WESTBAY FLUID PRESSURE MONITORING AND GROUNDWATER SAMPLING IN IGNACE BOREHOLES

2022 Annual Report

APM-REP-01332-0457

June 2024

Geofirma Engineering Ltd.

NUCLEAR WASTE SOCIÉTÉ DE GESTION MANAGEMENT DES DÉCHETS DRGANIZATION NUCLÉAIRES This report has been prepared under contract to NWMO. The report has been reviewed by NWMO, but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO.

All copyright and intellectual property rights belong to NWMO.

Nuclear Waste Management Organization 22 St. Clair Avenue East, 4th Floor

22 St. Clair Avenue East, 4th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca

Westbay Fluid Pressure Monitoring and Groundwater Sampling in Ignace Boreholes

2022 Annual Report

Revision: 0 (Final)

Prepared for:

Nuclear Waste Management Organization 22 St. Clair Avenue East. 4th Floor Toronto, ON, M4T 2S3

Prepared by:

GEOFIRMA1 Raymond St. Suite 200, Ottawa, Ontario K1R 1A2()613.232.2525613.232.7149()()613.232.2525()613.232.7149()

Project Number: 20-203-1

Document ID: IG_2022_Annual Report_R0

NWMO Document ID: APM-REP-01332-0457

June 21, 2024

Title:	Westbay Fluid Pressure Monitoring and Groundwater Sampling in Ignace				
	Boreholes: 2022 Annual Report				
	Nuclear Waste Management Orga	anization			
Client:	22 St. Clair Avenue East. 4th Floo	r			
Chent.	Toronto, ON, M4T 2S3				
	Canada				
Project Number:	20-203-1				
Document ID:	IG_2022_Annual Report_R0				
Revision Number:	0	Date: June 21, 2024			
Prepared by:	Amy Cartier, B.Sc., G.I.T.				
Reviewed by:	Sean Sterling, M.Sc, P.Eng., P.Geo., Morgan de Kroon, B.Sc., E.I.T., and				
Reviewed by.	Ian Clark, Ph.D., P.Geo. (University of Ottawa)				
Approved by:	Sean Sterling, M.Sc, P.Eng., P.Ge	eo. – Project Manager - Principal			

Revision Tracking Table

Revision	Revision Release Date	Description of Modifications/Edits
R0A	November 08, 2023	Initial draft release
R0B	February 23, 2024	Second draft release
R0C	April 19, 2024	Third draft release
R0D	June 05, 2024	Fourth draft release
R0	June 21, 2024	Final release

TABLE OF CONTENTS

1	INTRODUCTION	1
2	BACKGROUND	
	2.1 NWMO APM Program	
	2.2 Geological Setting	
		J
3	DESCRIPTION OF ACTIVITIES	6
	3.1 Quarterly Monitoring Events	
	3.2 Fluid Pressure and Temperature Profiling	
	3.3 Groundwater Purging	
	3.3.1 Westbay Interval Selection for Groundwater Purging and Sampling3.3.2 Westbay MP38 Interval Purging	
	3.4 Test Plan Groundwater Sampling	
	3.4.1 Equipment Decontamination	
	3.4.2 Groundwater Sample Collection	
	3.4.3 Field Parameter Measurements and Transfer of Water to Laboratory Bottles	
	3.4.4 Sampling Procedure for Noble Gas Samples	
	3.4.5 Collection of QA/QC Samples	
	3.4.6 Samples Collected in 2022	14
	3.5 Laboratory Analyses	15
4	RESULTS	18
	4.1 Pressure Profile Analysis	18
	4.1.1 Conversion of Absolute Pressure Fluid Profile	
	4.1.2 Calculation of Equivalent Freshwater and Environmental Hydraulic Heads	
	4.1.3 Calculated Hydraulic Head and Vertical Depth Profiles	
	4.2 Freshwater Heads in Deep Bedrock Boreholes	
	4.2.1 IG_BH01	
	4.2.2 IG_BH03	
	4.2.3 IG_BH05 4.2.4 IG BH06	
	4.2.4 IG_DH00	
	4.3.1 Field Measurements	
	4.3.2 General Chemistry	
	4.3.3 Isotopes	
	4.3.1 Noble Gases	
5	DATA QUALITY	31
	5.1 In-Field Data Quality Assurance	31
	5.1.1 Field Data Quality Confirmation	
	5.1.2 QA Checks During Pressure Profiling	
	5.2 Field Data Chemistry	31
	5.3 Laboratory Data Quality	32
	5.3.1 General Chemistry	
	5.3.2 Isotopes	
	5.3.3 Noble Gases	35

_IVERY	
Deliverables	
SIONS	
C	Deliverables

8	REFERENCES	4(D
---	------------	----	---

LIST OF FIGURES

Figure 1	Lagations of NWMO Porchalas in the Dayall Site	1
Figure 1	Locations of NWMO Boreholes in the Revell Site	
Figure 2	Bedrock Geology of the Revell Site and surrounding area	
Figure 3		13
Figure 4	Vertical Depth Profiles of Equivalent Freshwater Hydraulic Heads for IG_BH01,	
	IG_BH03, IG_BH05 and IG_BH06 during 2022 Quarterly Monitoring Events	
Figure 5	Piper Plot for Groundwater Samples collected in 2022.	24
Figure 6	Tritium concentrations in groundwater samples from boreholes IG_BH01, IG_BH03,	
•	and IG BH05 in 2022.	25
Figure 7	δ 18O and δ 2H values for groundwater samples from boreholes IG_BH01, IG_BH03,	
- -------------		26
Figure 8	Measured ¹⁴ C presented as percent modern carbon (pmC) for groundwater samples	_0
i iguio o	collected from boreholes IG_BH01, IG_BH03, and IG_BH05 in 2022.	27
Figure 9	Strontium isotopic ratios (⁸⁷ Sr/ ⁸⁶ Sr) for groundwater samples collected from boreholes	
i iguic 5	IG_BH01, IG_BH03, and IG_BH05 in 2022.	
Figure 10	Noble Gas isotopic ratios of groundwater samples collected from boreholes IG_BH01	
		29
Figure 11	²⁰ Ne/ ²² Ne as plotted against x/Ra for all 2022 samples and related air (atmospheric)	
		29
Figure 12	²⁰ Ne/ ²² Ne as plotted against ⁴⁰ Ar/ ³⁶ Ar for all 2022 samples and related air (atmospheric	ic)
	ratios	30
Figure 13	⁴⁰ Ar/ ³⁶ Ar as plotted against x/Ra for all 2022 samples and related air (atmospheric)	
0		30

LIST OF TABLES

Table 1	Summary of fieldwork completed since the start of the fluid pressure monitorir	ng (PP)
	and groundwater sampling program	
Table 2	Summary of 2022 Field Activities for Westbay Monitoring at Revell Site	
Table 3	Details on Westbay MP38 Intervals Purged and Sampled During 2022	8
Table 4	Details of Purging Activities for Selected Intervals in 2022	10
Table 5	Field Parameter Measurement and Field Analytical Testing Methods	
Table 6	Completed Laboratory Analyses, by Analytical Lab	17
Table 7	Data Delivery, by Quarterly Monitoring Event	

LIST OF APPENDICES

- APPENDIX A 2022 Sample Collection Summary
- APPENDIX B Fluid Pressures, Calculated Pressure Heads and Calculated Freshwater Heads
- APPENDIX C Groundwater Chemistry Results
- APPENDIX D QA/QC Results and Calculations
- APPENDIX E Laboratory Reports
- APPENDIX F Data Quality Confirmation Workbooks

iii

1 INTRODUCTION

Geofirma Engineering Ltd. has been retained by the Nuclear Waste Management Organization (NWMO) to complete long-term monitoring of Westbay multilevel systems that are installed in deep bedrock boreholes in the Revell Site located in the Wabigoon Lake Ojibway Nation – Ignace Area in Ontario.

The purpose of this project is to measure groundwater pressures and temperatures and to collect groundwater samples for geochemical analysis. Measuring fluid pressures in each of the intervals of a single Westbay multilevel system is referred to as pressure profiling. Data obtained from this project will be used to evaluate the groundwater system at the Revell site.

The scope of work includes pressure profiling, groundwater sampling, and laboratory analysis of water samples for four Westbay multilevel systems installed in the boreholes at the Revell Site: IG_BH01, IG_BH03, IG_BH05 and IG_BH06. Pressure measurements are taken at each sampling port quarterly and selected intervals are targeted for groundwater sampling. Specific intervals targeted for groundwater sampling are selected by NWMO based on the interval hydraulic properties and the likelihood of collecting a groundwater sample that is representative for the target bedrock interval.

The fluid pressure monitoring and groundwater sampling program was initially planned on a quarterly basis between November 202 and the end of 2023. Ongoing monitoring beyond 2023 will be decided by NWMO. Table 1 summarizes the fieldwork completed to date as part of the program.

An annual technical report is prepared by Geofirma to describe all work activities completed each calendar year including all pressure profiling, groundwater sampling, and laboratory analyses. This 2022 Annual Report is the third annual report prepared by Geofirma. The report describes the field activities, procedures, and results from four quarterly monitoring events completed in 2022.

Work described in this technical report was carried out in accordance with the project specific Test Plan, Project Quality Plan, and Health, Safety, and Environment Plan.

Table 1Summary of fieldwork completed since the start of the fluid pressure monitoring
(PP) and groundwater sampling program.

Ye	ear	IG	G_BH01	IC	G_BH03	IC	IG_BH05		IG_BH06	
/Quarter		PP	Sampling	PP	Sampling	PP	Sampling	PP	Sampling	
0202 Q4		\checkmark	✓ INT_009 (I)	\checkmark	-	-	-	-	-	
	Q1	~	✓ INT_009 (F)	\checkmark	-	-	-	-	-	
~	Q2	\checkmark	-	\checkmark	-	-	-	-	-	
2021	Q3	\checkmark	✓ INT_007 (I)	\checkmark	✓ INT_002 (I)	-	-	-	-	
	Q4	~	✓ INT_007 (F)	✓	✓ INT_002 (I)	-	-	-	-	
	Q1	~	✓ INT_004 (I)	\checkmark	✓ INT_002 (I)	~	✓ INT_007 (I)	-	-	
	Q2	~	✓ INT_004 (F)	\checkmark	✓ INT_002 (I)	~	✓ INT_007 (I)	-	-	
2022	Q3	\checkmark	✓ INT_002 (I)	\checkmark	✓ INT_002 (F)	\checkmark	✓ INT_007 (F)	\checkmark	-	
	Q4	~	✓ INT_002 (I) INT_007 (R)	✓	✓ INT_021 (A)	~	✓ INT_005 (I)	~	✓ INT_008 (A)	

(I) = interim sample collected

(F) = final sample collected

(R) = re-sample collected

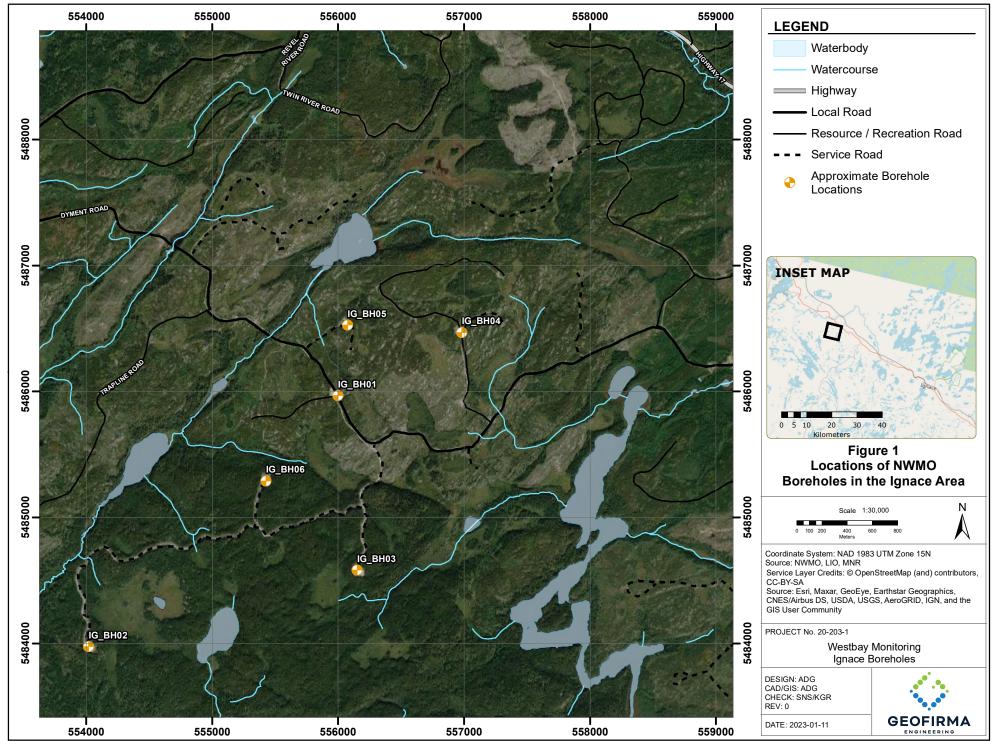
(A) = archive sample collected

2 BACKGROUND

2.1 NWMO APM Program

The NWMO is implementing their Adaptive Phased Management ("APM") plan for the long-term management of Canada's used nuclear fuel. APM includes the emplacement of the used nuclear fuel in an underground deep geological repository (DGR). The initial borehole drilling and testing project at the Revell Site in northwestern Ontario is part of the Phase 2 geoscientific preliminary field investigations in the NWMO's APM site selection process.

Phase 2 Preliminary Assessments involve, among other, the drilling and testing of six deep boreholes in a potential repository area (PRA) located within the northwestern portion of the Revell Batholith, approximately 50 km northwest of Ignace, Ontario. The Revell Site is located approximately 250 km northwest of Thunder Bay along the Trans-Canada Highway (HWY 17). Figure 1 shows the locations of all six boreholes drilled and tested as part of the APM Phase 2 geoscientific preliminary assessments. All fieldwork described in this report was completed by Geofirma at boreholes IG_BH01, IG_BH03, IG_BH05 and IG_BH06.


All boreholes were previously drilled using HQ3 wireline coring equipment that produces a 96 mm nominal diameter borehole to depths of approximately 1000m along borehole length. The first borehole, IG_BH01, was drilled vertically; the remaining five boreholes were drilled at an inclined angle of 70° from horizontal. The inclination of some boreholes varied during drilling, resulting in borehole true vertical depths ranging from approximately 883 to 1,000 metres below ground surface (m BGS).

Westbay multilevel monitoring systems, completed with MP38 casing (Multiport casing with inside diameter of 38 mm), have been installed in four of the six boreholes: IG_BH01, IG_BH03, IG_BH05 and IG_BH06. Boreholes IG_BH02 and IG_BH04 have been temporarily sealed using bridge plug-style packers to minimize vertical borehole fluid cross connections.

2.2 Geological Setting

The approximately 2.7-billion-year-old Revell batholith is located in the western part of the Wabigoon Sub province of the Archean Superior Province. The batholith is roughly elliptical in shape trending northwest, is approximately 40 km in length, 15 km in width, and covers an area of approximately 455 km². Based on recent geophysical modelling, the batholith has a relatively flat base that extends to depths of nearly 4 km in some regions (Sanders Geophysics Limited [SGL], 2020). The batholith is surrounded by supracrustal rocks of the Raleigh Lake (to the north and east) and Bending Lake (to the southwest) greenstone belts (Figure 2).

E:\Data\Project\Ignace\Maps\20-203-1_WestbayIgnaceMonitoring\20-203-1_F1_Locations_NWMO_BH.mxd

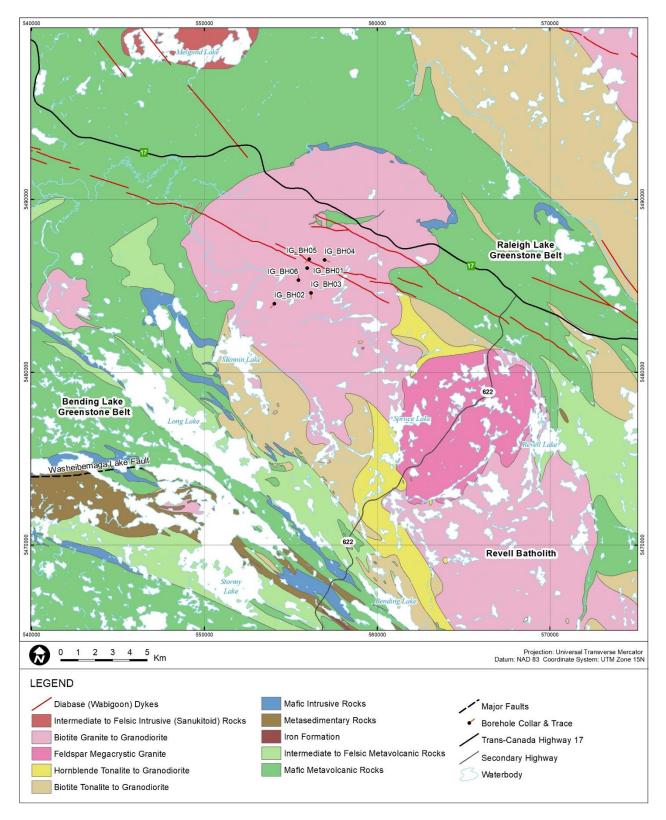


Figure 2 Bedrock Geology of the Revell Site and surrounding area

3 DESCRIPTION OF ACTIVITIES

The following section provides a summary of the field and laboratory activities that were completed for each quarterly monitoring event in 2022. All field measurements and equipment calibrations that were completed as part of water sampling activities were recorded in a excel-format Data Quality Confirmation (DQC) workbook and delivered to the NWMO.

3.1 Quarterly Monitoring Events

Details of the work activities completed in 2022 for each quarterly monitoring event are summarized in Table 2.

Monitoring Event	Field Work Dates	Work Activities Completed
Q1	Mar 18 – Mar 30 2022	 Pressure/temperature profiling at IG_BH01 Pressure/temperature profiling at IG_BH03 Pressure/temperature profiling at IG_BH05 Purging and sampling from IG_BH01_T_INT_004 Purging and sampling from IG_BH03_T_INT_002 Purging and sampling from IG_BH05_T_INT_007
Q2	May 27 – Jun 06 2022	 Pressure/temperature profiling at IG_BH01 Pressure/temperature profiling at IG_BH03 Pressure/temperature profiling at IG_BH05 Pressure/temperature profiling at IG_BH06 Purging and sampling from IG_BH01_T_INT_004 Purging and sampling from IG_BH03_T_INT_002 Purging and sampling from IG_BH05_T_INT_007
Q3	Sep 16 – Sep 27 2022	 Pressure/temperature profiling at IG_BH01 Pressure/temperature profiling at IG_BH03 Pressure/temperature profiling at IG_BH05 Pressure/temperature profiling at IG_BH06 Purging and sampling from IG_BH01_T_INT_002 Purging and sampling from IG_BH05_T_INT_007
Q4	Nov 30 – Dec 14 2022	 Pressure/temperature profiling at IG_BH01 Pressure/temperature profiling at IG_BH03 Pressure/temperature profiling at IG_BH05 Pressure/temperature profiling at IG_BH06 Purging and sampling from IG_BH01_T_INT_002 Purging and re-sampling from IG_BH05_T_INT_007 Purging and sampling from IG_BH05_T_INT_005 Collection of field parameters from IG_BH03_T_INT_008

Table 2 Summary of 2022 Field Activities for Westbay Monitoring at Revell Site

3.2 Fluid Pressure and Temperature Profiling

Fluid pressure and temperature profiling was completed in the Westbay multilevel systems according to the methodology outlined in the Test Plan. All fluid pressure and temperature measurements from the systems were collected using NWMO-owned Westbay equipment (MOSDAX, MAGI, etc.).

