.71	203.95	2021-07-18 9:38	Shale	
SB_BH01_PW009	PW-PA	203.95	204.23	2021-07-18 9:45	Shale	
SB_BH01_PW010	PW-VD	228.59	228.88	2021-07-19 16:05	Shale	
SB_BH01_PW011	PW-PA	229.27	229.58	2021-07-19 16:20	Shale	
SB_BH01_PW012	PW-VD	264.3	264.5	2021-07-20 11:04	Dolostone	Package damaged upon receipt at U Ottawa, alternative sample shipped as a replacment (SB_BH01_AR013)
SB_BH01_PW013	PW-PA	263.86	264.14	2021-07-20 10:54	Dolostone	
SB_BH01_PW014	PW-VD	306.77	307.02	2021-07-31 5:40	Limestone	
SB BH01 PW015	PW-PA	307.02	307.17	2021-07-31 5:40	Limestone	

Appendix A - SB_BH01 Porewater, Dissolved Gas, and Noble Gas Sample Summary

Sample ID	Sample Type	From (m)	To (m)	Date Sampled	Lithology	Comments
SB BH01 PW016	PW-VD	323.9	324.1	2021-08-02 15:38	Dolostone	Ton and bottom denth undated (21-Sen-23) as part of CAR23-008
SB_BH01_PW017	PW-PA	324.24	324.1	2021-08-02 15:30	Dolostone	Top and bottom depth updated (21 Sep 23) as part of CAR23-008
SB_BH01_PW018	PW-VD	344.74	344.89	2021-08-03 6:49	Limestone	
SB_BH01_PW019	PW-PA	344.89	345.09	2021-08-03 6:50	Limestone	
SB_BH01_PW022	PW-VD	401.25	401.48	2021-08-07 22:25	Shale	
SB_BH01_PW023	PW-PA	401.48	401.82	2021-08-07 22:10	Shale	
SB BH01 PW024	PW-VD	436.15	436.33	2021-08-10 11:50	Shale	
SB BH01 PW025	PW-PA	436.33	436.59	2021-08-10 12:04	Shale	
SB_BH01_PW026	PW-PA	476.28	476.59	2021-08-12 14:50	Shale	
SB BH01 PW027	PW-VD	476.75	476.92	2021-08-12 14:50	Shale	
SB BH01 PW028	PW-PA	525.17	525.36	2021-08-15 11:00	Shale	
SB BH01 PW029	PW-VD	524.71	524.92	2021-08-15 11:00	Shale	Shale sample broke into 2 pieces during collection and preservation
SB BH01 PW030	PW-PA	526.8	527.06	2021-08-15 14:30	Shale	Alternative to PW029 which was damaged during sampling
SB BH01 PW031	PW-VD	563.76	563.96	2021-08-18 10:35	Shale	Hard Shale interbedded with carbonate(calcareous) sand and limestone
SB BH01 PW032	PW-PA	564.17	564.43	2021-08-18 13:35	Shale	Hard Shale interbedded with carbonate(calcareous) sand and limestone.
SB BH01 PW033	PW-VD	611.86	612.08	2021-08-26 2:27	Shale	
SB BH01 PW034	PW-PA	611.64	611.86	2021-08-26 2:30	Shale	
SB BH01 PW035	PW-VD	631.43	631.61	2021-08-27 8:30	Shale	
SB BH01 PW036	PW-PA	631.61	631.85	2021-08-27 8:35	Shale	
SB BH01 PW037	PW-VD	637.18	637.33	2021-08-27 13:10	Shale	Originally archived as per NWMO request, shipped to U Ottawa for Analysis on Nov 3
SB BH01 PW038	PW-PA	637.33	637.54	2021-08-27 13:13	Shale	Originally archived as per NWMO request, shipped to U Ottawa for Analysis on Nov 3
SB_BH01_PW039	PW-VD	650.25	650.43	2021-08-28 1:47	Limestone	
SB_BH01_PW040	PW-PA	650.02	650.25	2021-08-28 1:48	Limestone	
SB_BH01_PW041	PW-PA	665.53	665.75	2021-08-29 12:08	Limestone	
SB_BH01_PW042	PW-VD	665.75	665.97	2021-08-29 12:08	Limestone	
SB_BH01_PW043	PW-VD	683.71	683.87	2021-08-30 2:40	Limestone	
SB_BH01_PW044	PW-PA	683.87	684.14	2021-08-30 2:40	Limestone	
SB_BH01_PW047	PW-VD	693.93	694.12	2021-08-30 14:00	Limestone	Extra time sensitive suite from degassing coarse grained limestone.
SB_BH01_PW048	PW-PA	694.12	694.32	2021-08-30 14:00	Limestone	Extra time sensitive suite from degassing coarse grained limestone.
SB_BH01_PW049	PW-PA	716.6	716.81	2021-09-02 10:00	Limestone	
SB_BH01_PW050	PW-VD	716.81	716.99	2021-09-02 10:00	Limestone	
SB_BH01_PW051	PW-VD	747.58	747.75	2021-09-09 15:15	Limestone	
SB_BH01_PW052	PW-PA	747.75	748.02	2021-09-09 17:19	Limestone	
SB_BH01_PW053	PW-VD	763.64	763.8	2021-09-11 2:30	Limestone	limestone with shale interbeds
SB_BH01_PW054	PW-PA	763.96	764.19	2021-09-11 2:36	Limestone	
SB_BH01_PW055	PW-VD	786.12	786.35	2021-09-12 12:25	Limestone	
SB_BH01_PW056	PW-PA	785.86	786.12	2021-09-12 12:28	Limestone	
SB_BH01_PW057	PW-VD	818.05	818.26	2021-09-13 20:45	Limestone	
SB_BH01_PW058	PW-PA	818.26	818.58	2021-09-13 20:50	Limestone	
SB_BH01_PW059	PW-VD	843.6	843.78	2021-09-14 17:20	Limestone	
SB_BH01_PW060	PW-PA	843.78	844.03	2021-09-14 17:25	Limestone	Sample contains intact natural fracture with gypsum infill
SB_BH01_PW063	PW-PA	855.29	855.5	2021-09-15 8:58	Sandstone	Glauconitic sandstone; "Porewater 2" of Shadow Lake sample suite
SB_BH01_PW064	PW-VD	855.03	855.18	2021-09-15 8:58	Sandstone	Contains transition from weakly glauconitic sand to strongly glauconitic sand at 855.18; recollected as PW065
SB_BH01_PW065	PW-VD	856.42	856.58	2021-09-15 11:01	Sandstone	Glauconitic sandstone; "Porewater 1" of Shadow Lake sample suite
SB_BH01_PW066	PW-VD	871.7	871.87	2021-09-16 16:27	Gneiss	
SB_BH01_PW067	PW-PA	871.87	872.11	2021-09-16 17:27	Gneiss	