Prior to the start of pressure profiling, Geofirma field staff completed measurements and quality checks to confirm the quality of the data collected using the MOSDAX probe during pressure profiling activities. A barometric logger (Solinst Barologger) was installed at ground surface within 100 meters of the wellhead to record barometric (atmospheric) pressure at a frequency of 60 seconds throughout the profiling event. Before lowering the MOSDAX probe into the well, surface inspections and function checks were completed. Manual water level measurements from within the MP38 casing were recorded, these measurements were used to assess the calibration of the MOSDAX probe when the probe was submerged to a known depth.

Pressure and temperature profiling was completed from the deepest to the shallowest sampling ports at each borehole (bottom to top), unless otherwise stated. At each sampling port, the following measurements were collected: start profile time, landed pressure inside of the MP38 casing, interval pressure and temperature, pressure inside the MP38 casing), and end profile time.

All field measurements and records of Westbay equipment operation during pressure and temperature profiling were recorded on purpose-built field data sheets within the DQC workbook.

Infield quality checks of pressure/temperature data were performed at each sampling port by ensuring that values were acceptable when compared to data from previous monitoring round(s). Anomalous values were noted in the DQC workbook and confirmed by collecting a second pressure measurement at the same interval.

3.3 Groundwater Purging

3.3.1 Westbay Interval Selection for Groundwater Purging and Sampling

Westbay intervals targeted for purging and groundwater sampling during each quarterly monitoring event were identified by NWMO prior to Geofirma mobilization. Geofirma performed a 24-hr purge (including recovery) prior to sampling each of the targeted Westbay intervals, however, due to the low hydraulic conductivities of the bedrock, NWMO personnel also completed frequent purging activities between Geofirma's quarterly monitoring events. Concentrations of fluorescein tracer are the primary criteria used to assess drill water concentrations in groundwater samples. Fluorescein concentration in the drill water during borehole drilling was maintained at a targeted range of approximately 100 μ g/L (100 ppb). A groundwater sample with a drill water concentration of less than 5% (i.e., fluorescein < 5 ppb) was considered representative of formation chemistry and designated as a final sample.

Table 3 below summarizes the top depth, bottom depth, and sampling port depth of the Westbay intervals for which Geofirma completed purging and groundwater sampling for during 2022, listed in meters below ground surface (m BGS).

Westbay Interval ID	Top of Interval	Bottom of Interval	Sampling Port Depth	
Westbay Interval 1D	(m BGS)	(m BGS)	(m BGS)	
	Q1 (Marc	h) 2022		
IG_BH01_T_INT_004	765.77	799.95	769.06	
IG_BH03_T_INT_002	865.35	884.86	868.28	
IG_BH05_T_INT_007	731.50	742.60	734.54	
	Q2 (June) 2022		
IG_BH01_T_INT_004	765.77	799.95	769.06	
IG_BH03_T_INT_002	865.35	884.86	868.28	
IG_BH05_T_INT_007	731.50	742.60	734.54	
	Q3 (Septem	ber) 2022		
IG_BH01_T_INT_002	885.19	972.71	888.49	
IG_BH03_T_INT_002	865.35	884.86	868.28	
IG_BH05_T_INT_007	731.50	742.60	734.54	
	Q4 (Decem	ber) 2022		
IG_BH01_T_INT_002	885.19	972.71	888.49	
IG_BH01_T_INT_007*	624.94	645.42	635.83	
IG_BH03_T_INT_021**	65.09	150.15	68.16	
IG_BH05_T_INT_005	795.80	802.70	798.79	
IG_BH06_T_INT_008**	665.70	682.70	668.15	

Table 3	Details on Westbay MP38 Intervals Purged and Sampled During 2022
	Botano on Hootbay in oo mortalo i argoa ana bampida Baring 2022

*Interval IG_BH01_T_INT_007 was previously purged and sampled in 2021. Geofirma completed re-sampling for missing noble gas analyses during Q4 2022. **No laboratory analyses were required for samples IG_BH03_GW019 and IG_BH06_GW001, they were collected as archive samples to collect in-field parameters only

Geofirma also completed purging and groundwater resampling of IG_BH01_T_INT_007 during Q4 2022, at the request of NWMO to re-collect samples for noble gas analyses. This interval had previously been purged and sampled in 2021, however the lab was unable to report any helium (He) results for the samples submitted due to the He abundance in the samples exceeding the inlet capacity of the mass spectrometer.

3.3.2 Westbay MP38 Interval Purging

Operation of the Westbay equipment for purging activities was completed by Geofirma staff according to procedures outlined in the Test Plan. A minimum 24-hour purge, including recovery time, was performed for each interval selected for groundwater sampling. Select chemical parameters (pH, temperature, electrical conductivity, dissolved oxygen, oxidation-reduction potential, turbidity and fluorescein) were measured in the field using a Horiba U52 multiparameter probe and Turner Designs AquaFluor fluorometer and recorded in the DQC workbook.

Purging was completed using a double valve pump (Solinst model 408) provided by Geofirma. The pump was set within the Westbay MP38 casing at a depth of approximately 85 meters below top of

casing. As described in the Test Plan, two methods were used for purging, dependant on the status of the selected interval. A brief description of the two methods is provided below:

- Open Pumping Port Method: The pumping port of the interval remains open, and the double valve pump is lowered to into the MP38 casing to complete the purging. This purging method was used for Westbay intervals that were selected for interim sampling, when purging by NWMO is expected to continue after Geofirma completes the current sample collection activity.
- 2) Flow-through Sampling Port Method: The Westbay MOSDAX probe was lowered and attached to the selected interval's sampling port and the valve is opened. The double valve pump was then lowered into the MP38 casing to complete the purging. This purging method was used for Westbay intervals that were selected for "final" sampling or on intervals with low to moderate formation hydraulic conductivity (K). The pumping port remained closed during purging (or was closed prior to the final 24-hr purge immediately prior to collecting a "final" sample).

Details for each purging event are described in the subsections below and are summarized in Table 4.

During Q4 2022, 24-hour purging was also completed on interval IG_BH01_T_INT_007, which had previously been purged and sampled in 2021. As the pumping port for another interval (INT_002) was open for ongoing purging in borehole IG_BH01, purging for interval 7 was completed using the Westbay MOSDAX sampler probe and accessories, following the groundwater sampling method outlined in the Test Plan. Following purging, Geofirma measured field parameters to confirm the sample met the criteria for final sampling.

All water generated during purging was collected in 20 L plastic buckets and removed from site for disposal by NWMO personnel at the Ignace landfill following applicable regulations.

Westbay Interval ID	Volume Purged Prior to Event (L)	Date Purged by Geofirma	Volume Purged by Geofirma (L)	Total Purged Volume (L)	Purging method used	Notes	
Q1 (March) 2022							
IG_BH01_T_ INT_004	1529	24-Mar-21	62	1591	Open Pumping Port		
IG_BH03_T_ INT_002	930	20-Mar-22	20	950	Open Pumping Port		
IG_BH05_T_ INT_007	256	21-Mar-22	55	311	Open Pumping Port		
			Q2 (June) 202	2			
IG_BH01_T_ INT_004	2522	01-Jun-22	35	2557	Flow-through Sampling Port	Pumping port closed by NWMO on May 20, 2022	
IG_BH03_T_ INT_002	1142	31-May-22	20	1162	Open Pumping Port		
IG_BH05_T_ INT_007	942	28-May-22	35	977	Open Pumping Port		
		Q	3 (September) 2	2022			
IG_BH01_T_ INT_002	685	23-Sep-22	38	723	Open Pumping Port		
IG_BH03_T_ INT_002	1191	17-Sep-22	18	1209	Flow-through Sampling Port	Pumping port closed by NWMO on June 10, 2022	
IG_BH05_T_ INT_007	1786	22-Sep-22	35	1821	Flow-through Sampling Port	Pumping port closed by NWMO on August 04, 2022	
		C	24 (December)	2022			
IG_BH01_T_ INT_007 *		02-Dec-22	2		Groundwater Sampling Method	Pumping port closed in 2021	
IG_BH01_T_ INT_002	2814	08-Dec-22	51	2865	Open Pumping Port		
IG_BH05_T_ INT_005	378	12-Dec-22	44	422	Open Pumping Port		

Table 4 Details of Purging Activities for Selected Intervals in 2022

* Interval IG_BH01_T_INT_007 was previously purged and sampled in 2021. Geofirma completed re-sampling for missing noble gas analyses during Q4 2022.

3.4 Test Plan Groundwater Sampling

Groundwater sampling was performed by Geofirma staff using a NWMO-owned Westbay MOSDAX sampler probe and accessories. All sampling was completed in accordance with the Test Plan. A summary of the field procedures for groundwater sampling is provided in the following section.

3.4.1 Equipment Decontamination

Prior to sample collection, all sampling equipment (MOSDAX probe, stainless steel sample cannisters, fittings) was decontaminated by Geofirma field staff. Equipment decontamination was recorded in the DQC workbook and followed the procedure described below:

- 1. Put on new, powder-free nitrile gloves. Remove potential clothing that may contaminate field equipment.
- 2. Wipe off visible loose contamination (e.g., dirt) using a brush or paper towel.
- 3. Wash equipment with solution made of laboratory grade non-phosphate, non-perfumed detergent (e.g., Alconox) and water. Use a brush to apply detergent. For internal mechanisms or items that cannot be washed using a brush, flush two system volumes of the cleaning solution though the system.
- 4. Rinse the equipment using distilled water and allow the equipment to air dry. Try to place equipment in a location that minimizes potential of airborne contamination (e.g., dust) during drying.
- 5. Purge rinse water from MOSDAX sampling probe using high purity (alphagaz[™], >99.999%) compressed nitrogen. Compressed nitrogen is applied to the inlet port using sampling tubing and flushed through the open port at the bottom of the tool.
- 6. Contain all water generated during decontamination procedures and dispose of it.
- 7. If a duplicate sample is being collected, collect a rinsate sample after decontamination is complete by running distilled water through the Westbay MOSDAX sampler probe.

Rinsate water and water containing laboratory standards and solutions was contained in a plastic bucket and transported offsite by Geofirma for offsite disposal.

3.4.2 Groundwater Sample Collection

Sample collection was completed using NWMO-owned Westbay MOSDAX sampling equipment. Four stainless steel sample cannisters (0.25 L each) were connected in series and attached to the bottom of the MOSDAX sampler probe. Prior to lowering the sample cannisters into the borehole, the four containers were flushed with high-purity nitrogen (N_2) and then evacuated using a vacuum pump to less than 35 kilopascals (kPa).

Once lowered, the sampler probe was connected to the sampling port or lowered to 2 m above the pumping port (if pumping port was left open), the valve on the MOSDAX sampler was opened so that groundwater could fill the vacated stainless-steel containers. The pressure in the MOSDAX sampler probe was monitored during sampling to ensure that the sample containers were filled (approximately 1-15 minutes). A successful sample collection is verified by Geofirma observing a drop in formation pressure once the valve of the MOSDAX has been opened, followed by formation pressure typically returning to within 10-15 kPa of the initial formation pressure reading once the cannisters are filled. Once the cannisters were filled, the valve on the MOSDAX sampler was closed, and the probe and all the cannisters were retrieved to surface. This process is referred to as a sampling "run", multiple runs are required to collect sufficient sample water for analysis.

3.4.3 Field Parameter Measurements and Transfer of Water to Laboratory Bottles

Sample water collected with the MOSDAX sampler probe was used to fill laboratory bottles, complete field parameter measurements, and field analytical testing as outlined in Table 5. Calibration of the measurement equipment and measurement of field parameters (e.g., alkalinity) was completed following procedure outlined in the Test Plan.

To minimize exposure to the atmosphere, sample water used for field parameter measurements remained in the Westbay sample cannisters and only the quantity required to perform each field test was extracted. Polyethylene tubing was used to transfer the water directly from the Westbay stainless-steel sample cannisters into the Horiba flow-through cell, eliminating the exposure to the atmosphere. When required, high purity compressed nitrogen was used to pressurize the stainless steel cannisters to assist with water flow.

Water collected for laboratory analysis was decanted from the stainless-steel sample cannisters into laboratory provided bottles. All bottles were placed in coolers on ice and shipped/delivered to the analytical laboratories under chain of custody (COC) procedures.

An archive sample was collected as a part of every sample suite following the same procedures. The archive samples were kept on ice or refrigerated until they were hand-delivered to the NWMO in Ignace, ON.

Parameter	Volume Required	Field-Measurement Method
Fluorescein	25 mL	Handheld Fluorometer (Turner Designs Aquafluor™)
Turbidity		In sealed flow-through cell (i.e., Horiba Flow Chamber) with inserted water quality multi-probe (Horiba-U52/U50)
Dissolved Oxygen (DO)		
Electrical Conductivity		
Temperature	500 mL	
Oxidation-Reduction Potential (ORP)		
рН		
Fluid Density		HACH [™] Hydrometer (SG > 1.0)
Dissolved Total	lphide 25 mL	Dissolved total sulphide by methylene blue method (Hach Method No. 8131) and colorimeter (Hach DR900Multiparameter Colorimeter)
[S ²⁻ Total]		
Ferrous Iron [Fe ²⁺]	35 mL	1-10 Phenanthroline Method (Hach Method No. 8146) using portable colorimeter (Hach DR900 Multiparameter Colorimeter)
Dissolved Oxygen	50 mL	Indigo Carmine method (Hach Method No. 8316) using portable colorimeter (Hach DR900) for concentrations < 1mg/L and Horiba-U52/50 for concentrations > 1 mg/L

Table 5 Field Parameter Measurement and Field Analytical Testing Methods

Parameter	Volume Required	Field-Measurement Method
Alkalinity	100 mL	Hach [™] Alkalinity Test Kit, digital titration method using sulphuric acid (H ₂ SO ₄), phenolphthalein indicator, and bromcresol green- methyl red indicator; hydroxide, carbonate and bicarbonate alkalinities can be determined (Hach Method No. 8203)

3.4.4 Sampling Procedure for Noble Gas Samples

Water samples for noble gases analysis were collected using lab-provided 3/8-inch copper tubing connected to the Westbay MOSDAX sampler. A train of two or three copper tubes (~0.3 m long each) were connected in series below the MOSDAX sampler with a 250 mL stainless-steel Westbay sample cannister between the probe and the copper tubes (Figure 3a). The sample train followed the same sampling procedure as outlined in section 3.4.2.

Upon retrieval to the surface, lab-provided bar-style pinch-off clamps (Yellow Jacket 60665) were used to seal off both ends of each 0.3 m long copper tubing segment. By sealing each segment, triplicates (or quadruplets) were collected for each sample (Figure 3b). After clamping, the noble gas samples were wrapped in bubble wrap and placed in a rigid-sided cooler for transport.

After review of noble gas results from the samples collected during 2021, Geofirma and NWMO decided to increase the number of lengths of copper tubing, from three to four for the collection of noble gas samples starting in Q3 2022. This decision was taken to increase the volume of groundwater collected to allow flexibility and provide opportunity for additional or replicate laboratory analyses, as required.

Figure 3 Example photos of noble gas sampling.

a) photo of sample train with Westbay cannister and three Cu tubes prior to sending downhole.b) photo of sample tubes after being clamped and labelled.

3.4.5 Collection of QA/QC Samples

QA/QC samples were collected as part of each monitoring event in 2022. Three types of QA/QC samples were collected, including:

- *Rinsate blank* to test the sampling equipment after decontamination for contamination, one sample collected per quarterly event.
- *Field blank* tritium-free blanks to assess atmospheric contamination during sample collection and transport, one sample collected per quarterly event.
- Duplicate samples complete set of duplicate samples, collected to assess the consistency of the laboratory analyses. Duplicate samples are collected from intervals that have met the criteria for final sampling or otherwise requested by NWMO.

The rinsate blank was collected by running distilled water through the Westbay MOSDAX sampler probe and sampler containers following the completion of decontamination activities and prior to sample collection. Sufficient water was run through the sampling equipment to fill laboratory-provided sample bottles for major elements and metals, trace elements, and anions.

A tritium-free "field" blank was collected to assess atmospheric contamination of groundwater samples. Tritium-free water is provided in bottles by the University of Ottawa. These bottles were stored on-site and left exposed to the atmosphere for the same duration as the tritium and ¹⁴C-DIC samples. During sampling, the tritium-free water was decanted into sample bottles identical to the ones used for tritium and ¹⁴C-DIC analyses. The field blank was analyzed for tritium and ¹⁴C-DIC at the same time as the corresponding groundwater sample.

A full suite of duplicates was collected during the Q2, Q3 and Q4 monitoring events in 2022 to assess the reproducibility of concentrations in-situ. Duplicate samples were collected at the same time as the primary/original sample, on a bottle-by-bottle basis. For example, both the original and duplicate tritium bottles were filled before filling the next bottle type.

3.4.6 Samples Collected in 2022

A total of eleven (11) full groundwater samples and twelve (12) QA/QC samples were collected in 2022.

Unless otherwise specified, approximately 5.0 litres (L) of groundwater was required to meet the sampling objectives with an additional 1-2 L required to complete field parameter measurements for each selected interval. This requires between 6-7 sample runs to collect sufficient volume for sampling. Approximately double the amount of volume and runs were required on Westbay intervals that were selected for duplicate samples.

As described above and following the Test Plan, sample collection is completed by either of these two methods:

1) Within the MP38 casing: Samples collected by this method were from Westbay intervals that were continuing to be purged, therefore the pumping port remains open during sampling. The samples are collected by lowering the MOSDAX sample probe to approximately 2 m above the pumping port, then opening the valve for collection. They are therefore not sampled directly from the formation but from the water column in the MP38 casing. These samples are considered interim samples, with estimated drill fluid proportions above 5%.

2) Sampling port: Samples collected by this method were from Westbay intervals that were deemed as final with estimated drill fluid proportions below 5%. The samples are collected from the formation, with the MOSDAX sample probe attached to the sampling port.