Ar = Archive

DG = Dissolved Gas

NG = Noble Gas

PW-VD = Porewater, Vacuum Distillation Leaching Method

PW-PA = Porewater, Paper Absorption Method

WP04C Data Report: Porewater Extraction and Analyses, and Petrographic Analysis for SB_BH01, Phase 2 Initial Borehole Drilling and Testing, South Bruce

Appendix B

Results Tables for Porewater Characterization Activities at SB_BH01

C.1. – Porewater Sample Results – VDL C.2 – Porewater Sample Results – PA C.3 – Noble Gas Sample Results C.4. Dissolved Gas Sample Results

	Sample ID	SB_BH01_PW001	SB_BH01_PW002	SB_BH01_PW006	SB_BH01_PW008	SB_BH01_PW010	SB_BH01_PW014	SB_BH01_PW016
Major/Minor Ions								
Aluminum (Al)	mmol/kgw	0.03	0.03	0.01	0.09	0.01	0.14	0.02
Boron (B)	mmol/kgw	0.94	0.74	4.27	25.11	3.31	3.55	0.66
Bromine (Br)	mmol/kgw	0.03	0.02	0.44	3.06	1.11	3.78	0.44
Calcium (Ca)	mmol/kgw	26.30	17.39	110.09	75.60	150.42	231.12	32.17
Chlorine (Cl)	mmol/kgw	9.96	5.40	162.54	1142.17	358.83	1442.38	528.42
lodine (I)	mmol/kgw	0.00	0.00	0.00	0.01	0.00	0.03	0.00
Iron (Fe)	mmol/kgw	0.00	0.00	0.00	0.01	0.02	0.03	0.00
Lithium (Li)	mmol/kgw	0.01	0.01	0.06	0.72	0.11	1.01	0.16
Magnesium (Mg)	mmol/kgw	13.21	13.37	26.61	37.66	29.61	115.42	30.86
Manganese (Mn)	mmol/kgw	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Potassium (K)	mmol/kgw	0.14	0.13	5.77	48.19	4.96	17.57	3.69
Rubidium (Rb)	mmol/kgw	0.00	0.00	0.00	0.01	0.00	0.01	0.00
Silicon (Si)	mmol/kgw	17.43	0.57	6.40	49.67	6.07	65.39	8.89
Sodium (Na)	mmol/kgw	8.56	5.35	132.26	1365.38	187.81	877.16	438.74
Strontium (Sr)	mmol/kgw	0.33	3.62	0.61	0.40	1.20	3.78	0.33
Sulfur (S)	mmol/kgw	40.80	35.48	132.24	255.11	111.56	112.52	40.72
Environmental Isotopes								
δ ¹⁸ Ο	‰VSMOW	-11.2	-11.6	-7.8	-10.5	-8.1	-8.5	-10.5
δ ² H	‰VSMOW	-79.2	-80.4	-67.1	-29.5	-43.6	-67.3	-74.8
Radiohalides and Strontium Isotopes								
Chlorine-37 (δ ³⁷ Cl)	‰ SMOC	-0.08	0.26	0.26	-0.91	0.58	-0.37	-0.35
Chlorine-36 (³⁶ Cl/Cl)		1.19E-14	2.03E-14	4.56E-15	4.96E-15	2.75E-15	8.54E-16	1.84E-15
lodine-129 (¹²⁹ l)	atoms/kgw	1.69E+00	BDL	3.72E-01	2.03E-01	1.21E+00	1.56E-01	5.23E+00
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.70849	0.70794	0.70864	0.70907	0.70878	0.70870	0.70854
BDL = Below Detection Limit								

	Sample ID	SB_BH01_PW018	SB_BH01_PW022	SB_BH01_PW024	SB_BH01_PW027	SB_BH01_PW028	SB_BH01_PW031	SB_BH01_PW034
Major/Minor Ions								
Aluminum (Al)	mmol/kgw	0.19	0.05	0.02	0.03	0.03	0.02	0.03
Boron (B)	mmol/kgw	10.61	6.30	6.93	5.71	5.41	6.07	4.99
Bromine (Br)	mmol/kgw	3.54	2.73	15.82	17.79	19.76	23.08	20.11
Calcium (Ca)	mmol/kgw	138.94	148.83	584.64	648.16	681.63	874.92	748.59
Chlorine (Cl)	mmol/kgw	2526.73	2528.57	3912.65	4275.10	4749.18	5387.32	4941.70
lodine (I)	mmol/kgw	0.03	0.01	0.04	0.06	0.07	0.07	0.06
Iron (Fe)	mmol/kgw	0.03	0.02	0.00	0.00	0.02	0.01	0.00
Lithium (Li)	mmol/kgw	0.62	0.47	1.09	1.56	1.75	2.18	1.77
Magnesium (Mg)	mmol/kgw	96.20	46.96	252.60	267.33	239.86	257.60	218.72
Manganese (Mn)	mmol/kgw	0.00	0.00	0.05	0.08	0.21	0.29	0.26
Potassium (K)	mmol/kgw	34.39	142.15	228.76	259.26	300.28	311.38	295.69
Rubidium (Rb)	mmol/kgw	0.01	0.03	0.06	0.07	0.08	0.08	0.09
Silicon (Si)	mmol/kgw	92.77	13.28	18.49	18.30	17.69	17.38	18.94
Sodium (Na)	mmol/kgw	2230.70	2032.52	2051.97	2279.80	2548.69	2739.73	2594.43
Strontium (Sr)	mmol/kgw	3.08	1.04	3.73	4.97	5.13	7.04	7.52
Sulfur (S)	mmol/kgw	148.88	22.12	24.15	33.33	9.21	15.83	8.60
Environmental Isotopes								
δ ¹⁸ Ο	‰VSMOW	-9.9	-10.5	-6.3	-6.2	-5.5	-4.5	-4.8
δ ² H	‰VSMOW	-72.2	-67	-48.2	-48.2	-43.6	-42	-41.6
Radiohalides and Strontium Isotopes								
Chlorine-37 (δ ³⁷ Cl)	‰ SMOC	0.46	-0.50	0.44	0.43	0.43	0.24	0.18
Chlorine-36 (³⁶ Cl/Cl)		3.47E-15	2.70E-15	4.54E-15	4.84E-15	6.10E-15	6.15E-15	6.43E-15
lodine-129 (¹²⁹ l)	atoms/kgw	7.37E-02	1.08E+00	5.50E-01	5.83E-01	1.44E+00	6.40E-01	3.39E-01
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.70842	0.71041	0.70992	0.71001	0.71007	0.71018	0.71008
BDL = Below Detection Limit								

	Sample ID	SB_BH01_PW035	SB_BH01_PW037	SB_BH01_PW039	SB_BH01_PW042	SB_BH01_PW043	SB_BH01_PW048	SB_BH01_PW050
Major/Minor Ions								
Aluminum (Al)	mmol/kgw	0.02	0.03	0.21	0.15	0.09	0.38	0.28
Boron (B)	mmol/kgw	4.77	5.00	22.62	19.27	9.78	26.79	20.12
Bromine (Br)	mmol/kgw	18.67	17.19	19.63	20.77	19.03	25.03	20.71
Calcium (Ca)	mmol/kgw	756.32	750.27	849.03	771.38	674.47	1896.54	632.69
Chlorine (Cl)	mmol/kgw	4645.77	4634.35	5260.69	5359.37	4774.21	23700.61	5111.04
lodine (I)	mmol/kgw	0.05	0.06	0.08	0.07	0.07	0.10	0.08
Iron (Fe)	mmol/kgw	0.01	0.01	0.02	0.08	0.00	0.62	0.01
Lithium (Li)	mmol/kgw	1.14	1.17	3.95	2.58	1.89	2.47	3.08
Magnesium (Mg)	mmol/kgw	176.18	189.43	387.26	369.95	304.24	629.97	341.12
Manganese (Mn)	mmol/kgw	0.19	0.23	0.04	0.03	0.03	0.06	0.01
Potassium (K)	mmol/kgw	253.63	241.49	288.90	259.25	288.32	241.63	270.79
Rubidium (Rb)	mmol/kgw	0.06	0.06	0.10	0.07	0.08	0.05	0.07
Silicon (Si)	mmol/kgw	18.81	19.58	144.26	119.09	59.47	256.03	210.44
Sodium (Na)	mmol/kgw	2562.84	2565.43	2915.90	2790.29	2665.68	19124.43	2859.83
Strontium (Sr)	mmol/kgw	6.34	6.90	12.10	10.23	8.51	25.02	10.23
Sulfur (S)	mmol/kgw	8.18	17.05	432.47	154.45	70.44	946.50	102.79
Environmental Isotopes								
δ ¹⁸ Ο	‰VSMOW	-5.2	-5.5	-4.4	-5.1	-4.8	-0.5	-5.7
$\delta^2 H$	‰VSMOW	-42.3	-41.4	-40.4	-40.7	-41.5	-43.1	-40
Radiohalides and Strontium Isotopes								
Chlorine-37 (δ ³⁷ Cl)	‰ SMOC	0.07	0.06	0.31	0.15	0.19	0.59	0.04
Chlorine-36 (³⁶ Cl/Cl)		6.38E-15	6.05E-15	4.25E-15	3.22E-15	3.04E-15	1.96E-15	3.15E-15
lodine-129 (¹²⁹ l)	atoms/kgw	1.09E+00	6.40E-01	1.82E-02	3.85E-02	2.10E-01	2.75E-03	8.54E-02
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.71041	0.71025	0.70897	0.70961	0.71004	0.70891	0.70927
BDL = Below Detection Limit								

	Sample ID	SB_BH01_PW051	SB_BH01_PW053	SB_BH01_PW055	SB_BH01_PW057	SB_BH01_PW059	SB_BH01_PW064	SB_BH01_PW065
Major/Minor Ions								
Aluminum (Al)	mmol/kgw	0.26	0.08	0.44	0.25	0.04	0.39	1.62
Boron (B)	mmol/kgw	17.97	8.25	16.17	20.35	2.02	32.29	2.91
Bromine (Br)	mmol/kgw	17.34	18.47	25.33	20.90	26.87	21.89	23.54
Calcium (Ca)	mmol/kgw	532.10	600.86	1322.71	853.44	1722.95	1060.58	1273.68
Chlorine (Cl)	mmol/kgw	4413.18	4473.88	5741.60	5091.85	5996.85	5410.47	4998.02
lodine (I)	mmol/kgw	0.07	0.06	0.06	0.06	0.07	0.08	0.08
Iron (Fe)	mmol/kgw	0.01	0.00	0.04	0.02	0.01	0.03	0.01
Lithium (Li)	mmol/kgw	2.68	2.06	3.48	0.74	0.99	0.92	0.28
Magnesium (Mg)	mmol/kgw	227.29	186.95	635.93	451.50	513.19	352.60	223.73
Manganese (Mn)	mmol/kgw	0.01	0.01	0.02	0.02	0.08	0.08	0.15
Potassium (K)	mmol/kgw	272.63	270.69	55.19	129.58	50.60	172.71	150.73
Rubidium (Rb)	mmol/kgw	0.07	0.05	0.02	0.05	0.02	0.08	0.06
Silicon (Si)	mmol/kgw	162.45	61.78	12.55	6.89	26.88	16.40	1.03
Sodium (Na)	mmol/kgw	2740.85	2677.52	2043.98	2687.38	2357.30	2767.80	2205.16
Strontium (Sr)	mmol/kgw	8.49	6.93	24.63	12.66	14.21	19.95	12.04
Sulfur (S)	mmol/kgw	132.21	61.36	267.01	191.45	474.44	221.65	197.21
Environmental Isotopes								
δ ¹⁸ Ο	‰VSMOW	-6.9	-6.7	-2.3	-7.5	-3.8	-7.2	-5.3
δ ² H	‰VSMOW	-40.5	-39.4	-38.5	-38.9	-33.1	-40.6	-37.4
Radiohalides and Strontium Isotopes								
Chlorine-37 (δ ³⁷ Cl)	‰ SMOC	0.19	0.16	0.07	0.11	0.30	0.20	0.27
Chlorine-36 (³⁶ Cl/Cl)		1.99E-15	2.41E-15	1.76E-15	1.50E-15	1.49E-15	3.16E-15	3.14E-15
lodine-129 (¹²⁹ l)	atoms/kgw	8.66E-02	2.56E-01	5.42E-02	7.12E-02	5.62E-01	7.35E-02	5.26E-01
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.70927	0.70897	0.70929	0.70939	0.70975	0.70947	0.71037
BDL = Below Detection Limit								