A summary of samples collected in 2022 with details on collection method used is provided in Appendix A. The following noteworthy changes to the routine planned sampling program were implemented:

<u>Q2 2022 (June)</u>

During Q2 (June) 2022, Geofirma was initially informed by the NWMO that the pumping port for IG BH03 T INT 002 was closed in preparation for final sampling and to collect samples through the sampling port. However, field measurements completed by Geofirma (interval pressures and fluorescein concentrations) indicated that the port remained open, and the interval was not ready for final sampling. In addition, interval pressures measured from within the MP38 casing (i.e., landed pressure or P1) and the formation (i.e., outside pressure or P2) had similar values of 8266.60 kPa and 8268.01 kPa, respectively prior to sampling and 8256.80 kPa and 8258.08 kPa, respectively post-sampling. This indicates that the that the formation and inside casing are connected and infers that the pumping port is open. Moreover, the fluorescein concentration was measured at 18.47 ppb at the time of sampling while previous concentrations collect by NWMO during purging were <5 ppb; this demonstrates that there was likely mixing of column fluid with the formation water, further indicating that the pumping port remained open. Geofirma notified the NWMO of these observations and it was decided that interval IG BH03 T INT 002 would be treated as an ongoing purging interval (interim sample) with an open pumping port and the sampling method was changed. Samples from IG_BH03_T_INT_002 were therefore collected from inside of the MP38 casing with the pumping port left open, with the MOSDAX sample probe positioned approximately 2 m above the pumping port.

Q4 2022 (December)

In Q4 (December) 2022, IG_BH01_T_INT_007 was resampled for noble gas analyses only (no other chemistry samples collected) to verify previous reported concentrations. Only two runs were required to collect sufficient water to collect noble gas samples. Sample collection from IG_BH03_T_INT_021 was requested by NWMO for in-field parameters only. Only one run was required to collect in-field measurements, any remaining sample water was collected in a 250 mL sample bottle to be archived.

During the same quarter (Q4 2022), interval IG_BH06_T_INT_008 was targeted for interim sampling, with a full suite of analyses, however Geofirma's field measurements unexpectedly confirmed high fluorescein concentrations (~100 ppb), therefore it was decided to terminate sampling. Geofirma collected a single 250 mL sample bottle for archive purposes and the remainder of the sample water was discarded into waste buckets containing rinsate water and laboratory standards / solutions for offsite disposal.

3.5 Laboratory Analyses

Samples collected during the monitoring events were shipped/delivered to select analytical laboratories under chain of custody procedures. All samples were transported in rigid-sided coolers with bubble wrap to prevent damage during transport. Except for the noble gas samples, all other samples were

transported on ice to maintain a temperature below 10 degrees C during transport. Noble gas samples were transported in coolers protected with bubble wrap and hand delivered to the lab.

Laboratory analysis of groundwater samples was completed by Bureau Veritas, Isotope Tracer Technologies (IT2), and the University of Ottawa. Archive samples were also collected and delivered to NWMO. A complete list of analytes analyzed by laboratories as part of the monitoring program is provided in Table 6.

Bureau Veritas completed laboratory analyses of the non-isotopic parameters listed, which included listed major elements and metals, trace elements, anions, and nutrients.

Isotope Tracer Technologies Inc. (IT2), of Waterloo, Ontario completed all the listed stable and radioactive isotope analyses, except for ³⁶Cl and ¹²⁹I.

Analysis for noble gas isotopes, ³⁶Cl and ¹²⁹I were sent to be completed at the University of Ottawa (UofO). While the UofO was the primary analytical lab, some analyses were subcontracted out to be completed. ³⁶Cl analysis was completed by *Eidgenössische Technische Hochschule* (ETH) Zurich and PRIME Lab at Purdue, and noble gas analyses by the University of Utah.

Table 6Completed Laboratory Analyses, by Analytical Lab

Analytes	Analytical Lab or Storage	
Major and Trace Elements and Metals (Na, K, Ca, Mg, Sr, Li, Si, Al, B, Cu, Ni, Zn, Pb, Cd, As, Se, Bi, U, Cs, Rb, Ba, Cr, Co, Th, Zr)		
Total Dissolved Sulphur, Total Dissolved Iron	Bureau Veritas	
Ruthenium (Ru)		
Reactive Silica (SiO ₂)		
Sulphide (S ²⁻) (by zinc acetate ppt)		
Anions (Br, Cl, SO ₄ , PO ₄ , I, NO ₂ , NO ₃)		
рН		
Total Alkalinity as CaCO ₃		
Fluoride (F)		
Total Inorganic Carbon (TIC)		
Carbonate, Bicarbonate (CO ₃ , HCO ₃)		
Total Ammonia (NH ₄ +NH ₃)		
Total Nitrogen		
Total Organic Carbon (TOC)		
Total Phosphorus		
Dissolved Organic Carbon (DOC)		
δ^{18} O, δ^{2} H, ³ H (enriched, saline sample)		
⁸⁷ Sr/ ⁸⁶ Sr		
δ ³⁷ Cl	Isotope Tracer Tech. (IT2)	
δ ¹³ C-DIC		
¹⁴ C-DIC		
¹²⁹ I, ³⁶ CI	University of Ottawa (with subcontracts to ETH Zurich and the University of Utah for select analysis)	
Noble Gases (³ He, ⁴ He, ²⁰ Ne, ²¹ Ne, ²² Ne, ³⁶ Ar, ⁴⁰ Ar, Kr _{Total} , Xe _{Total})		
Archive	NWMO Ignace Office	

4 **RESULTS**

Analyses of field data and results from the 2022 quarterly monitoring events are presented in the following sections. Groundwater pressures and calculation of hydraulic heads are presented in Section 4.1 and 4.2. Chemistry results from groundwater sampling are presented in Section 4.3.

4.1 **Pressure Profile Analysis**

4.1.1 Conversion of Absolute Pressure Fluid Profile

The Westbay MOSDAX pressure probe measures absolute pressure in the packer-isolated borehole intervals outside the MP38 casing, which is considered the formation pressure (P_f). Pressures measured by this equipment are total/absolute pressures, expressed in metric (SI) units of kilopascal (kPa), which include the combined pressure of the water column and the atmospheric pressure (P_a). The effect of atmospheric pressure (P_a) was addressed by measuring the P_a at ground surface and subtracting the P_a from the formation pressure. For pressure data presented in this report, the averaged P_a measured at the start and end of a given pressure profile was used to correct all measurements collected during the profile. A separate P_a was used for each quarterly pressure profile at each borehole.

4.1.2 Calculation of Equivalent Freshwater and Environmental Hydraulic Heads

Formation fluid pressures measured in variable-density groundwater systems are commonly expressed as freshwater hydraulic heads and environmental hydraulic heads. Equivalent freshwater hydraulic heads assume a constant fluid density with depth across the entire length of the measured profile, whereas environmental hydraulic heads are determined using a reference formation fluid density profile.

The data required to complete these calculations are depth/elevations of MP38 measurement ports, measured formation fluid pressures, and the reference formation fluid density profile. Hydraulic head (H) is the sum of the elevation head (Z) and the pressure head (ψ).

Equivalent freshwater hydraulic heads are calculated from measured formation pressures and MP system measurement port elevations as:

$$H_f = Z + \psi = Z + \frac{P_f - P_a}{\rho_f g}$$
[1]

Where: H_f = equivalent freshwater hydraulic head [m ASL];

Z = elevation of MP pressure measurement port [m ASL];

 P_{f} = formation pressure measured in MP measurement port [Pa or kg/ms²];

 P_a = averaged atmospheric pressure measured at ground surface [Pa or kg/ms²];

 ρ_{f} = density of freshwater [1000 kg/m³ at ambient temperatures]; and

g = gravitational acceleration [9.8065 m/s²].

Note: for head calculations, ground surface elevations were assumed to be 430.562 m ASL (IG_BH01), 441.403 m ASL (IG_BH03), 432.29 m ASL (IG_BH05), and 417.74 m ASL (IG_BH06)

Environmental hydraulic heads are determined from calculated freshwater heads and a reference formation fluid density profile as:

$$H_e = H_f - \left(\frac{\rho_f - \rho_a}{\rho_f}\right) (Z - Z_r)$$
[2]

Where: H_e = environmental hydraulic head [m ASL]

 Z_r = elevation of reference point below which an average fluid density is determined [i.e., top of the groundwater system as represented by ground surface]; and

 ρ_a = average density of water between Z and Z_r defined as:

$$\rho_a = \frac{1}{Z_r - Z} \int_{Z}^{Z_r} \rho(z) dz$$
[3]

Fluid density profile functions ($\rho(z)$) can be determined from compilations of measured fluid densities of porewater and groundwater samples from different depths at a given site.

4.1.3 Calculated Hydraulic Head and Vertical Depth Profiles

Calculated equivalent freshwater hydraulic heads from the 2022 monitoring event are plotted in meters above mean sea level (m ASL) with true vertical depths (TVD) below ground surface in Figure 4.

Appendix B provides tables showing the measured formation pressures and calculated equivalent freshwater hydraulic heads from pressure profiling in IG_BH01, IG_BH03, IG_BH05, and IG_BH06. Borehole IG_BH06 was not included in the scope for pressure profiling until the Q2 2022 monitoring event. No calculation of environmental heads was performed in this annual report as fluid density profiles for IG_BH01, IG_BH03, IG_BH05, and IG_BH06 have not yet been determined.

Head profiles in all boreholes, excluding IG_BH03 in Q4 2022, were generally consistent for all 2022 monitoring events and were comparable to profiles measured by Geofirma in 2021. The relatively low-pressure measurements and associated freshwater heads observed at select intervals of the profiles were expected due to ongoing purging, sampling, or post-sampling recovery of selected intervals. The following sections summarize the profiles for each borehole and discuss any notable observations.

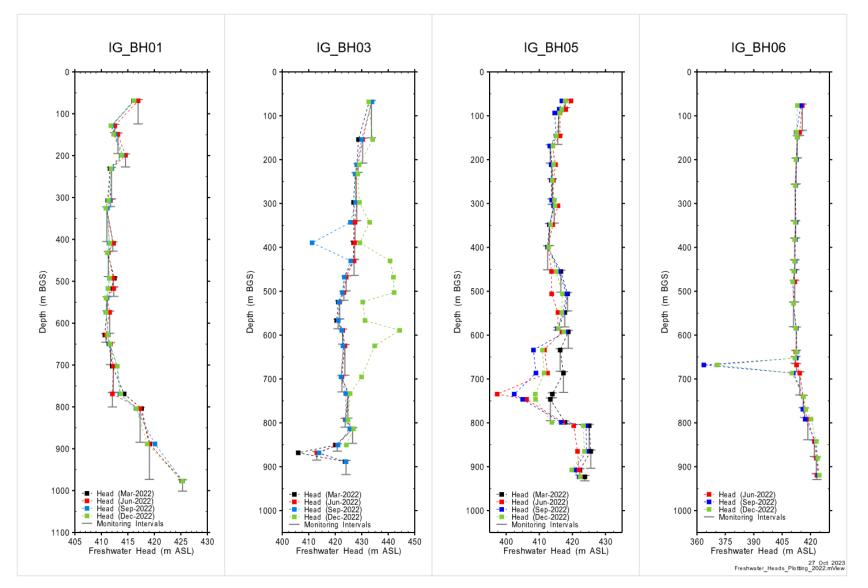


Figure 4 Vertical Depth Profiles of Equivalent Freshwater Hydraulic Heads for IG_BH01, IG_BH03, IG_BH05 and IG_BH06 during 2022 Quarterly Monitoring Events

4.2 Freshwater Heads in Deep Bedrock Boreholes

4.2.1 IG_BH01

Freshwater hydraulic head profiles for IG_BH01 were consistent for all 2022 monitoring events (Figure 4).

The relatively low head and pressures observed in IG_BH01 from intervals 4 (769.06 m BGS) to 7 (628.23 m BGS) in Q1 and Q2 2022 are likely caused by drawdown from the purging of interval 4 in preparation for sampling (sampled in Q1 and Q2 2022), and a slow recovery from pumped conditions of interval 7 back to equilibrium (previously purged and sampled in December 2021).

Similarly, in Q3 and Q4, the relatively low head and pressures from intervals 2 (888.49 m BGS) to 4 (769.06 m BGS) is likely due to the drawdown of interval 2 from purging and sampling in Q3 and Q4, and a slow recovery back to equilibrium after pumping of interval 4.

4.2.2 IG_BH03

Freshwater hydraulic head profiles for IG_BH03 were also generally consistent for all monitoring events, excluding Q4 2022 (Figure 4). The low head and pressures observed in interval 2 (868.28 m BGS) throughout all four quarters is due to the ongoing purging from 2021 to Q2 2022, and subsequent sampling and slow recovery in Q3 and Q4 2022.

A relatively low head and pressure were also observed in interval 15 (389.63 m BGS) of IG_BH03 during the Q3 monitoring event. As there is no record of any opening of pumping port or purging of this interval, this value is considered anomalous.

During Q4 2022 pressure profiling at IG_BH03, Geofirma experienced several challenges with equipment and field conditions, including:

- Winch mechanism alignment problems resulted in a slow, manual probe retrieval.
- Communication problems between the Westbay MAGI control units and the probes through the winch cables at greater depths in the boreholes.
- Erroneous magnetic collar detection signals, requiring multiple attempts to manually land on target ports.
- High turbidity borehole conditions, resulting in buildup of sediment/clay/grease on the winch cable and probes.

Geofirma attempted several troubleshooting techniques, including switching equipment, to mitigate the issues and complete the profile. Geofirma was successful to complete the profile, excluding intervals 1 (888.57 m BGS) and 2 (868.63 m BGS). However, the pressures observed in most intervals during the Q4 pressure profile at IG_BH03 are inconsistent with previous profiles from the borehole. The cause of these inconsistencies is unknown at this time and is being investigated.

4.2.3 IG_BH05

Freshwater hydraulic head profiles in IG_BH05 were generally consistent for all 2022 monitoring events (Figure 4). The low head and pressures observed in IG_BH05 from intervals 4 (806.50 m BGS) to 9 (634.09 m BGS) is likely due to ongoing purging of interval 7 (734.54 m BGS) from March to September 2022, and subsequent sampling and slow recovery in Q3 (September) and Q4 (December) 2022.

Similarly, the relatively low head and pressures observed in interval 5 (798.79 m BGS) in Q4 2022 is likely due to the ongoing purging and sampling of that interval.

4.2.4 IG_BH06

Freshwater hydraulic head profiles were not completed in IG_BH06 during Q1 2022, however were consistent throughout the remaining three (Q2, Q3, Q4) 2022 monitoring events (Figure 4). The relatively low head and pressures observed in IG_BH06 interval 8 (668.15 m BGS) is likely due to the ongoing purging of this interval in preparation for sampling.

4.3 **Groundwater Chemistry**

Geofirma staff completed a review of all laboratory-reported water chemistry results for samples collected to-date including at least one interim and one final sample from four intervals in IG_BH01, four interim samples and one final sample in IG_BH03 interval 2, two interim and one final sample from IG_BH05 interval 7, and a single interim sample from IG_BH05 interval 5. See above for more details. Unless otherwise noted in the following sections, the water chemistry results are considered acceptable based on Geofirma's review.

Results that are presented in this report include field measurements and laboratory reported values that have not been corrected for drill water contamination/impacts. Correction for drill water contamination is outside of the project's scope of work. Samples collected during the 2022 monitoring events have levels of drill water contamination ranging from approximately 2-50%, based on field-measured fluorescein concentrations. These should be considered when evaluating the data presented in this report. Estimated drill fluid concentrations for each sample is reported in the sample summary table (Appendix A).

Appendix C provides complete tables with all water chemistry results from the 2022 groundwater sampling events and all laboratory reports are found in Appendix E.

4.3.1 Field Measurements

Field parameter measurements were collected by Geofirma field staff as part of groundwater sampling activities during each quarter. A complete table of field parameters and measurements are provided in Appendix C.

The pH field measurements from IG_BH01_T_INT_004 increased from 6.95 in the interim sample to 8.22 for the final sample and pH decreased from 8.80 to 8.48 for samples from IG_BH01_T_INT_002. The pH values recorded for IG_BH03_T_INT_002 ranged from 6.97 to 7.47, with the final sample pH of

7.13. Interval IG_BH05_T_INT_007 pH values increased during purging from 6.73 to the final sample pH of 8.17 and the interim sample from interval IG_BH05_T_INT_005 had a pH value of 7.58.

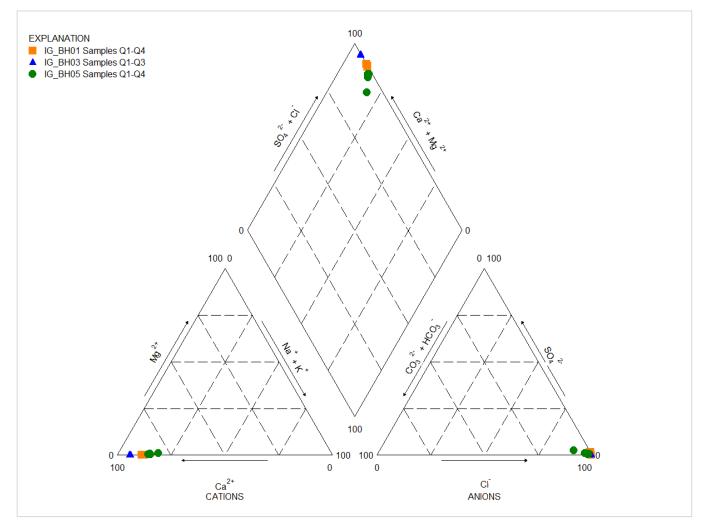
The electrical conductivity (EC) measurements for BH01_T_INT_004 samples remained consistent ~20 mS/cm for both interim and final sample, whereas for IG_BH01_T_INT_002 samples, EC measurements increased from 14.0 to 35.2 mS/cm. In samples from IG_BH03_T_INT_002, the EC measurements were consistent with values between 39 to 47 mS/cm. Measurements for IG_BH05_T_INT_007 samples showed an increase in EC with ongoing purging, ranging from 5.54 to 17.3 mS/cm, and the sample from IG_BH01_T_INT_005 had a value within this range at 13.3 mS/cm.

Total dissolved solids (TDS) measurements, as measured by the multiparameter probe, ranged from 3.49 to 28.3 g/L. The samples with values below 10 g/L all corresponded to samples collected from partially purged intervals (i.e., interim samples). All final samples with TDS values between 10-100 g/L are categorized as saline groundwater (Freeze & Cherry, 1979).

Colorimetric dissolved oxygen (DO) measurements from most samples were below 1 mg/L and are consistent with the zero or near zero readings from the multiparameter probe. In general, readings from the multiparameter probe are more accurate than the colorimeter readings, as the sample water for the multiparameter probe is analyzed in a flow-through cell with less potential for atmospheric exposure. However, samples IG_BH03_GW013 (2.83 mg/L) and IG_BH05_GW011 (6.52 mg/L). are likely anomalous as they have DO readings above 1 mg/L. For sample IG_BH03_GW013 the flow-through cell seal failed, and therefore the sample was exposed to air. Sample IG_BH05_GW011 had high turbidity, which led to difficulties collecting most parameters, and this may have caused the high DO reading.

Dissolved ferrous iron (Fe²⁺) was measured in all samples collected from IG_BH01, IG_BH03, and IG_BH05. The measurements from both intervals in IG_BH01 decreased with ongoing purging from 1.18 to 0.27 mg/L and 2.19 to 0.02 mg/L for interval 4 and interval 2 samples, respectively. The Fe²⁺ measured in interval IG_BH03_T_INT_002 samples, increased from 1.29 to 2.07 mg/L with ongoing purging. Samples from IG_BH05_T_int_007 had Fe²⁺ measurements that ranged from 2.73 to 7.50 mg/L, with two of the samples, IG_BH05_GW002 and IG_BH05_GW005, requiring dilution to obtain values. Similarly, sample IG_BH05_GW011, sampled from IG_BH05 interval 5, also required dilution to obtain a reading of 8.50 mg/L. Samples were diluted using distilled water, this introduces uncertainty in these measurements.