	Sample ID	SB_BH01_PW066	SB_BH01_AR013
Major/Minor Ions			
Aluminum (Al)	mmol/kgw	92.93	0.02
Boron (B)	mmol/kgw	80.83	0.80
Bromine (Br)	mmol/kgw	9.55	3.11
Calcium (Ca)	mmol/kgw	516.08	251.43
Chlorine (Cl)	mmol/kgw	3323.91	1914.44
lodine (I)	mmol/kgw	0.00	0.00
Iron (Fe)	mmol/kgw	0.21	0.00
Lithium (Li)	mmol/kgw	1.33	1.06
Magnesium (Mg)	mmol/kgw	47.48	58.80
Manganese (Mn)	mmol/kgw	0.03	0.00
Potassium (K)	mmol/kgw	44.96	19.63
Rubidium (Rb)	mmol/kgw	0.01	0.01
Silicon (Si)	mmol/kgw	114.56	9.53
Sodium (Na)	mmol/kgw	2661.36	1292.24
Strontium (Sr)	mmol/kgw	3.22	2.05
Sulfur (S)	mmol/kgw	12.81	22.30
Environmental Isotopes			
δ ¹⁸ O	‰VSMOW	-7.4	-7.2
δ ² H	‰VSMOW	-38.3	-58.2
Radiohalides and Strontium Isotopes			
Chlorine-37 (δ ³⁷ Cl)	‰ SMOC	0.24	-0.30
Chlorine-36 (³⁶ Cl/Cl)		6.08E-15	8.93E-16
lodine-129 (¹²⁹ l)	atoms/kgw	7.54E-03	3.93E+00
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.71311	0.70837
BDL = Below Detection Limit			

Sample ID		SB_BH01_PW003	SB_BH01_PW007	SB_BH01_PW009	SB_BH01_PW011	SB_BH01_PW013	SB_BH01_PW015	SB_BH01_PW017
Major/Minor Ions								
Barium (Ba)	mmol/kgw	0.001	0.006	0.041	0.004	0.003	0.005	0.001
Bromine (Br)	mmol/kgw	0.00	3.09	7.04	27.12	0.47	1.05	0.37
Calcium (Ca)	mmol/kgw	0.47	129.16	94.83	84.16	3.54	7.56	4.36
Chlorine (Cl)	mmol/kgw	0.88	904.40	1945.77	5990.89	363.23	648.71	451.69
Lithium (Li)	mmol/kgw	0.004	0.958	2.222	10.149	0.178	0.375	0.145
Magnesium (Mg)	mmol/kgw	4.13	60.69	54.49	408.31	20.77	25.02	25.58
Potassium (K)	mmol/kgw	BDL	5.18	19.06	41.41	1.64	2.81	BDL
Sodium (Na)	mmol/kgw	0.88	620.00	1844.80	3759.52	305.85	544.85	458.03
Strontium (Sr)	mmol/kgw	0.26	1.12	0.80	6.41	0.46	0.65	0.30
Sulfate (SO ₄)	mmol/kgw	7.03	23.36	55.66	34.52	34.49	19.70	46.77
Radiohalides and Strontium Isotopes								
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.708306	0.708621	0.708598	0.708539	0.708807	0.708511	0.708865

Sample ID		SB_BH01_PW019	SB_BH01_PW023	SB_BH01_PW025	SB_BH01_PW026	SB_BH01_PW029	SB_BH01_PW030	SB_BH01_PW032
Major/Minor Ions								
Barium (Ba)	mmol/kgw	0.034	0.020	0.032	0.070	0.077	0.049	0.027
Bromine (Br)	mmol/kgw	2.85	7.32	55.54	59.93	74.59	57.17	53.45
Calcium (Ca)	mmol/kgw	125.55	552.40	2162.54	2441.03	2888.46	2444.02	2309.09
Chlorine (Cl)	mmol/kgw	3086.64	5031.83	9674.88	10438.96	12128.20	10021.30	9352.21
Lithium (Li)	mmol/kgw	0.631	2.307	8.089	8.524	9.787	7.777	7.282
Magnesium (Mg)	mmol/kgw	64.78	207.60	405.53	435.92	452.59	423.64	397.46
Potassium (K)	mmol/kgw	12.04	57.40	108.39	107.63	123.25	103.19	87.96
Sodium (Na)	mmol/kgw	3014.04	3861.44	4409.84	4638.87	5521.90	4449.70	3974.75
Strontium (Sr)	mmol/kgw	1.03	6.33	15.58	19.95	25.29	21.57	20.76
Sulfate (SO ₄)	mmol/kgw	131.50	17.68	42.92	46.68	46.04	37.28	40.47
Radiohalides and Strontium Isotopes								
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.709079	0.709762	0.709870	0.709919	0.709975	0.710008	0.710002

Sample ID		SB_BH01_PW033	SB_BH01_PW036	SB_BH01_PW038	SB_BH01_PW040	SB_BH01_PW041	SB_BH01_PW044	SB_BH01_PW047
Major/Minor Ions								
Barium (Ba)	mmol/kgw	0.069	0.094	0.119	0.183	0.091	0.134	0.209
Bromine (Br)	mmol/kgw	71.91	67.76	78.55	82.27	68.37	77.96	72.18
Calcium (Ca)	mmol/kgw	2905.12	2559.75	2746.37	1702.89	2598.16	2548.76	2691.74
Chlorine (Cl)	mmol/kgw	11596.27	10567.90	11983.10	13230.67	11015.17	11641.85	14674.04
Lithium (Li)	mmol/kgw	9.623	9.302	11.123	18.371	10.852	13.302	15.330
Magnesium (Mg)	mmol/kgw	455.94	369.84	368.93	381.08	607.10	500.05	798.48
Potassium (K)	mmol/kgw	108.66	99.40	113.41	151.11	93.38	105.99	147.06
Sodium (Na)	mmol/kgw	4932.65	4649.31	5568.49	8359.14	4585.76	5480.95	7209.85
Strontium (Sr)	mmol/kgw	29.73	26.87	27.98	15.48	27.96	27.89	31.10
Sulfate (SO ₄)	mmol/kgw	51.01	35.22	39.06	25.01	36.85	22.00	514.57
Radiohalides and Strontium Isotopes								
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.710024	0.710031	0.710034	0.709948	0.709979	0.709983	0.709802

Sample ID		SB_BH01_PW049	SB_BH01_PW052	SB_BH01_PW054	SB_BH01_PW056	SB_BH01_PW058	SB_BH01_PW060	SB_BH01_PW063
Major/Minor Ions								
Barium (Ba)	mmol/kgw	0.128	0.125	0.153	0.185	0.134	0.095	0.036
Bromine (Br)	mmol/kgw	49.68	77.45	101.82	57.64	74.89	40.66	50.94
Calcium (Ca)	mmol/kgw	2228.10	1853.89	1001.42	2401.21	2872.66	186.96	2360.38
Chlorine (Cl)	mmol/kgw	8927.63	10803.40	13979.40	10004.70	11539.83	7510.93	8573.14
Lithium (Li)	mmol/kgw	7.710	10.853	19.201	6.072	4.110	2.219	2.072
Magnesium (Mg)	mmol/kgw	456.92	209.69	96.52	705.35	744.60	580.84	398.32
Potassium (K)	mmol/kgw	83.80	101.45	164.29	57.52	63.17	35.66	50.34
Sodium (Na)	mmol/kgw	3793.01	6465.28	11361.84	3935.47	4628.79	2822.61	3158.76
Strontium (Sr)	mmol/kgw	27.46	20.68	9.25	28.85	34.53	18.90	28.42
Sulfate (SO ₄)	mmol/kgw	45.17	26.55	18.50	35.79	55.45	32.16	34.42
Radiohalides and Strontium Isotopes								
Strontium isotope ratio (⁸⁷ Sr/ ⁸⁶ Sr)		0.709902	0.710049	0.709911	0.709794	0.709895	0.709909	0.710051

SB_BH01 - WP04C Data Report

	Sample ID	SB_BH01_NG001	SB_BH01_NG002	SB_BH01_NG004	SB_BH01_NG005	SB_BH01_NG006	SB_BH01_NG007	SB_BH01_NG008
Noble Gas Concentrations								
Helium (He) - total	cc/ccw	8.13E-07	1.30E-05	3.19E-04	9.60E-04	7.87E-04	2.48E-04	2.16E-04
⁴ He	cc/ccw	8.13E-07	1.30E-05	3.19E-04	9.60E-04	7.87E-04	2.48E-04	2.16E-04
³ He	cc/ccw	1.17E-12	2.49E-11	1.03E-11	4.29E-11	3.82E-11	1.53E-11	1.14E-11
Neon (Ne) - total	cc/ccw	2.24E-06	4.03E-05	1.05E-06	9.10E-06	1.01E-06	1.84E-06	1.05E-05
²⁰ Ne	cc/ccw	2.04E-06	3.64E-05	9.54E-07	8.25E-06	9.14E-07	1.67E-06	9.49E-06
²² Ne	cc/ccw	2.03E-07	3.84E-06	9.65E-08	8.50E-07	9.32E-08	1.69E-07	9.69E-07
Argon (Ar) - total	cc/ccw	5.40E-02	2.95E+00	3.29E-02	1.17E+01	7.90E-01	4.81E-02	4.10E-01
⁴⁰ Ar	cc/ccw	5.38E-02	2.94E+00	3.28E-02	1.17E+01	7.88E-01	4.80E-02	4.08E-01
³⁶ Ar	cc/ccw	1.77E-04	9.52E-03	9.91E-05	3.61E-02	2.38E-03	1.54E-04	1.49E-03
Krypton (Kr) - total	cc/ccw	6.04E-04	6.00E-03	3.08E-04	6.09E-03	3.72E-04	9.10E-04	5.36E-04
Xenon (Xe) - total	cc/ccw	7.57E-08	2.07E-07	2.09E-08	2.73E-07	9.08E-09	8.08E-08	9.69E-08
Noble Gas Isotopic Ratios								
³ He/ ⁴ He (air-normalized, xRa)		1.05E+00	1.38E+00	2.35E-02	3.23E-02	3.52E-02	4.48E-02	3.84E-02
²² Ne/ ²⁰ Ne		9.97E-02	1.06E-01	1.01E-01	1.03E-01	1.02E-01	1.01E-01	1.02E-01
⁴⁰ Ar/ ³⁶ Ar		3.0E+02	3.1E+02	3.3E+02	3.2E+02	3.3E+02	3.1E+02	2.7E+02

SB_BH01 - WP04C Data Report

	Sample ID	SB_BH01_NG009	SB_BH01_NG010	SB_BH01_NG012	SB_BH01_NG013	SB_BH01_NG014	SB_BH01_NG015	SB_BH01_NG016
Noble Gas Concentrations								
Helium (He) - total	cc/ccw	3.03E-04	7.59E-04	2.47E-03	4.22E-03	3.09E-03	3.21E-03	1.50E-02
⁴ He	cc/ccw	3.03E-04	7.59E-04	2.47E-03	4.22E-03	3.09E-03	3.21E-03	1.50E-02
³ He	cc/ccw	1.19E-11	3.71E-11	9.68E-11	1.64E-10	1.12E-10	1.08E-10	1.57E-08
Neon (Ne) - total	cc/ccw	2.19E-06	1.57E-05	3.50E-06	3.57E-06	3.70E-06	1.39E-06	1.32E-04
²⁰ Ne	cc/ccw	1.99E-06	1.42E-05	3.18E-06	3.24E-06	3.36E-06	1.27E-06	1.19E-04
²² Ne	cc/ccw	2.02E-07	1.46E-06	3.20E-07	3.37E-07	3.43E-07	1.26E-07	1.28E-05
Argon (Ar) - total	cc/ccw	2.14E+00	6.01E-01	1.04E-01	1.34E-01	1.44E-01	2.14E+00	6.62E+00
⁴⁰ Ar	cc/ccw	2.13E+00	5.99E-01	1.04E-01	1.34E-01	1.44E-01	2.13E+00	6.60E+00
³⁶ Ar	cc/ccw	6.98E-03	1.94E-03	3.15E-04	2.38E-04	2.05E-04	5.47E-03	2.10E-02
Krypton (Kr) - total	cc/ccw	1.19E-03	1.75E-03	6.94E-04	1.48E-04	5.54E-04	6.18E-05	3.29E-02
Xenon (Xe) - total	cc/ccw	8.21E-08	2.33E-07	5.94E-08	2.82E-08	6.67E-08	8.17E-09	1.86E-06
Noble Gas Isotopic Ratios								
³ He/ ⁴ He (air-normalized, xRa)		2.84E-02	3.54E-02	2.84E-02	2.82E-02	2.62E-02	2.44E-02	7.56E-01
²² Ne/ ²⁰ Ne		1.01E-01	1.03E-01	1.00E-01	1.04E-01	1.02E-01	9.94E-02	1.07E-01
⁴⁰ Ar/ ³⁶ Ar		3.1E+02	3.1E+02	3.3E+02	5.6E+02	7.0E+02	3.9E+02	3.1E+02