Concentrations of dissolved sulphide (S²⁻) was also measured in all sampled collected from the three boreholes. The measurements were consistent ~0.04 mg/L for BH01_T_INT_004 samples and increased from 0.09 to 0.41 mg/L in IG_BH01_T_INT_002 samples. The S²⁻ concentrations ranged from 0.31 to 0.53 mg/L in IG_BH03_T_INT_002 samples, with no significant trends. Samples from IG_BH05_T_INT_007 had S²⁻ measurements that ranged from 0.05 to 2.10 mg/L, with two of the samples requiring dilution to obtain values. Similarly, sample IG_BH05_GW011, sampled from IG_BH05_T_INT_005, also required dilution to obtain a reading of 1.15 mg/L. Samples IG_BH05_GW002 (2.10 mg/L), IG_BH05_GW005 (0.90), and IG_BH05_GW011 (1.15 mg/L) required dilution to obtain measurements, as precipitation formed when the reagents were added to the sample, interfering the colorimeter readings. Samples were diluted using distilled water (containing unknown amounts of oxygen), and therefore resulting in potential underreporting of sulfide concentrations.



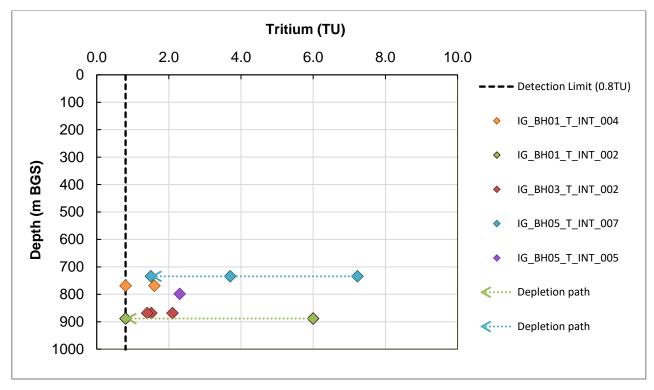
4.3.2 General Chemistry

General chemistry results are summarized in Appendix C, with the associated laboratory report from Bureau Veritas (BV) provided in Appendix E. Discussion of QA sample results, including rinsate and duplicate samples is provided in section 5.3.1.

A charge balance analysis of the major cations and anions for the groundwater samples showed charge balances $<\pm5\%$ for all samples. The major ion concentrations were converted to milliequivalents, then converted to relative concentrations and plotted on ternary plots to produce Piper diagrams. The Piper diagrams for the three boreholes, IG_BH01, IG_BH03 and IG_BH05 are shown in Figure 5.

All samples from the three boreholes for all monitoring events in 2022 are Ca-Na-Cl type waters with low Mg²⁺ and K⁺ concentrations.

Figure 5 Piper Plot for Groundwater Samples collected in 2022.



4.3.3 Isotopes

Isotope results are summarized in Appendix C, with the associated laboratory reports from the University of Ottawa and IT2 provided in Appendix E. Discussion of QA sample results, including field blank samples and duplicates is provided in section 5.3.2.

Tritium results for IG_BH01, IG_BH03 and IG_BH05 samples from each monitoring event are shown in Figure 6, with reported values below the detection limit (<0.8 TU) plotted at 0.8 TU. Results from IG_BH01_T_INT_004 samples were relatively consistent between sampling rounds, with low tritium concentrations of below detection limit of 0.8 NTU ($\pm 1\sigma$ 0.7) in Q1 and 1.6 NTU ($\pm 1\sigma$ 1.0) in Q2 2022. In comparison, IG_BH01_T_INT_002 sample results showed a slightly more elevated concentration in the sample collected during Q3 2022 (6.0 NTU $\pm 1\sigma$ 0.9), which decreased with purging to below the detection limit in Q4 2022 (0.8 NTU $\pm 1\sigma$ 0.8).

All tritium results from interval IG_BH03_T_INT_002 samples collected in Q1 (1.5 NTU $\pm 1\sigma 0.7$), Q2 (2.1 NTU $\pm 1\sigma 1.0$) and Q3 (1.4 NTU $\pm 1\sigma 0.7$) 2022 show low tritium concentrations and remained relatively consistent each quarter, with no significant trend due to purging observed. The results from interval IG_BH05_T_INT_007 samples show a decreasing trend in tritium concentrations as the interval was purged from 7.2 NTU ($\pm 1\sigma 0.9$) in Q1 to 1.5 NTU ($\pm 1\sigma 0.7$) in Q3. Interval IG_BH05_T_INT_005 showed a similar low concentration of 2.3 NTU ($\pm 1\sigma 0.8$) from the partially purged sample collected in Q4 2022.

Figure 6 Tritium concentrations in groundwater samples from boreholes IG_BH01, IG_BH03, and IG_BH05 in 2022.

Stable isotope data (δ^{18} O and δ^{2} H) are summarized in Appendix C and presented in Figure 7. Results show that most samples collected have deuterium excess compared to the global meteroric water level (GMWL), with the equation of δ^{2} H = 8 δ^{18} O +10‰ (Clark, 2015), except for samples IG_BH01_GW035 and IG_BH05_GW001 which fall below the GWML line, these two samples are the most impacted by drill water with an estimated drill fluid proportion of 30-50%.

Samples collected from IG_BH01_T_INT_004 show consistent results from both sampling rounds completed in Q1 and Q2 2022. Samples from interval IG_BH01_T_INT_002 show values for both δ^{18} O and δ^{2} H that depleted during ongoing purging completed between Q3 and Q4 2022. All δ^{18} O and δ^{2} H results from interval IG_BH03_T_INT_002 remained consistent throughout each sampling round from Q1 to Q3 2022. The results from interval IG_BH05_T_INT_007 showed a decreasing trend as the interval was purged from Q1 to Q3 2022. Interval IG_BH05_T_INT_005 showed similar depletion levels of δ^{18} O and δ^{2} H from the partially purged sample collected in Q4 2022.

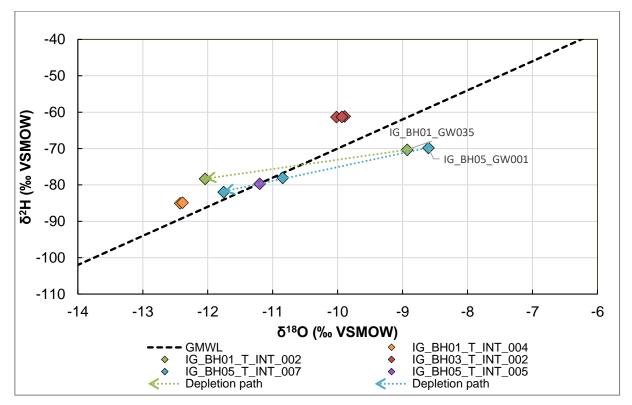
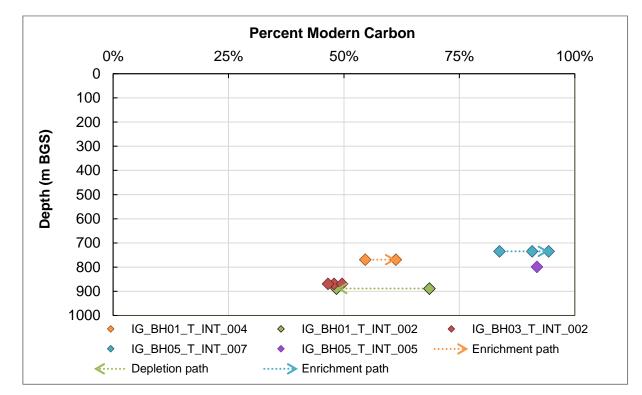
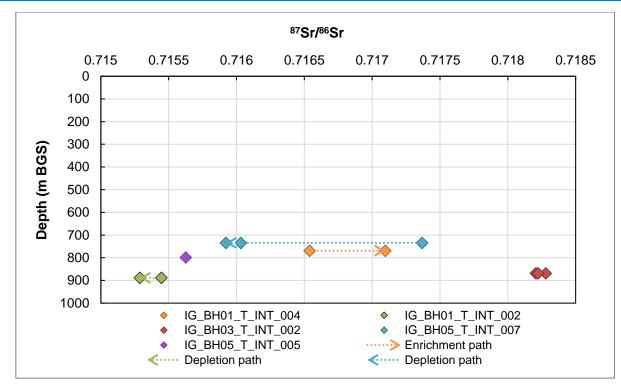



Figure 7 δ 18O and δ 2H values for groundwater samples from boreholes IG_BH01, IG_BH03, and IG_BH05 in 2022. GMWL is the global meteoric water level line, δ^2 H = 8 δ^{18} O +10‰ (Clark, 2015).

Radiocarbon results are presented in Figure 8, the results are shown as percent modern carbon (pmC). ¹⁴C results from IG_BH01_T_INT_004 samples show a slight increase in value from 55 to 68% pmC and a decrease in values from 66 to 48% pmC for IG_BH01_T_INT_002 samples, as more volume was purged. The results from IG_BH03_T_INT_002 were consistently around 50% pmC for all quarters. The ¹⁴C results from IG_BH05 intervals show values between 80 - 92% pmC with the values for IG_BH05_T_INT_007 increasing as the purged volume increased. ¹⁴C results will need to be corrected

for drill water impacts and interpreted. This interpretation is outside the scope of this report and will be completed by the NWMO.

Figure 8 Measured ¹⁴C presented as percent modern carbon (pmC) for groundwater samples collected from boreholes IG_BH01, IG_BH03, and IG_BH05 in 2022.


The strontium isotopic ratios (⁸⁷Sr/⁸⁶Sr) in the groundwater samples collected during 2022 are presented in Figure 9. The isotopic ratios for strontium in all samples fall within the range of 0.715 and 0.719. Samples from intervals in IG_BH01 show the isotopic signature becoming less radiogenic with depth. Samples from IG_BH01_T_INT_004 show an increase in radiogenic signature with continued purging, whereas IG_BH01_T_INT_002 samples show slight depletion. Samples from IG_BH05 follows the same trend of decreasing radiogenic signature with depth and as purged volumes increased, between monitoring rounds. Samples from IG_BH03, all collected from the same interval showed a consistent isotopic signature for each round with values between 0.71821 and 0.71828.

Results for δ^{37} Cl for groundwater samples collected during 2022 monitoring events were between - 0.85‰ to +0.17‰ SMOC (standard marine ocean chloride). These results are consistent with results from previous studies of fluids sourced from crystalline rocks in the Canadian Shield (Stotler, Frape, & Shouakar-Stash, 2010).

The measured ³⁶Cl abundance ratios (³⁶Cl/Cl) for all groundwater sampled collected in 2022 range from 13.6 x 10^{-15} to 19.2 x 10^{-15} and show no notable trends.

The ¹²⁹I isotope results show similar trends for the three boreholes sampled in 2022, with the concentration of ¹²⁹I decreasing during purging of a given interval. Sample concentrations ranged from 28 million to 177 million atoms per kilogram.

Figure 9 Strontium isotopic ratios (⁸⁷Sr/⁸⁶Sr) for groundwater samples collected from boreholes IG_BH01, IG_BH03, and IG_BH05 in 2022.

4.3.1 Noble Gases

Noble gas results are summarized in Appendix C, with the associated laboratory report from the University of Ottawa in Appendix E.

Figure 10 shows the helium ($x/Ra={}^{3}He/{}^{4}He$ normalized to air), neon (${}^{20}Ne/{}^{22}Ne$) and argon (${}^{40}Ar/{}^{36}Ar$) isotopic ratio results from the samples collected in 2022. Samples collected from IG_BH01 have x/Ra ratios between 0.02 and 0.07, IG_BH03 samples have ratios between 0.02 and 0.13 and IG_BH05 sample ratios fell between 0.01 and 0.11, these low ratios (<=0.1) are indicative of radiogenic He (White, 2015).

Calculated ²⁰Ne/²²Ne ratios results for all samples are between 9.19-11.27 and plot adjacent to the air ratio of 9.8 (Eberhardt, Eugster, & Marti, 1965), indicating little nucleogenic Ne in these samples (White, 2015). The calculated ⁴⁰Ar/³⁶Ar ratios show large variation and with values ranging from 403 up to 15,500, all sample ratios plot above the air ratio of 295.50 (Steiger & Jäger, 1977), also indicative of radiogenic Ar (White, 2015). Figures 11, 12 and 13 shows the ratios plotted against each other, the only significant trend observed is the increase in x/Ra and ⁴⁰Ar/³⁶Ar ratios and decrease in ²⁰Ne/²²Ne ratios of IG_BH05_T_INT_007 as the interval was purged between March and September 2022.

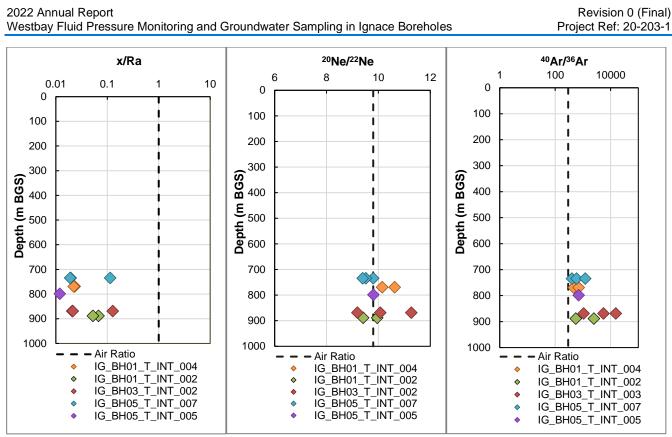


Figure 10 Noble Gas isotopic ratios of groundwater samples collected from boreholes IG_BH01, IG_BH03, and IG_BH05 in 2022.*Air ratios used in figure: x/Ra = 1 (normalized to air 1.38 x 10⁻⁶), 20Ne/22Ne = 9.8 (Eberhardt, Eugster, & Marti, 1965), 40Ar/36Ar =295.50 (Steiger & Jäger, 1977)

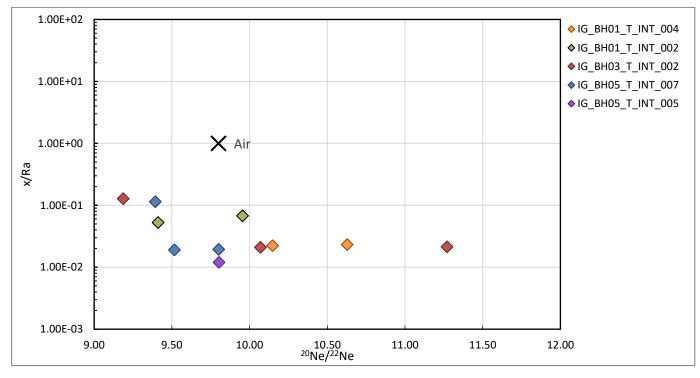


Figure 11 ²⁰Ne/²²Ne as plotted against x/Ra for all 2022 samples and related air (atmospheric) ratios.

29

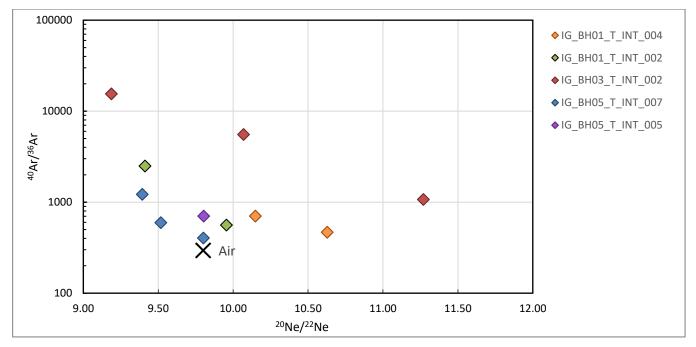


Figure 12 ²⁰Ne/²²Ne as plotted against ⁴⁰Ar/³⁶Ar for all 2022 samples and related air (atmospheric) ratios.

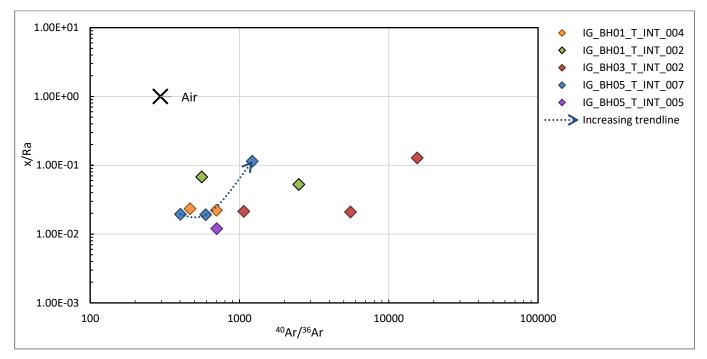


Figure 13 ⁴⁰Ar/³⁶Ar as plotted against x/Ra for all 2022 samples and related air (atmospheric) ratios.

5 DATA QUALITY

Overall quality management of the activities performed at each quarterly monitoring event, and represented in this report, are consistent with the Test Plan and the Project Quality Plan.

5.1 In-Field Data Quality Assurance

5.1.1 Field Data Quality Confirmation

Each quarterly monitoring event has a designated DQC workbook. The DQC workbook was completed by field staff each day throughout the monitoring event to ensure quality of data collected, following the data deliverable verification procedures outlined in the Test Plan. The DQC workbook has been submitted to the NWMO separately, as a part of the data deliverable package.

5.1.2 QA Checks During Pressure Profiling

Pressures recorded during each pressure profile are compared to the those recorded during the previous field event. For a given interval, measured formation pressures within 50 kPa of the previous records are considered representative and acceptable. If the value was observed to be out of this acceptable range, Geofirma staff remeasured the interval to confirm the reading and recorded it in the DQC, along with any noteworthy comments.

5.2 Field Data Chemistry

Following field activities each quarter, Geofirma staff reviewed the in-field data parameters and measurements. Most field parameter measurements and field-testing results from the 2022 sampling events were within the anticipated ranges and are comparable to laboratory provided results, where available (e.g. pH and alkalinity). A few minor discrepancies were observed by Geofirma and are summarized below:

- The pH measurements collected in field from IG_BH01 samples during Q2 (8.22), Q3 (8.80) and Q4 (8.48), were slightly above the measurements reported by the laboratory of 6.72, 7.23 and 7.65. These slight discrepancies are likely due to the samples being measured under different conditions. The pH can change due changes in temperature or degassing of CO2 (Clark, 2015), and therefore the field readings are considered the most representative of in-situ groundwater conditions.
- Field alkalinity measurement collected from IG_BH03_GW016 of 106 mg/L in Q2 was slightly above the laboratory reported measurement of 66 mg/L. Conversely, in Q3 the field alkalinity measurement collected from IG_BH03_GW017 of 18 mg/L was below the laboratory reported measurement of 58 mg/L. The variation observed is likely due to the uncertainty associated with the in-field alkalinity measurement protocol, as the endpoint in this protocol is based on a colour observation which can vary between field staff.
- Measurements for dissolved ferrous iron (Fe²⁺) and dissolved sulphide (S²⁻) required dilution with distilled water for samples IG_BH05_GW002, IG_BH05_GW005, and IG_BH05_GW011 in Q2, Q3 and Q4 respectively, and therefore the reported values have a greater uncertainty than similar measurements collected from non-diluted samples.