SB_BH01 - WP04C Data Report

	Sample ID	SB_BH01_NG017	SB_BH01_NG018	SB_BH01_NG020	SB_BH01_NG021	SB_BH01_NG022	SB_BH01_NG024	SB_BH01_NG025
Noble Gas Concentrations								
Helium (He) - total	cc/ccw	3.88E-03	2.28E-02	4.87E-02	2.28E-02	4.67E-03	4.73E-02	1.63E-02
⁴ He	cc/ccw	3.88E-03	2.28E-02	4.87E-02	2.28E-02	4.67E-03	4.73E-02	1.63E-02
³ He	cc/ccw	1.73E-10	8.34E-10	2.23E-09	8.67E-10	2.04E-10	1.65E-09	8.74E-10
Neon (Ne) - total	cc/ccw	6.47E-06	8.61E-06	2.90E-05	2.47E-05	9.12E-06	1.36E-04	5.33E-05
²⁰ Ne	cc/ccw	5.91E-06	7.82E-06	2.63E-05	2.24E-05	8.26E-06	1.24E-04	4.84E-05
²² Ne	cc/ccw	5.65E-07	7.93E-07	2.69E-06	2.27E-06	8.68E-07	1.24E-05	4.90E-06
Argon (Ar) - total	cc/ccw	5.81E+00	7.99E+00	1.10E+00	9.59E-01	3.64E-01	5.23E+00	1.10E+00
⁴⁰ Ar	cc/ccw	5.81E+00	7.98E+00	1.10E+00	9.58E-01	3.64E-01	5.22E+00	1.10E+00
³⁶ Ar	cc/ccw	6.96E-03	9.76E-03	1.12E-03	1.01E-03	3.87E-04	8.92E-03	2.87E-03
Krypton (Kr) - total	cc/ccw	4.37E-04	7.19E-04	7.96E-03	1.75E-03	4.23E-04	3.53E-03	5.27E-03
Xenon (Xe) - total	cc/ccw	5.85E-08	9.18E-08	6.84E-07	2.68E-07	9.64E-08	1.23E-06	3.48E-07
Noble Gas Isotopic Ratios								
³ He/ ⁴ He (air-normalized, xRa)		3.23E-02	2.66E-02	3.31E-02	2.76E-02	3.17E-02	2.53E-02	3.89E-02
²² Ne/ ²⁰ Ne		9.56E-02	1.01E-01	1.02E-01	1.01E-01	1.05E-01	1.00E-01	1.01E-01
⁴⁰ Ar/ ³⁶ Ar		8.3E+02	8.2E+02	9.8E+02	9.5E+02	9.4E+02	5.9E+02	3.8E+02

SB_BH01 - WP04C Data Report

Sample ID		SB_BH01_NG026	SB_BH01_NG027	SB_BH01_NG028	SB_BH01_NG029	SB_BH01_NG030	SB_BH01_NG032	SB_BH01_NG033
Noble Gas Concentrations	Ioble Gas Concentrations							
Helium (He) - total	cc/ccw	3.28E-02	3.28E-02 1.97E-02		2.48E-02	7.34E-03	7.46E-03	6.99E-02
⁴ He	cc/ccw	3.28E-02	1.97E-02	7.71E-02	2.48E-02	7.34E-03	7.46E-03	6.99E-02
³ He	cc/ccw	3.01E-09	1.57E-09	6.41E-09	1.75E-09	6.50E-10	5.65E-10	4.94E-09
Neon (Ne) - total	cc/ccw	1.75E-03	1.91E-05	2.28E-04	6.28E-05	7.69E-06	1.37E-05	1.83E-05
²⁰ Ne	cc/ccw	1.58E-03	1.73E-05	2.07E-04	5.71E-05	6.96E-06	1.25E-05	1.65E-05
²² Ne	cc/ccw	1.74E-04	1.75E-06	2.12E-05	5.74E-06	7.30E-07	1.22E-06	1.78E-06
Argon (Ar) - total	cc/ccw	1.08E+02	5.79E-01	2.21E+00	2.34E+00	3.07E-01	5.54E-01	6.73E-01
⁴⁰ Ar	cc/ccw	1.08E+02	5.78E-01	2.21E+00	2.21E+00 2.33E+00		5.53E-01	6.73E-01
³⁶ Ar	cc/ccw	3.40E-01	5.69E-04	5.63E-03	1.70E-03	9.26E-05	3.79E-04	2.13E-04
Krypton (Kr) - total	cc/ccw	1.72E-01	1.50E-03	2.85E-02	2.29E-03	8.73E-04	1.09E-04	9.38E-04
Xenon (Xe) - total	cc/ccw	8.68E-06	1.81E-07	1.12E-06	5.41E-07	1.49E-07	9.76E-08	1.63E-07
Noble Gas Isotopic Ratios								
³ He/ ⁴ He (air-normalized, xRa)		6.65E-02	5.78E-02	6.03E-02	6.03E-02 5.10E-02		5.49E-02	5.13E-02
²² Ne/ ²⁰ Ne		1.10E-01	1.01E-01	1.02E-01	1.01E-01	1.05E-01	9.82E-02	1.07E-01
⁴⁰ Ar/ ³⁶ Ar		3.2E+02	1.0E+03	3.9E+02	1.4E+03	3.3E+03	1.5E+03	3.2E+03

	Sample ID	SB_BH01_NG034
Noble Gas Concentrations		
Helium (He) - total	cc/ccw	1.27E-02
⁴ He	cc/ccw	1.27E-02
³ He	cc/ccw	1.02E-09
Neon (Ne) - total	cc/ccw	1.58E-04
²⁰ Ne	cc/ccw	1.43E-04
²² Ne	cc/ccw	1.49E-05
Argon (Ar) - total	cc/ccw	6.30E+00
⁴⁰ Ar	cc/ccw	6.28E+00
³⁶ Ar	cc/ccw	2.13E-02
Krypton (Kr) - total	cc/ccw	8.16E-04
Xenon (Xe) - total	cc/ccw	1.12E-06
Noble Gas Isotopic Ratios		
³ He/ ⁴ He (air-normalized, xRa)		5.81E-02
²² Ne/ ²⁰ Ne		1.04E-01
⁴⁰ Ar/ ³⁶ Ar		2.9E+02

Sample ID		SB_BH01_DG001	SB_BH01_DG002	SB_BH01_DG004	SB_BH01_DG005	SB_BH01_DG006	SB_BH01_DG007	SB_BH01_DG008	SB_BH01_DG009
Carbon Dioxide and Methane Concentrations									
CO ₂	mmol/kgw	1.04E+00	1.13E+00	1.23E-02	6.36E-01	8.89E-01	2.47E-01	4.01E+00	2.70E-02
CH ₄	mmol/kgw	BDL	BDL	4.91E-03	7.24E-02	8.39E-03	2.69E-03	1.82E-02	BDL
Carbon Dioxide and Methane Isotopic Ratios									
$\delta^{13} CO_2$	VPDB (‰)	-7.3	-11.0	-16.0	-7.0	-4.9	-8.0	-5.4	-3.4
δ^{13} C CH ₄	VPDB (‰)	BDL	BDL	-40.6	-47.1	-51.3	BDL	BDL	BDL
δ^2 H CH ₄	VSMOW (‰)	BDL	BDL	BDL	BDL	-221	BDL	BDL	BDL