- DO measurements for samples IG_BH03_GW013 (2.83 mg/L), IG_BH03_GW019 (3.15 mg/L), and IG_BH05_GW011 (6.52 mg/L) by the multiparameter probe are above the expected range of <1 mg/L. The elevated DO readings are likely due to atmospheric exposure of the sample during measurement. Laboratory samples were collected directly from the Westbay cannisters into laboratory provided bottles on separate runs, therefore there is no concern for atmospheric exposure in these samples.
- Colorimetric field-testing results for dissolved oxygen (DO) for samples IG_BH05_GW001 and IG_BH01_GW036 in Q1 and Q3 respectively, were outside of the anticipated range for groundwater at the site (< 1 mg/L). The associated multiparameter probe measurements of DO for these samples was within the expected range and is a more reliable measurement, with less potential for atmospheric contamination.

5.3 Laboratory Data Quality

As discussed in Section 3.4.5, three types of QA/QC samples, including rinsate blanks, field blanks, and duplicate samples, were collected as part of the groundwater sampling event for laboratory quality assurance (Appendix D).

Pairs of duplicate samples were compared to assess the consistency of analytical results by relative percent difference (RPD) for each analyte where the primary and duplicate sample had reported values above method detection limits. RPD was calculated by the equation below:

• Equation 1: $RPD = \frac{|x_1 - x_2|}{\bar{x}} \times 100\%$

Where: x_1 = concentration of original sample x_2 = concentration of duplicate sample \bar{x} = average concentration of original and duplicate sample

RPD values for homogeneous water samples are generally considered acceptable for laboratory QA if the RPD is less than 30% (MECP, 2004). However, since the uncertainty associated with a value increases dramatically as the result approaches the method detection limit (MDL), the MECP recommends using a duplicate result in RPD calculations only if the average of the two duplicates is greater than five times the MDL (5x MDL) (MECP, 2004) All calculated RPD values can be found in Appendix D.

Geofirma also calculated the charge balance error (CBE) for the general chemistry results from each groundwater sample to assess the accuracy of the geochemical analysis. The charge balance is the comparison of the sum of anions in meq/L with the sum of cations in meq/L in the solution and is expressed as a percentage (Equation 2). A charge balance error of less than $\pm 5\%$ is considered to be acceptable for the purpose of this study (Hounslow, 1995).

• Equation 2: *CBE* (%) =
$$\frac{(\Sigma C - \Sigma A)}{(\Sigma C + \Sigma A)} \times 100$$

Where: $\sum C$ = the sum of cations $\sum A$ = the sum of anions

5.3.1 General Chemistry

5.3.1.1 Q1 (March) 2022 – General Chemistry Results

No duplicate samples were collected during this sampling round.

The calculated charge-balance error for general chemistry analyses results provided by BV were - 3.17%, -0.91%, and 1.37% for IG_BH01_GW032, IG_BH03_GW013, and IG_BH05_GW001 respectively and are within an acceptable range (<±5%).

Upon review, it was noted that the concentration of total organic carbon (TOC) and dissolved organic carbon (DOC) in samples IG_BH03_GW013 and IG_BH05_GW001 were higher than expected. Geofirma contacted the lab to confirm the reported values. Bureau Veritas re-analysed the samples and confirmed the original results. In noting the high results, the lab stated there were no discrepancies or concerns with the analysis and had completed an additional diluted run to confirm their original analysis.

Results for the rinsate blank sample IG_BH03_GW014 collected prior to sampling showed all nondetects, except for a low concentration of iodide (I) of 1.3 mg/L. Laboratory reported concentrations of iodide on all primary samples collected during this quarter were non-detects. This demonstrates that the decontamination procedure and sampling equipment had negligible impact on the associated primary groundwater samples.

5.3.1.2 Q2 (June) 2022 – General Chemistry Results

Geofirma compared the BV Laboratory results for the primary sample (IG_BH01_GW033) and the duplicate sample (IG_BH01_GW034). The results are acceptable, showing consistent values for each analyte, except reactive silica (RPD = 77%). As re-analysis was not feasible (due to exceedance of holding times), the reactive silica results for sample IG_BH03_GW033 has been flagged as potentially unreliable, the analysis of the two samples were completed 4 days apart, and therefore could have introduced some variability.

Upon review, it was noted that the chloride concentration of sample IG_BH05_GW002 was slightly below what was expected (3700 mg/L), Geofirma requested that the lab re-analyze the sample to confirm the results. The re-analyzed results reported a higher concentration (5200 mg/L), more in-line with expected concentrations and still within the lab's RPD acceptance criteria for duplicates.

The calculated charge-balance error for general chemistry analyses results provided by BV were 4.29% for IG_BH01_GW033, 2.56% for IG_BH01_GW034, 1.75% for IG_BH03_GW016, and -0.61% for IG_BH05_GW002, all within an acceptable range ($<\pm5\%$)

Results for the rinsate blank sample (IG_BH05_GW003) collected prior to sampling showed mostly nondetects, except for low concentrations of calcium (Ca), sodium (Na), strontium (Sr), and chloride (Cl). The laboratory-reported rinsate concentrations for Cl, Ca, Na, and Sr were orders of magnitude lower than the associated sample concentrations, indicating that the decontamination procedure and sampling equipment had negligible impact on the reported values for the associated primary groundwater samples.

5.3.1.3 Q3 (September) 2022 – General Chemistry Results

Comparison of the BV laboratory results for the primary sample (IG_BH03_GW017) and the duplicate sample (IG_BH01_GW018) generally show consistent results, except for select analyses, including, total Kjeldahl nitrogen (TKN) and total nitrogen. These inconsistencies were noted by Geofirma during a review of the laboratory results. Given that the samples were collected immediately after one-another from the same sampling run, no variation in results was expected. Geofirma requested that Bureau Veritas repeat the TKN analysis of both samples. The repeat analyses reported lower concentrations, more in-line with expected concentrations.

A duplicate sample was also collected for IG_BH05_T_INT_007. Geofirma compared the BV Laboratory results for the primary sample (IG_BH01_GW005) and the duplicate sample (IG_BH01_GW006). The results are acceptable, showing consistent values for each analyte, excluding orthophosphate (P). The RPD value for Orthophosphate is 30%, at the limit of acceptability.

The calculated charge-balance error for general chemistry analyses results provided by BV were 0.48% for IG_BH01_GW035, -1.02% for IG_BH03_GW017, -0.98% for IG_BH03_GW018, -0.64% for IG_BH05_GW005, and 2.26% for IG_BH05_GW006, all within an acceptable range (<±5%).

Results for the rinsate blank sample (IG_BH05_GW007) collected prior to sampling showed mostly nondetects, except for low concentrations of calcium (Ca), sodium (Na), strontium (Sr), and chloride (Cl). The laboratory-reported rinsate concentrations for Cl, Ca, Na, and Sr were orders of magnitude lower than the associated sample concentrations, indicating that the decontamination procedure and sampling equipment had negligible impact on the reported values for the associated primary groundwater samples.

5.3.1.4 Q4 (December) 2022 – General Chemistry Results

Geofirma compared the BV Laboratory results for the primary sample (IG_BH05_GW011) and the duplicate sample (IG_BH05_GW012). The results are acceptable, showing consistent values for each analyte, except reactive silica (RPD = 87%). As re-analysis was not feasible (due to exceedance of holding times), the reactive silica results for this quarter have been flagged as potentially unreliable.

The calculated charge-balance error for general chemistry analyses results provided by BV were 3.66% for IG_BH01_GW036, 0.02% for IG_BH05_GW011, and 0.21% for IG_BH05_GW012, all within an acceptable range (<±5%).

Results for the rinsate blank sample (IG_BH05_GW009) collected prior to sampling showed mostly nondetects, except for low concentrations of calcium (Ca), iron (Fe), magnesium (Mg), sodium (Na), strontium (Sr), and chloride (Cl). The laboratory-reported rinsate concentrations for Cl, Ca, Fe, Mg, Na, and Sr were an order of magnitude lower than the associated sample concentrations, indicating that the decontamination procedure and sampling equipment had negligible impact on the reported values for the associated primary groundwater samples.

5.3.2 Isotopes

Geofirma reviewed the results from IT2 and the University of Ottawa Radiohalide laboratory and compared duplicate samples and evaluated them against the field blanks where applicable. The methodologies, standards and blanks used by the laboratories are included in each report (Appendix E).

Since no duplicate samples were collected during the Q1 2022 sampling round, Geofirma made comparisons with previous samples from 2021 where available (IG_BH03_T_INT_002), further assessment of the isotope results was limited. Results from the Q2, Q3 and Q4 2022 sampling rounds showed consistent values between the primary and the duplicate samples.

Results for all field blank samples collected during each quarter (IG_BH03_GW015, IG_BH05_GW004, IG_BH05_GW008, and IG_BH05_GW010) had tritium concentrations below laboratory detection limits (0.8 TU) and ¹⁴C as percent modern carbon at ~40%. The reported values for tritium and ¹⁴C are both within the expected range for the blank samples and are below the reported values of the associated primary samples, thereby indicating insignificant atmospheric contamination during sampling, transport, and laboratory analysis.

5.3.3 Noble Gases

Geofirma reviewed the noble gas results from the University of Ottawa Hydrogeochemistry laboratory and compared duplicate samples where applicable. No duplicates were collected in Q1 2022, so assessment of the noble gas results was limited. Results from the Q2, Q3 and Q4 2022 sampling rounds showed consistent values between the primary and the duplicate samples.

The noble gas results from all samples collected in the 2022 quarterly monitoring events were flagged as they showed evidence of variable levels of atmospheric contamination. Corrections for atmospheric contamination should therefore be considered when interpreting these results and further discussions will be had on improving the sampling methodology and collecting field blanks to accommodate for air contamination going forward.

6 DATA DELIVERY

6.1 Data Deliverables

As part of the data delivery schedule prescribed in the project Test Plan, Geofirma provided NWMO with the following items for each quarterly monitoring event:

- Barometric Pressure Data
- Data Quality Confirmation (DQC) Workbook
- Photographs of field activities
- Laboratory data and chain of custody forms
- Completed import templates for data entry into acQuire by NWMO:
 - o IMP-15 BV Groundwater Chemistry Results
 - o IMP-15 IT2 Groundwater Chemistry Results
 - IMP-15 UofO Groundwater Chemistry Results
 - o IMP-22 Port Pressure Measurements for IG_BH01
 - IMP-22 Port Pressure Measurements for IG_BH03
 - IMP-22 Port Pressure Measurements for IG_BH05
 - IMP-22 Port Pressure Measurements for IG_BH06
 - IMP-DE07 Groundwater Field Parameter Measurements

In February 2023, the NWMO requested that the data deliveries for each quarter to be split into two (2) separate deliveries to speed up data processing. One delivery for pressure profiling (PP) activities and results and a second delivery for groundwater (GW) sampling activities and results. Table 7 provides a summary of data deliveries submitted to the NWMO by quarterly monitoring event.

Table 7	Data Delivery, by Quarterly Monitoring Event
---------	--

Monitoring Event	Data Delivery Date	Comments
	19-Jan-23	R0 – Finalized data delivery (PP & GW)
Q1	05-Apr-23	R1 – Revised data delivery (GW)
	31-Oct-23	R1 – Revised data delivery (PP)
	07-Mar-23	R0 – Finalized data delivery (PP)
	05-Apr-23	R0 – Finalized data delivery (GW)
Q2	31-Oct-23	R1 – Revised data delivery (PP)
	18-Jan-24	R2 – Revised data delivery (PP)
	25-Jan-24	R1 – Revised data delivery (GW) - noble gas only
	18-Jul-23	R0 – Finalized data delivery (GW)
02	31-Oct-23	R0 – Finalized data delivery (PP)
Q3	18-Jan-24	R1 – Revised data delivery (PP)
	25-Jan-24	R1 – Revised data delivery (GW)

Monitoring Event	Data Delivery Date	Comments
	31-Oct-23	R0 – Finalized data delivery (PP)
Q4	18-Jan-24	R1 – Revised data delivery (PP)
	25-Jan-24	R0 – Finalized data delivery (GW)

7 CONCLUSIONS

Four quarterly monitoring events of Westbay multilevel systems installed in NWMO-owned boreholes were completed by Geofirma Engineering Ltd. during 2022.

- The Q1 monitoring event was completed by Geofirma between March 17-30, 2022, including pressure profiling at IG_BH01, IG_BH03, and IG_BH05 and collection of water samples from IG_BH01_T_INT_004, IG_BH03_T_INT_002, and IG_BH05_T_INT_007. A QA/QC field blank and rinsate sample were also collected during this quarter.
- The Q2 monitoring event was completed by Geofirma between May 27 June 06, 2022, including pressure profiling at IG_BH01, IG_BH03, IG_BH05, and IG_BH06 and collection of water samples from IG_BH01_T_INT_004, IG_BH03_T_INT_002, and IG_BH05_T_INT_007. A full suite of duplicates, field blanks, and rinsate samples were also collected for IG_BH05_T_INT_007.
- The Q3 monitoring event was completed by Geofirma between September 16 29, 2022, including pressure profiling at IG_BH01, IG_BH03, IG_BH05, and IG_BH06 and collection of water samples from IG_BH01_T_INT_002, IG_BH03_T_INT_002, and IG_BH05_T_INT_007. A full suite of duplicates was collected during sampling of IG_BH03_T_INT002 and IG_BH05_T_INT_007, along with a field blank and rinsate sample.
- The Q4 monitoring event was completed by Geofirma between November 30 December 14, 2022, including pressure profiling at IG_BH01, IG_BH03, IG_BH05, and IG_BH06 and collection of water samples from IG_BH01_T_INT_002 and IG_BH05_T_INT_005. Archive samples and field measurements were also collected from IG_BH03_T_INT_021 and IG_BH06_T_INT_008. Geofirma re-sampled IG_BH01_T_INT_007 to obtain water for further noble gas analysis. A full suite of duplicates, field blanks, and rinsate samples were also collected during this quarter.

Measured formation pressures and calculated equivalent freshwater heads from IG_BH01, IG_BH03, IG_BH05, and IG_BH06 were generally consistent throughout the year and consistent with previous years, excluding IG_BH03 in Q4 2022. The anomalous pressures and head profile observed in IG_BH03 during Q4 is being investigated but could have been influenced by equipment issues encountered in the field. All other formation pressures that were outside of their typical range were associated with drawdown from ongoing interval purging in preparation for groundwater sampling. Calculation of environmental heads was not completed as fluid density profiles have not been provided to Geofirma by NWMO.

All groundwater water samples collected in each quarter underwent field measurements and were analyzed for a suite of conventional laboratory analyses at Bureau Veritas Laboratories. Isotope and noble gas analysis were completed at the University of Ottawa and Isotope Tracer Technologies (IT2). Results from the water analyses were reviewed by Geofirma to ensure that the results were within an acceptable range and that any quality issues were flagged. In general, the water analyses were within expected ranges, some data concerns were identified and are discussed in sections 5.2 and 5.3. These flagged items include:

- In-field dissolved oxygen (DO) measurements of some samples
- In-field sulfide and ferrous iron measurements due to required dilution of some samples
- Consistency of reactive silica analyses in of samples in Q2 and Q4
- Noble gas analyses of most samples

For each of the flagged concerns, Geofirma contacted the responsible lab to investigate causes, request re-analysis, and discuss solutions to mitigate issues going forward, if required.

These flagged items must be considered when evaluating results. In-field DO, sulfide, and ferrous iron concerns are not pertinent to the final laboratory results. Reactive Silica results for IG_BH01_GW033, IG_BH01_GW034, IG_BH05_GW011, and IG_BH05_GW012 should be flagged as potentially unreliable due to their differing values (Primary vs. Duplicate). Noble gas analysis results require correction due to atmospheric contamination.

8 REFERENCES

- Clark, I. (2015). Groundwater Geochemistry and Isotopes. Taylor & Francis Group.
- Eberhardt, P., Eugster, O., & Marti, K. (1965). A Redetermination of the Isotopic Composition os Atmospheric Neon. *NOTIZEN*, 623-624.
- Freeze, R. A., & Cherry, J. A. (1979). *Groundwater*. NJ: Prentice-Hall.
- Gascoyne, M. (1997). Evolution of Redox Conditions and Groundwater Composition in Recharge-Discharge Environments on the Canadian Shield. *Hydrogeology Journal Volume 5*, 4-18.
- Gascoyne, M. (2004). Hydrogeochemistry, groundwater ages and sources of salts in granitic batholith on the Canadian Shield, southeastern Manitoba. *Applied Geochemistry 19*, 519-560.
- Geofirma Engineering Ltd. (2020). Project Quality Plan, Fluid Pressure Monitoring and Goundwater Sampling in Ignace Boreholes, APM-PLAN-01332-0314.
- Geofirma Engineering Ltd. (2022). Health, Safety and Environment Plan, Fluid Pressure Monitoring and Groundwater Sampling in Ignace Borehoes, APM-PLAN-01332-0315.
- Geofirma Engineering Ltd. (2022). Test Plan, Fluid Pressure Monitoring and Goundwater Sampling in Ignace Boreholes, APM-PLAN-01332-0313.
- Hounslow, A. W. (1995). *Water quality data: Analysis and interpretation.* Boca Ranton, FL: Taylor & Francis Froup.
- MECP. (2004). Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Amended as of July 1, 2011. Ontario Ministry of the Environment.
- Sander Geophysics Limited (SGL). (2020). 3D Geophysical Forward and Inversion Modelling of the Revell Batholith and Surrounding Greenstone Belt, APM-PLAN-01332-0270. Nuclear Waste Management Organization.
- Steiger, R. H., & Jäger, E. (1977). Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. *Earth and Planetary Science Letters*, 36, 359-362.
- Stotler, R. L., Frape, S. K., & Shouakar-Stash, O. (2010). An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian Shields. *Chemical Geology* 274, 38-55.
- White, W. M. (2015). Isotope Geochemistry, First Edition. Oxford, UK: John Wiley & Sons, Ltd.

2022 Annual Report

Fluid Pressure Monitoring and Groundwater Sampling in Ignace Boreholes

Appendix A

2022 Sample Collection Summary

	Sample ID	Sample Type	Interval ID	Interval Depth (m BGS)	Interval Purge Status	Estimated Proportion of Drill Fluid ¹ (%)	Sample Method	Comments
(7	IG_BH01_GW032	Primary	IG_BH01_T_INT_004	765.77 - 799.95	Ongoing purging	6%	Within MP38 casing	
-2	IG_BH03_GW013	Primary	IG_BH03_T_INT_002	865.35 - 884.86	Ongoing purging	6%	Within MP38 casing	
(Mar-22)	IG_BH03_GW014	Rinsate						
Q1 (IG_BH03_GW015	Field blank						
σ	IG_BH05_GW001	Primary	IG_BH05_T_INT_007	731.50 - 742.60	Ongoing purging	38%	Within MP38 casing	
	IG_BH01_GW033	Primary	IG_BH01_T_INT_004	765.77 - 799.95	Final Sample	4%	Sampling port	
12)	IG_BH01_GW034	Duplicate	IG_BH01_1_IN1_004	/05.// - /99.95	<u>Filial Salliple</u>	470	(from formation)	
(Jun-22)	IG_BH03_GW016	Primary	IG_BH03_T_INT_002	865.35 - 884.86	Ongoing purging	5%	Within MP38 casing	
-E	IG_BH05_GW002	Primary	IG_BH05_T_INT_007	731.50 - 742.60	Ongoing purging	5%	Within MP38 casing	
Q2	IG_BH05_GW003	Rinsate			-			
	IG_BH05_GW004	Field blank			-			
	IG_BH01_GW035	Primary	IG_BH01_T_INT_002	885.19 - 972.71	Ongoing purging	49%		
~	IG_BH03_GW017	Primary		005.05 004.00	Final Canada	20/	Sampling port	
-22	IG_BH03_GW018	Duplicate	IG_BH03_T_INT_002	865.35 - 884.86	Final Sample	2%	(from formation)	
(Sep-22)	IG_BH05_GW005	Primary		731.50 - 742.60	Final Cample	2%	Sampling port	
G3 (5	IG_BH05_GW006	Duplicate	IG_BH05_T_INT_007	/31.50 - /42.60	Final Sample	۷%	(from formation)	
0	IG_BH05_GW007	Rinsate			-			
	IG_BH05_GW008	Field blank						
	IG_BH01_GW036	Primary	IG_BH01_T_INT_002	885.19 - 972.71	Ongoing purging	2%	Within MP38 casing	
-	IG_BH01_GW028	Primary	IG_BH01_T_INT_007*	624.94 - 645.42	Final Sample	4%	Sampling port (from formation)	Re-sample of INT 007 for missed noble gas analysis only
-22	IG_BH03_GW019	Primary	IG_BH03_T_INT_021**	65.09 - 150.15	Ongoing Purging	10%	Within MP38 casing	Sample archived - only used for infield measurements
(Dec-22)	IG_BH05_GW009	Rinsate						
04 (I	IG_BH05_GW010	Field blank						
0	IG_BH05_GW011	Primary		705 90 902 70	Ongoing Durgin -	F0/		
	IG_BH05_GW012	Duplicate	IG_BH05_T_INT_005	795.80 - 802.70	Ongoing Purging	5%	Within MP38 casing	
	IG_BH06_GW001	Primary	IG_BH06_T_INT_008**	665.70 - 682.70	Ongoing Purging	100%	Within MP38 casing	Sample archived - only used for infield measurements

*Interval IG_BH01_T_INT_007 was previously purged and sampled in 2021. Geofirma completed re-sampling for missing noble gas analyses during Q4 2022. **No laboratory analyses were required for samples IG_BH03_GW019 and IG_BH06_GW001, they were collected as archive samples to collect in-field parameters only

¹Estimated proportion of drill fluid (%) is based on in-field fluorescein measurements of collected groundwater sample, and assuming the pre-purging drill fluid concentration was at 100% (i.e., 100 ppb fluorescein)

-- = no value measured or information not relevant to sample

2022 Annual Report

Fluid Pressure Monitoring and Groundwater Sampling in Ignace Boreholes

Appendix B

Fluid Pressures, Calculated Pressure Heads and Calculated Freshwater Heads

Table B.1: Fluid Pressure, Calculated Pressure Head(Ψ) and Calculated Freshwater Head (Hf) for IG_BH01

			Mar-2	22 (Q1)			Jun-2	22 (Q2)			Sep-2	22 (Q3)		Dec-22 (Q4)			
Port No.	Port Depth (m BGS)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	H <i>f</i> (m)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	H <i>f</i> (m)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	H <i>f</i> (m)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	H <i>f</i> (m)
1	976.909	9626.15	971.53	5.38	425.18	9623.28	971.66	5.25	425.31	9624.32	971.68	5.23	425.33	9625.42	971.62	5.29	425.27
2	888.486	8699.69	877.05	11.43	419.13	8694.91	876.99	11.50	419.07	8706.01	878.04	10.45	420.11	8693.24	876.56	11.92	418.64
3	804.144	7857.37	791.16	12.99	417.58	7850.58	790.89	13.25	417.31	7843.72	790.11	14.04	416.53	7846.35	790.20	13.94	416.62
4	769.063	7481.15	752.79	16.27	414.29	7455.25	750.58	18.48	412.08	7469.99	752.00	17.07	413.50	7473.55	752.19	16.88	413.69
5	702.896	6810.5	684.40	18.49	412.07	6808.07	684.58	18.31	412.25	6815.89	685.30	17.60	412.96	6818.15	685.35	17.54	413.02
6	649.622	6281.79	630.49	19.13	411.43	6280.52	630.79	18.83	411.73	6279.32	630.58	19.04	411.52	6282.1	630.69	18.93	411.63
7	628.233	6064.43	608.33	19.91	410.65	6062.37	608.54	19.69	410.87	6067.46	608.98	19.26	411.31	6068.36	608.90	19.34	411.22
8	574.258	5538.62	554.71	19.55	411.01	5539.83	555.26	19.00	411.56	5533.57	554.53	19.72	410.84	5536.01	554.61	19.65	410.91
9	540.072	5204.06	520.59	19.48	411.08	5199.95	520.60	19.47	411.09	5200.35	520.56	19.52	411.05	5200.32	520.38	19.69	410.87
10	517.281	4988.27	498.59	18.69	411.87	4988.72	499.06	18.22	412.34	4979.01	497.98	19.30	411.27	4981.26	498.04	19.24	411.32
11	492.89	4754.92	474.79	18.10	412.46	4748.53	474.57	18.32	412.24	4742.27	473.84	19.05	411.52	4744.48	473.90	18.99	411.57
12	432.013	4145.09	412.60	19.41	411.15	4142.35	412.75	19.26	411.30	4142.32	412.66	19.35	411.21	4143.11	412.57	19.44	411.12
13	409.22	3932.47	390.92	18.30	412.26	3927.35	390.83	18.39	412.17	3921.22	390.12	19.10	411.46	3924.29	390.26	18.96	411.60
14	325.543	3098.44	305.87	19.67	410.89	3095.59	306.01	19.53	411.03	3097.57	306.13	19.41	411.15	3096.29	305.82	19.72	410.84
15	307.248	2922.14	287.90	19.35	411.21	2922.85	288.40	18.85	411.71	2922.55	288.28	18.97	411.59	2921.68	288.02	19.23	411.33
16	231.165	2180.28	212.25	18.92	411.64	2178.66	212.51	18.66	411.91	2180.23	212.58	18.58	411.98	2180.37	212.42	18.74	411.82
17	199.17	1887.38	182.38	16.79	413.77	1890.8	183.15	16.02	414.55	1886.63	182.64	16.53	414.04	1886.35	182.44	16.73	413.83
18	148.979	1382.13	130.86	18.12	412.44	1384.61	131.54	17.44	413.12	1380.31	131.01	17.97	412.60	1379.22	130.73	18.25	412.31
19	128.483	1176.48	109.89	18.60	411.96	1177.86	110.45	18.03	412.53	1173.49	109.92	18.56	412.00	1173.12	109.71	18.77	411.79
20	69.091	634.42	54.61	14.48	416.08	638.58	55.46	13.63	416.93	632.33	54.74	14.35	416.21	633.61	54.70	14.39	416.17

Notes for Calculation:	Q1 2022	Q2 2022	Q3 2022	Q4 2022
P _{atm} (average), kPa	98.89	94.70	95.53	97.23
Ground Surface Elevation, mASL		430	.562	

Table B.2: Fluid Pressure, Calculated Pressure Head(Ψ)and Calculated Freshwater Head (Hf) for IG_BH03

			Mar-2	22 (Q1)			Jun-2	2 (Q2)			Sep-2	2 (Q3)			Dec-2	2 (Q4) ¹	
Port No.	True Port Depth (m BGS)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hƒ (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hƒ (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hf (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hƒ (m ASL)
1	888.57	8638.46	870.90	17.67	423.73	8637.43	871.25	17.32	424.08	8638.88	871.15	17.42	423.99				
2	868.28	8265.79	832.89	35.39	406.02	8330.32	839.93	28.35	413.05	8340.75	840.75	27.53	413.87				
3	850.53	8230.11	829.26	21.27	420.13	8231.68	829.87	20.66	420.75	8237.07	830.18	20.35	421.05	8267.85	833.33	17.20	424.20
4	813.57	7932.42	798.90	14.67	426.73	7926.12	798.71	14.86	426.55	7918.39	797.68	15.89	425.52	7931.7	799.05	14.52	426.89
5	792.89	7702.15	775.42	17.47	423.93	7696.27	775.28	17.61	423.79	7700.32	775.44	17.45	423.96	7708.44	776.29	16.60	424.80
6	733.26	7129.15	716.99	16.27	425.13	7121.02	716.62	16.64	424.76	7115.59	715.82	17.44	423.96	7131.49	717.45	15.81	425.60
7	695.28	6728.33	676.11	19.17	422.24	6726.65	676.40	18.88	422.52	6725.92	676.08	19.20	422.21	6801.65	683.82	11.46	429.94
8	624.5	6044.18	606.35	18.15	423.25	6043.36	606.72	17.78	423.63	6039.04	606.04	18.46	422.94	6156.22	618.00	6.50	434.90
9	589.28	5692.03	570.44	18.84	422.56	5690.22	570.71	18.57	422.83	5689.11	570.36	18.92	422.48	5903.19	592.20	-2.92	444.32
10	566.78	5451.57	545.92	20.86	420.54	5452.54	546.47	20.31	421.10	5455.78	546.56	20.22	421.18	5554.28	556.62	10.16	431.24
11	524.65	5044.58	504.42	20.23	421.17	5045.2	504.94	19.71	421.69	5045.45	504.72	19.93	421.47	5132.75	513.63	11.02	430.39
12	502.91	4848.13	484.38	18.53	422.88	4847.57	484.78	18.13	423.28	4844.47	484.22	18.69	422.72	5035.69	503.74	-0.83	442.23
13	467.93	4510.68	449.97	17.96	423.45	4512.85	450.65	17.28	424.12	4508.31	449.95	17.98	423.42	4690.03	468.49	-0.56	441.96
14	430.9	4180.13	416.27	14.63	426.77	4178.73	416.58	14.32	427.08	4169.08	415.35	15.55	425.86	4314.68	430.21	0.69	440.72
15	389.63	3777.32	375.19	14.44	426.96	3776.13	375.53	14.10	427.30	3621.43	359.51	30.12	411.28	3798.19	377.55	12.08	429.32
16	342.83	3318.85	328.44	14.39	427.01	3318.73	328.88	13.95	427.46	3304.45	327.18	15.65	425.76	3375.21	334.41	8.42	432.99
17	297.42	2872.87	282.96	14.46	426.94	2879.9	284.13	13.29	428.12	2878.23	283.72	13.70	427.70	2892.06	285.14	12.28	429.13
18	232.9	2246.24	219.06	13.84	427.56	2244.74	219.37	13.53	427.87	2244.58	219.11	13.79	427.61	2253.42	220.02	12.88	428.52
19	211.75	2044.48	198.49	13.26	428.14	2044.87	198.98	12.77	428.64	2042.9	198.54	13.21	428.19	2050.79	199.36	12.39	429.01
20	154.03	1484.85	141.42	12.61	428.79	1495.69	142.98	11.05	430.36	1494.05	142.57	11.46	429.94	1535.1	146.77	7.26	434.14
21	68.16	681.85	59.54	8.62	432.78	686.13	60.43	7.73	433.67	690.47	60.63	7.53	433.87	678.36	59.41	8.75	432.65

AppendixB_Pressure Heads_2022_R0.xlsx

¹ Values recorded during Q4 2022 at IG_BH03 are flagged and interpreted to not be representative of the in-situ borehole conditions due to

Page 1 of 2

equipment issues and poor borehole conditions encountered.

Table B.3: Fluid Pressure, Calculated Pressure Head(W)and Calculated Freshwater Head (Hf) for IG_BH05

Tuble bib		, carcalatea i	ressure medua(+ Jana carcalati	ed Freshwater	11000 (11) / 101 1	-											
			Mar-2	22 (Q1)			Jun-2	2 (Q2)			Sep-2	22 (Q3)			Dec-2	22 (Q4)		
Port No.	True Port Depth (m BGS)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hƒ (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hf (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hf (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hf (m ASL)	
1	923.15	9068.26	914.63	8.52	423.77	9052.29	913.35	9.80	422.49	9047.75	912.90	10.25	422.04	9052.88	913.21	9.94	422.35	
2	907.47	8899.54	897.42	10.05	422.24	8894.21	897.23	10.24	422.05	8880.17	895.81	11.66	420.63	8874.17	894.99	12.48	419.81	
3	865.06	8516.1	858.32	6.74	425.55	8473.44	854.32	10.74	421.55	8499.94	857.04	8.02	424.27	8495.66	856.39	8.67	423.62	
4	806.5	7936.99	799.27	7.23	425.06	7888.1	794.63	11.87	420.42	7924.1	798.32	8.18	424.11	7918.67	797.55	8.95	423.34	
5	798.79	7789.62	784.24	14.55	417.74	7780.25	783.63	15.16	417.13	7775.05	783.12	15.67	416.62	7749.31	780.28	18.51	413.78	
6	746.43	7232.98	727.48	18.95	413.34	7159.26	720.31	26.12	406.17	7147.49	719.12	27.31	404.98	7187.71	723.01	23.42	408.87	
7	734.54	7122.18	716.18	18.36	413.93	6955.54	699.54	35.00	397.29	7005.95	704.69	29.85	402.44	7070.51	711.06	23.48	408.81	
8	686.45	6683.67	671.47	14.98	417.31	6633.04	666.65	19.80	412.49	6598.62	663.15	23.30	408.99	6624.8	665.61	20.84	411.45	
9	634.09	6160.37	618.10	15.99	416.30	6110.47	613.36	20.73	411.56	6077.73	610.04	24.05	408.24	6106.61	612.77	21.32	410.97	
10	592.48	5776.51	578.96	13.52	418.77	5754.25	577.04	15.44	416.85	5765.38	578.19	14.29	418.00	5761.7	577.60	14.88	417.41	
11	585.33	5675.67	568.68	16.65	415.64	5671.89	568.64	16.69	415.60	5670.55	568.52	16.81	415.48	5675.17	568.78	16.55	415.74	
12	548.51	5334.83	533.92	14.59	417.70	5311.34	531.87	16.64	415.65	5326.12	533.39	15.12	417.17	5324.53	533.02	15.49	416.80	
13	505.99	4926.12	492.24	13.75	418.54	4875.51	487.43	18.56	413.73	4919.31	491.91	14.08	418.21	4909.32	490.68	15.31	416.98	
14	454.95	4405.82	439.19	15.76	416.53	4374.61	436.35	18.60	413.69	4396.19	438.57	16.38	415.91	4390.72	437.80	17.15	415.14	
15	399.56	3823.35	379.79	19.77	412.52	3821.55	379.95	19.61	412.68	3821.49	379.96	19.60	412.69	3824.86	380.09	19.47	412.82	
16	348.37	3326.6	329.13	19.24	413.05	3333.08	330.14	18.23	414.06	3324.08	329.24	19.13	413.16	3328.81	329.51	18.86	413.43	
17	305.2	2917.5	287.42	17.78	414.51	2925.16	288.55	16.65	415.64	2912.24	287.24	17.96	414.33	2918.53	287.67	17.53	414.76	
18	292.42	2786.19	274.03	18.39	413.90	2786.69	274.43	17.99	414.30	2781.05	273.86	18.56	413.73	2791.27	274.70	17.72	414.57	
19	246.98	2341.04	228.63	18.35	413.94	2340.66	228.94	18.04	414.25	2334.42	228.32	18.66	413.63	2339.36	228.61	18.37	413.92	
20	211.41	1991.1	192.95	18.46	413.83	1998.28	194.03	17.38	414.91	1985.39	192.73	18.68	413.61	1994.18	193.41	18.00	414.29	
21	168.82	1568.49	149.85	18.97	413.32	1571.26	150.48	18.34	413.95	1563.48	149.71	19.11	413.18	1574.7	150.64	18.18	414.11	
22	145.94	1366.28	129.23	16.71	415.58	1369.42	129.90	16.04	416.25	1357.71	128.72	17.22	415.07	1360.61	128.81	17.13	415.16	
23	93.69	856.72	77.27	16.42	415.87	857	77.65	16.04	416.25	841.29	76.06	17.63	414.66	857.59	77.51	16.18	416.11	
24	85.09	786.62	70.12	14.97	417.32	789.55	70.77	14.32	417.97	770.35	68.83	16.26	416.03	779.76	69.58	15.51	416.78	
25	66	604.75	51.58	14.42	417.87	618.08	53.29	12.71	419.58	591.02	50.54	15.46	416.83	602.85	51.54	14.46	417.83	

Notes for Calculation:	Q1 2022	Q2 2022	Q3 2022	Q4 2022
P _{atm} (average), kPa	98.95	95.54	95.40	97.47
Ground Surface Elevation, mASL		432	.29	

Table B.4: Fluid Pressure, Calculated Pressure Head(Ψ)and Calculated Freshwater Head (Hf) for IG_BH06

			Mar-2	2 (Q1)			Jun-2	2 (Q2)			Sep-2	2 (Q3)		Dec-22 (Q4)				
Port No.	True Port Depth (m BGS)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hf (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hƒ (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hf (m ASL)	Fluid Pressure (kPa)	Ψ (m)	Water Level (m BGS)	Hf (m ASL)	
1	919.41					9167.46	925.09	-5.68	423.42	9174.47	925.70	-6.29	424.03	9179.38	926.26	-6.85	424.59	
2	880.65					8784.19	886.00	-5.35	423.09	8790.04	886.50	-5.85	423.59	8791.32	886.69	-6.04	423.78	
3	842.46					8399.23	846.75	-4.29	422.03	8406.81	847.42	-4.96	422.70	8409.51	847.76	-5.30	423.04	
4	791.6					7866.67	792.44	-0.84	418.58	7853.76	791.03	0.57	417.17	7883.77	794.14	-2.54	420.28	
5	769.09					7628.98	768.20	0.89	416.85	7621.21	767.31	1.78	415.96	7635.66	768.84	0.25	417.49	
6	740.28					7339.97	738.73	1.55	416.19	7342.18	738.86	1.42	416.32	7341.78	738.88	1.40	416.34	
7	686.61					6795.54	683.21	3.40	414.34	6762.87	679.79	6.82	410.92	6754.55	678.99	7.62	410.12	
8	668.15					6597.5	663.02	5.13	412.61	6117.97	614.02	54.13	363.61	6186.87	621.11	47.04	370.70	
9	652.47					6436.79	646.63	5.84	411.90	6443.19	647.19	5.28	412.46	6435.52	646.46	6.01	411.73	
10	638.37					6302.11	632.90	5.47	412.27	6308.17	633.42	4.95	412.79	6305.82	633.24	5.13	412.61	
11	584.64					5777.45	579.40	5.24	412.50	5777.91	579.35	5.29	412.45	5774.73	579.08	5.56	412.18	
12	528					5207.44	521.27	6.73	411.01	5207.98	521.23	6.77	410.97	5207.36	521.22	6.78	410.96	
13	478.5					4728.46	472.43	6.07	411.67	4720.37	471.51	6.99	410.75	4718.32	471.35	7.15	410.59	
14	454.44					4490.71	448.18	6.26	411.48	4492.44	448.26	6.18	411.56	4488.08	447.87	6.57	411.17	
15	431.77					4270.76	425.75	6.02	411.72	4273.13	425.90	5.87	411.87	4269.77	425.61	6.16	411.58	
16	382.27					3784.37	376.16	6.11	411.63	3788.55	376.48	5.79	411.95	3785.13	376.19	6.08	411.66	
17	342.64					3400.61	337.02	5.62	412.12	3403.25	337.19	5.45	412.29	3398.76	336.79	5.85	411.89	
18	259.3					2581.34	253.48	5.82	411.92	2584.21	253.67	5.63	412.11	2581.51	253.46	5.84	411.90	
19	199.93					2003.89	194.59	5.34	412.40	2007.45	194.86	5.07	412.67	2003.26	194.49	5.44	412.30	
20	148.98					1510.1	144.24	4.74	413.00	1511.43	144.28	4.70	413.04	1509.35	144.12	4.86	412.88	
21	137.63					1411.14	134.15	3.48	414.26	1394.23	132.33	5.30	412.44	1395.59	132.52	5.11	412.63	
22	76.73					827.77	74.66	2.07	415.67	822.01	73.98	2.75	414.99	802.21	72.01	4.72	413.02	