BDL = below detection limit

Sample ID		SB_BH01_DG010	SB_BH01_DG012	SB_BH01_DG013	SB_BH01_DG014	SB_BH01_DG015	SB_BH01_DG016	SB_BH01_DG017	SB_BH01_DG018
Carbon Dioxide and Methane Concentrations									
CO ₂	mmol/kgw	7.40E+00	3.41E-02	4.09E-01	5.52E-01	9.04E-01	6.79E-01	1.36E+00	1.43E+00
CH ₄	mmol/kgw	5.49E-02	BDL	2.99E-01	5.98E-01	1.29E+00	1.15E+00	5.55E+00	1.31E+01
Carbon Dioxide and Methane Isotopic Ratios									
$\delta^{13} CO_2$	VPDB (‰)	-3.2	-3.1	-6.0	-3.9	-3.9	-4.8	5.4	5.2
δ^{13} C CH ₄	VPDB (‰)	BDL	BDL	-46.0	-45.8	-46.7	-46.9	-46.7	-46.2
δ^2 H CH ₄	VSMOW (‰)	BDL	BDL	-232	-229	-251	-246	-261	-259

BDL = below detection limit

Sample ID		SB_BH01_DG019	SB_BH01_DG020	SB_BH01_DG021	SB_BH01_DG022	SB_BH01_DG024	SB_BH01_DG025	SB_BH01_DG026	SB_BH01_DG027
Carbon Dioxide and Methane Concentrations									
CO ₂	mmol/kgw	7.38E-01	7.05E-01	8.02E-01	5.20E-01	2.05E+01	1.14E+00	1.30E+00	1.46E+00
CH ₄	mmol/kgw	2.18E+01	3.74E+01	8.93E+00	5.58E+00	1.82E+02	1.09E+01	1.44E+01	1.06E+01
Carbon Dioxide and Methane Isotopic Ratios									
$\delta^{13} CO_2$	VPDB (‰)	5.7	-4.8	-4.3	-5.0	3.5	-3.6	-4.6	-2.9
δ^{13} C CH ₄	VPDB (‰)	-46.2	-46.2	-45.5	-44.4	-43.2	-42.0	-40.0	-40.6
δ^2 H CH ₄	VSMOW (‰)	-257	-258	-250	-249	-227	-221	-214	-191

BDL = below detection limit

	Sample ID	SB_BH01_DG028	SB_BH01_DG029	SB_BH01_DG030	SB_BH01_DG032	SB_BH01_DG033
Carbon Dioxide and Methane Con						
CO ₂	mmol/kgw	5.90E-01	4.53E-01	8.37E-01	6.75E-02	1.26E+00
CH ₄	mmol/kgw	BDL	BDL	2.38E+00	6.83E-01	BDL
Carbon Dioxide and Methane Isotopic Ratios						
δ^{13} CO $_2$	VPDB (‰)	-3.0	-3.4	-2.0	-5.4	-10.8
δ^{13} C CH ₄	VPDB (‰)	BDL	BDL	-38.1	-37.8	BDL
δ^2 H CH ₄	VSMOW (‰)	BDL	BDL	-183	-176	BDL

BDL = below detection limit

WP04C Data Report: Porewater Extraction and Analyses, and Petrographic Analysis for SB_BH01, Phase 2 Initial Borehole Drilling and Testing, South Bruce

Mineralogical and Petrological Results for Porewater Samples at SB_BH01

C.1. – X-Ray Diffraction Results (XRD) C.2 – Scanned Thin Sections and Corresponding SEM Images

Appendix C.1. X-Ray Diffraction (XRD) Results for Select Core Porewater Samples

	Phase Proportion (%) by Relative Intensity Ratio																
Sample ID	Calcite	Dolomite	Ankerite	Quartz	Muscovite and/or illite and/or glauconite and/or celadonite	Other micas and/or clays	Clinochlore	Gypsum	Anhydrite	Celestite	Feldspars	Pyrite	Halite	Hematite	Goethite	Anatatse	Sum
SB_BH01_PW003		98.10		0.30						1.60							100.00
SB_BH01_PW007		27.00		17.70	35.90		2.60		4.80		11.90						99.90
SB_BH01_PW009		58.20		14.30	15.60		2.00				9.20	0.80					100.10
SB_BH01_PW011		31.20		34.00	17.10		3.20				14.50						100.00
SB_BH01_PW013		80.90								6.20	12.90						100.00
SB_BH01_PW015	83.90	15.10		0.40			0.60										100.00
SB_BH01_PW017		95.10		0.90									1.60	2.50			100.10
SB_BH01_PW019	17.30	80.90		1.60										0.30			100.10
SB_BH01_PW023				33.60	61.60		4.10					0.70					100.00
SB_BH01_PW025	22.60			22.50	40.10	8.50	5.60							0.70			100.00
SB_BH01_PW026	24.70	3.90		18.50	47.20		5.70										100.00
SB_BH01_PW029	2.80			24.30	58.70		12.10	2.10									100.00
SB_BH01_PW030	3.70			49.90	27.90		6.70				11.60						99.80
SB_BH01_PW032				29.90	5.00	4.40	8.00				52.20		0.50				100.00
SB_BH01_PW033			2.40	37.10	45.60		12.40					2.50					100.00
SB_BH01_PW036				-	-	-		-	Not analysed	ĺ							
SB_BH01_PW038	7			60.4	15.4		13.8					3.5					100.1
SB_BH01_PW040	70.9		10.9	4.9	5.3		1.3				6.6						99.9
SB_BH01_PW041	51.6		27	5.4	5.2	1.6					8.9		0.4				100.1
SB_BH01_PW044	46.7	9.6		10.7	20.7						11.2	1.1					100
SB_BH01_PW047	70.2	26.8		0.7							1.8	0.6					100.1
SB_BH01_PW049	28.6		65.7	1.4	4.4												100.1
SB_BH01_PW052	71	4.4		5.5	9						8.9				1.2		100
SB_BH01_PW054	69.2			6.6	13		0.8				8.3	2					99.9
SB_BH01_PW056	69.8	9.2	6.7	13.1											1.3		100.1
SB_BH01_PW058									Not analysed								
SB_BH01_PW060				_					Not analysed								
SB_BH01_PW063	1			33.5	40.7		11.5				13.3						100
SB_BH01_PW067									Not analysed								

-- = not detected or not reported

SB_BH01_PW003 Bass Island 114.08 – 114.27 m

SB_BH01_PW011 Salina B 229.27 - 229.58 m

SB_BH01_PW009 Salina E 203.95 - 204.23 m

SB_BH01_PW013 Salina A2 Carbonate 263.86 - 264.14 m

SB_BH01_PW015 Guelph 307.02 - 307.17 m

SB_BH01_PW019 Goat Island 344.89 - 345.09 m

SB_BH01_PW017 Guelph 324.24 - 324.49 m

SB_BH01_PW023 Cabot Head 401.48 - 401.82 m

SB_BH01_PW033 Blue Mountain 611.86 - 612.08 m

SB_BH01_PW049 Sherman Fall 716.6 - 716.81 m

SB_BH01_PW041 Cobourg Fm Lower Mb 665.53 - 665.75 m

SB_BH01_PW052 Kirkfield 747.75 - 748.02 m

SB_BH01_PW058 Gull River 818.26 - 818.58 m

SB_BH01_PW025 Queenston shale 436.33 - 436.59 m

Location A: Light grey spots represent salts, mostly NaCl, precipitated from dried pore water.