Notes for Calculation:	Q1 2022	Q2 2022	Q3 2022	Q4 2022
P _{atm} (average), kPa		95.60	96.56	96.00
Ground Surface Elevation, mASL		417	7.74	

2022 Annual Report

Fluid Pressure Monitoring and Groundwater Sampling in Ignace Boreholes

Appendix C

Groundwater Chemistry Results

		Borehole ID			IG_BH01				10	BH03			16.1	3H05		IG_BH06
		Sample ID	IG_BH01_GW032	IG_BH01_GW033	IG_BH01_GW035	IG_BH01_GW036	IG_BH01_GW028*	IG_BH03_GW013	IG_BH03_GW016	IG_BH03_GW017	IG_BH03_GW019**	IG_BH05_GW001	IG_BH05_GW002	IG_BH05_GW005	IG_BH05_GW011	IG_BH06_GW001**
		Interval ID	IG_BH01_T_INT_004	IG_BH01_T_INT_004	IG_BH01_T_INT_002	IG_BH01_T_INT_002	IG_BH01_T_INT_007	IG_BH03_T_INT_002	IG_BH03_T_INT_002	IG_BH03_T_INT_002	IG_BH03_T_INT_021	IG_BH05_T_INT_007	IG_BH05_T_INT_007	IG_BH05_T_INT_007	IG_BH05_T_INT_005	IG_BH06_T_INT_008
	(Reportable Detection	Port Depth m BGS)	(769.06)	(769.06)	(888.49)	(888.49)	628.23	(868.28)	(868.28)	(868.28)	(68.16)	(734.54)	(734.54)	(734.54)	(798.79)	(668.15)
	Limit ¹ / Range	Units	Mar-22 (Q1)	Jun-22 (Q2)	Sep-22 (Q3)	Dec-22 (Q4)	Dec-22 (Q4)	Mar-22 (Q1)	Jun-22 (Q2)	Sep-22 (Q3)	Dec-22 (Q4)	Mar-22 (Q1)	Jun-22 (Q2)	Sep-22 (Q3)	Dec-22 (Q4)	Dec-22 (Q4)
Field Measurements Field Multimeter pH		I	6.95	8.22	8.80	8.48	8.08	6.97	7.47	7.13	8.10	6.73	6.98	8.17	7.58	8.34
Field Multimeter Temperature	-10 to 55	Degrees C	6.36	12.32	12.18	8.19	3.88	5.71	10.04	19.95	3.19	5.99	10.97	11.90	16.78	9.03
Field Multimeter EC Field Multimeter ORP	100 ± 2000	mS/cm mV	21.4	19.9 209	-136	35.2 106	17.0	41.2	39.4	46.3	2.9	5.54	13.9	17.3	13.3	0.873
Field Multimeter DO	50	my/L	43	0.00	0.00	0.00	-35	2.83	0.00	0.00	3.15	-67	0.00	-159	6.52	0.71
Field Multimeter Turbidity	800	NTU	27.6	56.1	29.9	196.0	14.7	45.8	346	14.8	497.0	7.8	121.0	24.3	646	25.7
Field Multimeter TDS Field Fluorescein	100	g/L ppb	13.30 5.665	12.40 4.092	8.71 49.10	21.50	4.095	25.10 5.502	24.0 4.575	28.3 2.065	1.8 10.34	3.49 37.79	8.64 5.430	10.7 2.212	8.27 4.914	0.559 110.9
Field Alkalinity	10 to 4000	mg/L CaCO3	11	8	18	15.0		74.0	106	18.0	44	206	235	180	158	59
Field Density Field Analy. DO	1.100	SG mg/L	1.017 0.162	1.013 0.631	1.012 0.631	1.025 >1.100	1.015	1.035 >1.100	1.030	1.037	1.006	1.005 >1.100	1.012 0.374	1.011 0.427	1.013 0.234	1.007
Field Analy. Ferrous	3.00	mg/L	1.18	0.031	2.19	0.02	-	1.29	1.43	2.07	1.79	2.85	7.50 ³	2.732	8.50 ⁴	0.00
Field Analy. Sulphide	0.70	mg/L	0.03	0.05	0.09	0.41		0.48	0.57	0.31	0.53	0.05	2.10 ³	0.90 ³	1.15 ²	0.04
Laboratory Measurements - Physioche	mical Parameter, Major	Anions and Nutrient	7.19	6.72	7.23	7.65	1	6.94	6.86	6.3	1	6.64	6.6	7.27	6.95	1
Alkalinity-Bicarbonate	1.0	mg/L	9.1	4.7	25	6.2	-	73	66	58	-	220	230	190	150	-
Alkalinity-Carbonate	1.0	mg/L	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	-	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	-
Alkalinity-Hydroxide Alkalinity-Total	1.0	mg/L mg/L	<1.0	<1.0	<1.0	<1.0 6.2	-	<1.0	<1.0	<1.0		<1.0	<1.0 230	<1.0 190	<1.0	-
Total Ammonia as N (NH4+NH3)	0.05	mg/L	0.069		0.16	0.23		0.7		0.63		0.074	0.1	0.2	0.17	-
Dissolved Bromide (Br) Dissolved Chloride (Cl)	10.0	mg/L mg/l	180	<400 9000	86 5300	290 19000		440 21000	<400 20000	390 21000		40 1900	72 5200	140 6600	140 7000	-
Fluoride (F)	0.1	mg/L mg/L	0.82	0.97	0.33	0.67	-	0.1	0.13	0.1	-	0.14	0.20	0.27	0.21	-
Dissolved Iodide (I)	0.1	mg/L	0.57	<2.0	<10	<10		<0.10	<2.0	<10		<1.0	4.0	<10	<10	-
Nitrate (NO3) Nitrite (NO2)	0.1	mg/L mg/L	<0.10 <0.010	<0.10 <0.010	<0.10 <0.010	<0.10 <0.010		<0.1 <0.01	<0.50 <0.050	<0.10 <0.010		0.16	0.10	<0.10 <0.010	<0.10 <0.010	
Nitrate + Nitrite	0.1	mg/L	<0.10	<0.10	<0.10	<0.10		<0.1	<0.50	<0.10		0.19	0.12	<0.10	<0.10	-
Total Kjeldahl Nitrogen (TKN) Total Nitrogen (N)	1.0	mg/L mg/L	<2.0	4.2	2.7	8.2 8.2	-	5.8	8.8 8.8	4.0		<1.0 <1.0	0.63	1.8	2.2	-
OrthoPhosphate (P)	0.01	mg/L	<0.010	0.013	<0.010	<0.010	-	0.0	<0.010	0.65		<0.10	<0.010	<0.010	0.011	-
Total Phosphorus (Ptot)	0.2	mg/L	<0.10	0.38	<0.10	0.14	-	0.4	<0.10	1.3		0.083	<0.10	0.16	0.18	-
Dissolved Sulphate (SO4) Sulphide as S	10.0	mg/L mg/L	190 <0.020	<400 <0.020	110 <0.020	390 <0.020		<10 <0.02	<400 <0.020	<10 <0.020		67 <0.020	55 0.45	41 0.7	55 <0.020	
Dissolved Organic Carbon (DOC)	1.0	mg/L	1.3	0.55	3.1	3.7		120.0	110	110		200	120	59	66	-
Total Organic Carbon (TOC) Total Inorganic Carbon (C)	1.0	mg/L	1.2 <1.0	1.3 <1.0	3.4	2.3	-	120.0	110	110		190 18	130 23	65 36	76 23	-
Reactive Silica (SiO2)	0.25	mg/L mg/L	24	12	19	83	-	47	41	31	-	10	23	31	23 7.5	-
Laboratory Measurements - Metals						<0.049					1					
Dissolved Aluminum (AI) Dissolved Arsenic (As)	0.0049	mg/L mg/L	<0.025	<0.025	0.012	<0.049		<0.025 <0.005	<0.049 <0.01	0.026		<0.0049 <0.001	<0.025 <0.005	0.011 <0.001	<0.025 <0.005	-
Dissolved Barium (Ba)	0.002	mg/L	0.27	0.31	0.37	0.25	-	0.4	0.35	0.35		0.19	0.3	0.31	0.33	-
Dissolved Bismuth (Bi) Dissolved Boron (B)	0.001	mg/L mg/L	<0.005 0.34	<0.005	<0.001 0.14	<0.01 0.47		<0.005	<0.01 0.32	<0.005		<0.001 0.25	<0.005 0.32	<0.001 0.31	<0.005	-
Dissolved Cadmium (Cd)	0.00009	mg/L	<0.00045	<0.00045	<0.00009	<0.0009	-	<0.00045	<0.0009	<0.00045	-	<0.00009	<0.00045	<0.00009	<0.00045	-
Dissolved Calcium (Ca) Dissolved Cesium (Cs)	1.0 0.0002	mg/L mg/L	4700 <0.001	4900 <0.001	2700 0.0004	9000 <0.002	-	0.0	11000 <0.002	11000 0.0014		930 <0.0002	2500 <0.001	3200	3400 <0.001	-
Dissolved Chromium (Cr)	0.005	mg/L	<0.025	<0.025	<0.005	<0.05	-	<0.025	<0.050	<0.025		<0.005	<0.025	<0.005	<0.025	-
Dissolved Cobalt (Co)	0.0005	mg/L	<0.0025	<0.0025	<0.0005	<0.005	-	<0.0025	<0.005	<0.0025		0.0027	<0.0025	<0.0005	<0.0025	-
Dissolved Copper (Cu) Dissolved Iron (Fe)	0.0009	mg/L mg/L	<0.0045	<0.0045 0.06	<0.0009	<0.009 <0.1	-	<0.0045	<0.009 0.9	<0.0045		<0.0009 37	<0.0045	<0.0009 4.9	<0.0045	-
Dissolved Lead (Pb)	0.0005	mg/L	<0.0025	<0.0025	<0.0005	<0.005		<0.0025	<0.005	<0.0025		<0.0005	<0.0025	<0.0005	<0.0025	
Dissolved Lithium (Li) Dissolved Magnesium (Mg)	0.005	mg/L mg/L	0.063	0.058	0.044	0.067	-	0.3	0.26	0.26		0.074 6.1	0.1	0.059	0.073	-
Dissolved Nickel (Ni)	0.001	mg/L mg/L	<0.005	<0.005	0.0027	4.3	-	0.0	<0.01	0.0051		0.0086	<0.005	0.0043	<0.005	-
Dissolved Potassium (K)	0.2	mg/L	12	13	19	13		14	14	12		14	19	19	16	-
Dissolved Rubidium (Rb) Total Ruthenium (Ru)	0.0002	mg/L mg/L	0.015	0.015	0.055	0.031 0.00011		0.0	0.045	0.044		0.02	0.0	0.028	0.022	-
Dissolved Selenium (Se)	0.002	mg/L	<0.01	<0.01	<0.002	<0.02	-	<0.01	<0.02	<0.01		<0.002	<0.01	<0.002	<0.01	-
Dissolved Silicon (Si) Dissolved Sodium (Na)	0.05	mg/L	3.9 730	4 700	3.2 420	3.2 1300		6.1 810.0	5.8 740	5.4		10 240	11.0	12 610	9.9	-
Dissolved Sodium (Na) Dissolved Strontium (Sr)	0.001	mg/L mg/L	61	60	420	1300	-	130.0	140	140	-	240	30.0	610 39	40	-
Dissolved Sulphur (S)	0.5	mg/L	71	76	36	140	-	<5.0	<5.0	<5		11	15	16	17	-
Dissolved Thorium (Th) Dissolved Uranium (U)	0.002	mg/L mg/L	<0.01 <0.0005	<0.01 <0.0005	<0.002 0.0034	<0.02 <0.001		<0.01 <0.0005	<0.02 <0.001	<0.01 <0.0005		<0.002	<0.01 0.0	<0.002 0.00039	<0.01 <0.0005	-
Dissolved Zirconium (Zr)	0.001	mg/L	<0.005	<0.005	<0.001	<0.01		<0.005	<0.01	<0.005		<0.001	<0.005	<0.001	<0.005	
Laboratory Measurements - Isotopes a	nd Radiohalides	% VSMOW	-12.4	-12.4	-8.9	-12.0		-10.0	-9.9	-9.9	1	-8.6	-10.9	-11.8	-11.2	1
Oxygen-18 of water (δ^{18} O) Deuterium of water (δ^{2} H)	-	% VSMOW % VSMOW	-12.4 -85.0	-12.4 -84.9	-8.9	-12.0	-	-10.0 -61.3	-9.9	-9.9 -61.3	-	-8.6 -69.8	-10.9 -78.0	-11.8 -82.0	-11.2	-
Tritium (³ H)	0.8	TU	<0.8	1.6	6.0	< 0.8	-	1.5	2.1	1.4		7.2	3.7	1.5	2.3	-
Carbon-13 of DIC (813C-DIC)		% VPDB	-15.1	-13.1	-12.2	-14.0	-	-12.5	-18.5	-24.0		-12.1	-24.2	-24.3	-23.5	-
Carbon-14 of DIC (14C-DIC)	0.53	pmC (%)	54.62	61.24	68.52	48.39		47.85	49.60	46.53		83.69	90.75	94.33	91.81	-
Chlorine-37 (δ^{37} Cl) Chlorine-36 (36 Cl/Cl)	-	% VSMOC	-0.07 1.52E-14	-0.30 1.50E-14	-0.26 1.72E-14	-0.65 1.69E-14	-	-0.05 1.51E-14	-0.13 1.67E-14	-0.25 1.92E-14		0.17 1.69E-14	-0.22 1.36E-14	-0.06 1.86E-14	-0.85 1.56E-14	-
Iodine-129 (¹²⁹ I)	-	atoms/kg	5.09E+07	4.37E+07	1.12E+08	3.22E+07	-	1.51E-14 1.77E+08	1.69E+08	1.57E+08	-	1.13E+08	5.53E+07	4.25E+07	2.87E+07	-
Strontium isotope ratio (87Sr/66Sr)			0.71654	0.71710	0.71545	0.71529		0.71828	0.71821	0.71822		0.71737	0.71603	0.71592	0.71563	-
Laboratory Measurements - Noble Gas	Isotopes			4.505.44	3.005.44	2 205 44	4 675 44	C 205 44	4.245.42	5 205 44	T	4 005 43	4 225 42	4.045.44	2.255.42	1
⁴ He	-	cc/g cc/g	5.66E-13 1.76E-05	4.68E-11 1.52E-03	2.80E-11 3.00E-04	2.39E-11 3.29E-04	1.67E-11 3.33E-04	6.28E-11 2.17E-03	1.31E-12 4.45E-05	5.39E-11 3.05E-04		4.00E-12 1.49E-04	1.23E-12 4.67E-05	4.01E-11 2.54E-04	2.26E-12 1.36E-04	-
x/Ra			0.02	0.02	0.07	0.05	0.04	0.02	0.02	0.13	-	0.02	0.02	0.11	0.01	-
He Total	-	cc/g	1.76E-05	1.52E-03	3.00E-04	3.29E-04	3.33E-04	2.17E-03	4.45E-05	3.05E-04		1.49E-04	4.67E-05	2.54E-04	1.36E-04	-
²⁰ Ne ²² Ne	-	cc/g	1.25E-07 1.17E-08	2.71E-06 2.67E-07	6.57E-07 6.59E-08	5.50E-08 5.85E-09	3.53E-08 3.55E-09	2.57E-07 2.55E-08	8.91E-08 7.91E-09	6.56E-08 7.14E-09	-	1.49E-07 1.52E-08	1.10E-07 1.16E-08	3.69E-07 3.93E-08	7.86E-08 8.01E-09	-
"Ne Ne Total	-	cc/g cc/g	1.17E-08 1.36E-07	2.67E-07 2.98E-06	6.59E-08 7.22E-07	5.85E-09 6.09E-08	3.55E-09 3.89E-08	2.55E-08 2.82E-07	7.91E-09 9.70E-08	7.14E-09 7.27E-08		1.52E-08 1.64E-07	1.16E-08 1.22E-07	3.93E-08 4.08E-07	8.01E-09 8.66E-08	-
¹⁶ Ar		cc/g	5.44E-07	3.76E-06	1.38E-06	4.90E-07	5.13E-07	7.02E-07	4.64E-07	1.43E-07		1.05E-06	5.79E-07	1.11E-06	5.49E-07	-
40Ar	-	cc/g	2.54E-04	2.64E-03	7.73E-04	1.22E-03	6.43E-04	3.90E-03	4.99E-04	2.22E-03		4.23E-04	3.44E-04	1.35E-03	3.86E-04	-
Ar Total Kr Total		cc/g cc/g	2.55E-04 4.27E-08	2.64E-03 1.76E-07	7.75E-04 6.41E-08	1.22E-03 3.19E-08	6.43E-04 4.65E-08	3.90E-03 4.99E-08	4.99E-04 2.69E-08	2.22E-03 1.94E-08		4.24E-04 7.97E-08	3.44E-04 4.72E-08	1.36E-03 4.56E-08	3.87E-04 3.66E-08	-
Xe Total	-	cc/g	6.68E-09	1.76E-08	8.21E-09	5.27E-09	4.052-08 8.35E-09	4.55E-08 7.64E-09	4.32E-09	3.46E-09		1.24E-08	4.72E-08 7.72E-09	4.30E-08 7.87E-09	6.02E-09	
= Not reported or no value measured																

-- Potr reported or no value measured
 Messurement flagged as anomoloss
 V/Ba-shot (3He/dHe) in sample normalized to the ratio in Arr (1.38 x 10-6)
 Note that all node gas areautis likely have wrying level of atmospheric components
 Note that all node gas areautis likely have wrying level of atmospheric components
 Reportable detection limit most commonly used is liked; there are cases where the detection limits were raised due to matrix interference or sample dilution.
 ² Sample was diluted to obtain measurements: So dilution factor (10 mt sample with 30 mt distilled water)
 ³ Sample was diluted to obtain measurements: So dilution factor (2 mt sample with 30 mt distilled water)
 ⁴ Interval (6, BHO); TUP TOO was previously proget and astropide in 2020. CedMing completed resumpting for missing noble gas analyses during Q4 2022
 **No laboratory analyses were required for samples IR_BHO3_GW013 and IG_BHO6_GW001, they were collected as archive samples to collect in-field parameters only.