Location B: Black particles in the silty detritalmineral matrix are organic fragments. Note the precipitated salts in the upper right.

SB_BH01_PW026 Queenston shale 476.28 - 476.59 m

Location A: Uniform, very fine grained detrital matrix with small organic fragments.

Inset A-1: Fine organic fragments (black) with clay minerals lining the pore walls. Numbers indicate locations of EDS analyses used to identify minerals 1) dolomite, 2) calcite, 3) sphene, 4) calcite, 5) dolomite, 6) organic fragment.

SB_BH01_PW029 Georgian Bay shale 524.71 - 524.92 m

Location B: Carbonate cemented silty lens. Numbers indicate locations of EDS analyses used to identify minerals 1) quartz, 2) dolomite, 3) dolomite (ferroan), 4) calcite, 5) apatite, 6) calcite.

Location A: Silty lens containing organic fragments with diagenetic pyrite.

Inset A-1: Higher magnification images of the silty lens with organic fragments (black) and diagenetic pyrite. Numbers indicate locations of EDS analyses used to identify minerals 1) apatite (biogenic?), 2) quartz, 3) mixed Ca-Al-Mg-K silicates, 4) calcite, 5) organic fragment, 6) pyrite, 7) pyrite.

SB_BH01_PW029 Georgian Bay shale 524.71 – 524.92 m continued...

Location C: Very fine-grained shale with detrital minerals, mostly quartz, and clay minerals lining the pores. Numbers indicate locations of EDS analyses used to identify minerals 1) biotite, 2) quartz, 3) quartz, 4) quartz, 5) quartz, 6) K feldspar, 7) clay minerals.

SB_BH01_PW030 Georgian Bay shale 526.8 - 527.06 m

Location A: Silty lens. Numbers indicate locations of EDS analyses used to identify minerals 1) quartz, 2) calcite, 3) dolomite, 4) dolomite.

Location B: Boundary between fine-grained shale (left) and silty layer (right). Light grey linearly aligned grains in the centre-left are precipitates from dried porewater.

SB_BH01_PW032 Georgian Bay shale 564.17 - 564.43 m

Location A: Boundary between relatively coarse- (left) and fine-grained (right) layers.

Inset A-1: Higher magnification image from inset shown in A. A calcite fragment is along the left margin, black interstitial material is organic and the large light-grey regions are NaCL precipitates from dried porewater. Numbers indicate locations of EDS analyses used to identify minerals 1) calcite, 2) calcite, 3) pyrite, 4) dolomite (ferroan), 5) dolomite, 6) quartz, 7) dolomite (ferroan), 8) Fe-Mg-Al-silicate, 9) NaCl precipitate from dried porewater.

SB_BH01_PW036 Blue Mountain shale 631.61 – 631.85 m

Location A: Fine-grained disseminated euhedral and framboidal pyrite in shale matrix. Typical of the entire section area.

SB_BH01_PW038 Cobourg Fm, Collingwood Mb 637.33 – 637.54 m

Location A: Fine disseminated pyrite and organic fragments (black) in fine to medium grained shale matrix. Typical of the entire sample area. SB_BH01_PW040 Cobourg Fm, Collingwood Mb 650.02 – 650.25 m

Location A: dominantly calcite with disseminated dolomite and pyrite, and organics (black) infilling pore spaces. Numbers indicate locations of EDS analyses used to identify minerals 1) calcite, 2) pyrite, 3) dolomite (ferroan), 4) dolomite. SB_BH01_PW044 Cobourg Fm, Lower Mb 683.87 – 684.14 m

Location A: Micritic matrix to bioclasts. Dominantly calcite with disseminated dolomite (dark grey), pyrite (white), and organics (black).

SB_BH01_PW047 Sherman Fall 693.93 - 694.12 m

Location A: The boundary observed in the scanned image at left marks the change from relatively coarse calcite-rich matrix at the right to finer dolomite-rich matrix at left. Calcite is light grey, dolomite is dark grey. The dolomite-rich zone has higher porosity (inset) and contains greater abundance of pyrite (disseminated white grains).

Inset A-1: Porosity likely created by volume change during dolomitization. Pores contain clay minerals. Bright white grains are pyrite, light grey is calcite and dark grey is dolomite.

SB_BH01_PW054 Kirkfield 763.96 - 764.19 m

Location A: Organic material (black) infilling porous zone and cross-cutting fracture in micritic and bioclastic matrix.
SB_BH01_PW056 Coboconk 785.86 - 786.12 m

Location A: Porous microcrystalline calcite with organic material (black) infilling largest pores.

Inset A-1: Porous microcrystalline calcite with organic material (black).

Location B: Siliceous, calcite-rich halo (medium grey) surrounding circular region with relatively large calcite and dolomite grains and organic material in largest pores.

SB_BH01_PW060 Gull River 843.78 - 844.03 m

Location A: Calcite matrix (medium grey) has been overprinted by large grains of gypsum/anhydrite (light grey) and dolomite (dark grey). There is gypsum/anhydrite in the fracture near the top and minor pyrite (white) disseminated in the gypsum/anhydrite, in the calcite matrix and in the dolomite. Dolomitization is focused along the near vertical fracture at the right side.

Location B: Calcite matrix and gypsum/anhydrite grain (upper left) are overprinted by dolomite to the point where the material on the right side of the image (oval-shaped features in the scanned colour image) is almost 100% dolomite with organicfilled pores.

Inset A-1: Higher magnification image of the fracture. The micritic calcite matrix is light grey, pryrite grains are white and the dark grey crystals are dolomite. The fracture contains organics (black), and EDS analyses indicate that it is lined with clay minerals.

SB_BH01_PW063 Shadow Lake 855.29 - 855.5 m

Location A: Rounded detrital grains of quartz (dark grey) K-feldspar (medium grey) and apatite (white). Black organic material fills pores.

Inset A-2

Inset A-1: Higher magnification image showing matrix with a mix detrital grains and cement with clay-composition (Mg-Fe-Si-Al-Ca-K). Clay minerals are evident in the higher magnification image (inset A-2) of the matrix at lower left.