2022 Annual Report

Fluid Pressure Monitoring and Groundwater Sampling in Ignace Boreholes

Appendix D

QA/QC Results and Calculations

Appendix D - QA/QC Results and Calculations

Parameter	Units	RDL			2 (June) 2022									Q3 (Septe	mber) 2022							Q4 (I	December) 202	2		
Faraneter	onits	RDL	IG_BH01_GW033	IG_BH01_GW034	Difference	Average	5 X RDL	RPD %	IG_BH03_GW017	IG_BH03_GW018 D	lifference	Average	5 X RDL	RPD %	IG_BH05_GW005	IG_BH05_GW006	Difference	Average	5 X RDL I	RPD %	IG_BH05_GW011	IG_BH05_GW012	Difference	Average	5 X RDL	RPD
aboratory Measurements - Physiocher	nical Parameter	Major Anio	ns and Nutrients																							
kalinity-Bicarbonate	mg/L	1.00	4.7	5.7	1	5.2	5	19	58.0	64	6	61	5	10	190.0	200	10	195	5	5	150.0	150	0	150	5	0
Ikalinity-Carbonate	mg/L	1.00	<1.0	<1.0		-	5		<1.0	<1.0	-		5	-	<1.0	<1.0		-	5	-	<1.0	<1.0	-	-	5	
Ikalinity-Hydroxide	mg/L	1.00	<1.0	<1.0			5		<1.0	<1.0	-		5		<1.0	<1.0		-	5		<1.0	<1.0			5	
Ikalinity-Total	mg/L	1.00	4.70	5.7	1	5.2	5	19	58.00	64	6	61	5	10	190.00	200	10	195	5	5	150.00	150	0	150	5	0
otal Ammonia as N (NH4+NH3)	mg/L	0.05					0.25		0.63	0.61	0.02	0.62	0.25	3	0.20	0.21	0.01	0.205	0.25	5	0.17	0.12	0.05	0.145	0.25	
Dissolved Bromide (Br)	mg/L	10.00	<400	<400			50		390	390	-		50	-	140	140		-	50	-	140	140		-	50	
Dissolved Chloride (CI)	mg/L	1.00	9,000	9,700	700	9,350	5	7	21,000	21,000	0	21,000	5	0	6,600	6,400	200	6,500	5	3	7,000	7,000	0	7,000	5	0
Fluoride (F)	mg/L	0.10	0.970	0.92	0.05	0.945	0.5	5	0.100	0.11	0.01	0.105	0.5	10	0.270	0.25	0.02	0.26	0.5	8	0.210	0.22	0.01	0.215	0.5	
Dissolved Iodide (I)	mg/L	0.10	<2.0	<2.0			0.5		<10	<10	-		0.5	-	<10	<10		-	0.5	-	<10	<10		-	0.5	
Nitrate (NO3)	mg/L	0.10	<0.10	<0.10			0.5		<0.10	<0.50	-		0.5	-	<0.10	<0.10		-	0.5	-	<0.10	<0.10		-	0.5	
Nitrite (NO2)	mg/L	0.01	<0.010	<0.010			0.05		<0.010	<0.050	-		0.05	-	<0.010	<0.010			0.05	-	<0.010	<0.010			0.05	
Nitrate + Nitrite	mg/L	0.10	<0.10	<0.10			0.5		<0.10	<0.50			0.5		<0.10	<0.10			0.5		<0.10	<0.10			0.5	
Total Kjeldahl Nitrogen (TKN)	mg/L	1.00	4.2	3.1	1.1	3.65	5		4.0	5.9	1.9	4.95	5	-	1.8	2	0.2	1.9	5	-	2.2	3	0.8	2.6	5	
Total Nitrogen (N)	mg/L	2.00	4.2	3.1	1.1	3.65	10		4	5.9	1.9	4.95	10	-	1.8	2	0.2	1.9	10	-	2.2	3	0.8	2.6	10	
OrthoPhosphate (P)	mg/L	0.01	0.013	0.011	0.002	0.012	0.05		0.65	0.88	0.23	0.765	0.05	30	<0.010	0.01		-	0.05	-	0.011	<0.010			0.05	
Total Phosphorus (Ptot)	mg/L	0.10	0.38	0.23	0.15	0.305	0.5		1.3	1.2	0.1	1.25	0.5	8	0.16	0.14	0.02	0.15	0.5		0.18	0.1	0.08	0.14	0.5	
Dissolved Sulphate (SO4)	mg/L	10.00	<400	<400			50		<10	<10	-		50		41	41			50		55	59			50	
Sulphide as S	mg/L	0.02	<0.020	<0.020			0.1		< 0.020	<0.020			0.1		0.69	0.66		-	0.1		<0.020	< 0.020			0.1	
Dissolved Organic Carbon (DOC)	mg/L	1.00	0.55	0.51	0.04	0.53	5	8	110	110	0	110	5	0	59	58	1	58.5	5	2	66	65	1	65.5	5	2
fotal Organic Carbon (TOC)	mg/L	1.00	<1	<1			5		4	4			5		36	35		-	5		23	23			5	
Total Inorganic Carbon (C)	mg/L	1.00	1.3	1.2	0.1	1.25	5		110	110	0	110	5	0	65	65	0	65	5	0	76	76	0	76	5	0
Reactive Silica (SiO2)	mg/L	0.25	12	27	15	19.5	1.25	77	31	29	2	30	1.25	7	31	27	4	29	1.25	14	7.5	19	11.5	13.25	1.25	87
Laboratory Measurements - Metals																· ·										_
Dissolved Aluminum (Al)	mg/L	0.0049	<0.025	< 0.025			0.0245		0.026	0.03			0.0245		0.011	0.011		-	0.0245		< 0.025	< 0.025			0.0245	
Dissolved Arsenic (As)	mg/L	0.001	<0.005	< 0.005			0.005		< 0.005	<0.005			0.005		< 0.001	< 0.001		-	0.005		< 0.005	< 0.005			0.005	
Dissolved Barium (Ba)	ma/L	0.002	0.31	0.34	0.03	0.325	0.01	9	0.35	0.35	0	0.35	0.01	0	0.31	0.31	0	0.31	0.01	0	0.33	0.32	0.01	0.325	0.01	3
Dissolved Bismuth (Bi)	mg/L	0.001	<0.005	< 0.005			0.005		< 0.005	< 0.005			0.005		< 0.001	< 0.001			0.005		< 0.005	< 0.005			0.005	
Dissolved Boron (B)	mg/L	0.01	0.33	0.36	0.03	0.345	0.05	9	0.27	0.28	0.01	0.275	0.05	4	0.31	0.33	0.02	0.32	0.05	6	0.42	0.42	0	0.42	0.05	0
Dissolved Cadmium (Cd)	ma/L	0.00009	< 0.00045	< 0.00045			0.00045		< 0.00045	< 0.00045			0.00045		< 0.00009	< 0.00009		-	0.00045		< 0.00045	< 0.00045			0.00045	
Dissolved Calcium (Ca)	ma/L	1.0	4900	5100	200	5000	5	4	11000	11000	0	11000	5	0	3200	3300	100	3250	5	3	3400	3400	0	3400	5	0
Dissolved Cesium (Cs)	ma/L	0.0002	< 0.001	< 0.001			0.001		0.0014	0.0013	-		0.001		< 0.0002	< 0.0002			0.001		<0.001	< 0.001			0.001	
Dissolved Chromium (Cr)	mg/L	0.005	<0.025	< 0.025			0.025		< 0.025	<0.025			0.025		< 0.005	< 0.005			0.025		<0.025	<0.025			0.025	
Dissolved Cobalt (Co)	ma/L	0.0005	<0.0025	< 0.0025			0.0025		< 0.0025	<0.0025			0.0025		< 0.0005	< 0.0005		-	0.0025		< 0.0025	<0.0025			0.0025	
Dissolved Copper (Cu)	ma/L	0.0009	< 0.0045	< 0.0045			0.0045		< 0.0045	<0.0045	-		0.0045		<0.0009	< 0.0009			0.0045		< 0.0045	< 0.0045			0.0045	
Dissolved Iron (Fe)	ma/L	0.02	0.06	0.05	0.01	0.055	0.1		1.2	1.2	0	1.2	0.1	0	4.9	5.5	0.6	5.2	0.1	12	13	13	0	13	0.1	0
Dissolved Lead (Pb)	mg/L	0.0005	<0.0025	< 0.0025			0.0025		<0.0025	<0.0025			0.0025		<0.0005	< 0.0005			0.0025		< 0.0025	< 0.0025			0.0025	
Dissolved Lithium (Li)	mg/L	0.005	0.058	0.057	0.001	0.0575	0.025	2	0.26	0.27	0.01	0.265	0.025	4	0.059	0.06	0.001	0.0595	0.025	2	0.073	0.073	0	0.073	0.025	0
Dissolved Magnesium (Mg)	ma/L	0.05	0.75	0.88	0.13	0.815	0.25	16	3.2	3.4	0.2	3.3	0.25	6	5.7	5.7	0	57	0.25	0	11	11	0	11	0.25	0
Dissolved Nickel (Ni)	mg/L	0.001	<0.005	< 0.005			0.005		0.0051	0.0078	-		0.005		0.0043	0.005		-	0.005		<0.005	<0.005		-	0.005	
Dissolved Potassium (K)	mg/L	0.2	13	13	0	13	1	0	12	13	1	12.5	1	8	19	19	0	19	1	0	16	15	1	15.5	1	6
Dissolved Rubidium (Rb)	mg/L	0.0002	0.015	0.016	0.001	0.0155	0.001	6	0.044	0.047	0.003	0.0455	0.001	7	0.028	0.028	0	0.028	0.001	0	0.022	0.022	0	0.022	0.001	0
otal Ruthenium (Ru)	mg/L	0.002	<0.0020	<0.0020			0.01		<0.0020	<0.0020	-		0.01	-	<0.0020	<0.0020	-	-	0.01		<0.0020	<0.0020			0.01	
Dissolved Selenium (Se)	mg/L	0.002	<0.01	<0.01			0.01		<0.01	<0.01	-		0.01		<0.002	<0.002		-	0.01		<0.01	<0.01			0.01	
Dissolved Silicon (Si)	mg/L	0.05	4	4.1	0.1	4.05	0.25	2	5.4	5.4	0	5.4	0.25	0	12	12	0	12	0.25	0	9.9	9.9	0	9.9	0.25	0
Dissolved Sodium (Na)	mg/L	0.00	700	730	30	715	0.5	4	760	770	10	765	0.5	1	610	620	10	615	0.5	2	680	660	20	670	0.5	3
Dissolved Strontium (Sr)	mg/L	0.001	60	63	30	61.5	0.005	5	140	140	0	140	0.005	0	39	39	0	39	0.005	0	40	42	20	41	0.005	5
Dissolved Sulphur (S)	mg/L	0.001	76	76	0	76	2.5	0		<5	0	140	2.5	0	16	19	3	17.5	2.5	17	17	17	0	17	2.5	0
Dissolved Thorium (Th)	mg/L	0.002	<0.01	<0.01		70	0.01	0	<0.01	<0.01	-		0.01		<0.002	<0.002		.7.5	0.01		<0.01	<0.01			0.01	0
Dissolved Uranium (U)	mg/L	0.0002	<0.0005	<0.0005			0.0005		<0.0005	<0.0005	-		0.0005	-	0.00039	0.00042		-	0.0005	-	<0.0005	<0.0005			0.0005	

Legend	
Sample concentration(s) below detection limit so RPD cannot be calculated, or average value below 5X detection limit, or RPD cannot be calculated.	1
Average Value below 5X detection limit	XX
Calculated RPD exceeds 30%	XX
Reported Detection Limit	RDL

Appendix D - QA/QC Results and Calculations

	Reportable Detection Limit ¹ / Range	Units	Mar-22 (Q1)	Jun-22 (Q2)	Sep-22 (Q3)	Dec-22 (Q4)
Rinsate Sample ID			IG BH03 GW014	IG BH05 GW003	IG BH05 GW007	IG BH05 GW009
aboratory Measurements - Physioc	hemical Parameter. Maior Anio	ons and Nutrients				
Dissolved Bromide (Br)	1.0	mg/L	<1.0	<1.0	<1.0	<1.0
Dissolved Chloride (CI)	1.0	mg/L	<1.0	1.2	13	<1.0
luoride (F)	0.1	mg/L	<0.1	<0.1	<0.1	<0.1
Dissolved Iodide (I)	0.1	mg/L	1.3	<0.1	<0.1	<0.1
Nitrate (NO3)	0.1	mg/L	<0.1	<0.1	<0.1	<0.1
Nitrite (NO2)	0.01	mg/L	<0.01	<0.01	<0.01	< 0.01
Nitrate + Nitrite	0.1	mg/L	<0.1	<0.1	<0.1	<0.1
OrthoPhosphate (P)	0.01	mg/L	<0.01	<0.01	<0.01	< 0.01
Dissolved Sulphate (SO4)	1.0	mg/L	<1.0	<1.0	<1.0	<1.0
aboratory Measurements - Metals						
Dissolved Aluminum (Al)	0.0049	mg/L	< 0.0049	< 0.0049	< 0.0049	< 0.0049
Dissolved Arsenic (As)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Barium (Ba)	0.002	mg/L	< 0.002	< 0.002	< 0.002	<0.002
Dissolved Bismuth (Bi)	0.001	mg/L	< 0.001	< 0.001	< 0.001	<0.001
Dissolved Boron (B)	0.01	mg/L	<0.01	<0.01	<0.01	< 0.01
Dissolved Cadmium (Cd)	0.00009	mg/L	<0.00009	<0.00009	<0.00009	< 0.00009
Dissolved Calcium (Ca)	0.2	mg/L	<0.2	0.48	2.6	1.0
Dissolved Cesium (Cs)	0.0002	mg/L	< 0.0002	<0.0002	<0.0002	<0.0002
Dissolved Chromium (Cr)	0.005	mg/L	< 0.005	< 0.005	< 0.005	<0.005
Dissolved Cobalt (Co)	0.0005	mg/L	< 0.0005	<0.0005	<0.0005	<0.0005
Dissolved Copper (Cu)	0.0009	mg/L	<0.0009	<0.0009	<0.0009	< 0.0009
Dissolved Iron (Fe)	0.02	mg/L	<0.1	<0.02	-	0.04
Dissolved Lead (Pb)	0.0005	mg/L	< 0.0005	<0.0005	<0.0005	<0.0005
Dissolved Lithium (Li)	0.005	mg/L	< 0.005	< 0.005	< 0.005	<0.005
Dissolved Magnesium (Mg)	0.05	mg/L	<0.05	<0.05	<0.05	0.1
Dissolved Nickel (Ni)	0.001	mg/L	< 0.001	< 0.001	< 0.001	<0.001
Dissolved Potassium (K)	0.2	mg/L	<0.2	<0.2	<0.2	<0.2
Dissolved Rubidium (Rb)	0.0002	mg/L	< 0.0002	<0.0002	<0.0002	<0.0002
Dissolved Selenium (Se)	0.002	mg/L	< 0.002	< 0.002	< 0.002	<0.002
Dissolved Silicon (Si)	0.05	mg/L	<0.05	<0.05	<0.05	< 0.05
issolved Sodium (Na)	0.1	mg/L	<0.1	0.16	0.35	0.3
issolved Strontium (Sr)	0.001	mg/L	< 0.001	0.006	0.030	0.010
issolved Sulphur (S)	0.5	mg/L	<0.5	<0.5	-	<0.5
issolved Thorium (Th)	0.002	mg/L	< 0.002	<0.002	<0.002	<0.002
issolved Uranium (U)	0.0001	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001
issolved Zirconium (Zr)	0.001	mg/L	< 0.001	< 0.001	< 0.001	<0.001
ield Blank Sample ID	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>a</i> -	IG BH03 GW015	IG BH05 GW004	IG BH05 GW008	IG BH05 GW010
aboratory Measurements - Isotope	s and Radiohalides					
ritium (³ H)	0.8	τυ	<0.8	<0.8	< 0.8	< 0.8
arbon-13 of DIC (8 ¹³ C-DIC)	0.8	% VPDB	-11.1	-11	-11.2	-10.9
arbon-14 of DIC (¹⁴ C-DIC)	0.53	200 VPDB pmC (%)	40.48	-11 38.58	40.68	-10.9

according to a second the second second

2022 Annual Report

Fluid Pressure Monitoring and Groundwater Sampling in Ignace Boreholes

Appendix E

Laboratory Reports

2022 Q1 (March)

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE,ON Your C.O.C. #: GFIN-BVL-0005, na

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/05/10 Report #: R7118336 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C279306

Received: 2022/03/24, 13:44

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2022/03/28	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/03/29	CAM SOP-00102	APHA 4500-CO2 D
Anions	2	N/A	2022/03/29	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (3)	1	N/A	2022/05/09	CAM SOP-00446	SM 23 5310 B m
Fluoride	2	2022/03/26	2022/03/28	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	2	2022/03/26	2022/03/30	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	1	N/A	2022/03/29	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2022/03/30	CAM SOP-00447	EPA 6020B m
lodide, Thiosulphate, Thiocyanate (1)	2	N/A	2022/03/30	CAL SOP-00057	Dionex #034035 R09 m
Total Extractable Elements by ICP-MS (2, 4)	1	2022/04/13	2022/04/19	STL SOP-00071	MA.200–Mét. 1.2 R5 m
Silica (Reactive) (1)	1	N/A	2022/04/03	AB SOP-00011	EPA370.1 R1978 m
Total Ammonia-N	1	N/A	2022/03/30	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (5)	2	N/A	2022/03/29	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/03/26	2022/03/28	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	2	N/A	2022/03/28	CAM SOP-00461	EPA 365.1 m
Sulphide	1	N/A	2022/03/29	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	1	N/A	2022/03/30	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	1	2022/03/29	2022/03/31	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	1	N/A	2022/03/31	Auto Calc.	
Total Organic Carbon (TOC) (6)	1	N/A	2022/05/09	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	1	2022/03/29	2022/03/30	CAM SOP-00407	SM 23 4500 P B H m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 11

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE,ON Your C.O.C. #: GFIN-BVL-0005, na

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/05/10 Report #: R7118336 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C279306 Received: 2022/03/24, 13:44

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) This test was performed by Bureau Veritas Montreal, 889 Montée de Liesse , Ville St-Laurent, QC, H4T 1P5

(3) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(4) Non-accredited test method

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Katherine Szozda

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda. Project Manager

Email: Katherine.Szozda@bureauveritas.com

Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SEO811			SEO812			SEO812		
Sampling Date		2022/03/22			2022/03/22			2022/03/22		
		10:15			14:00			14:00		
COC Number		na			na			na		
	UNITS	IG_BH03_GW014	RDL	QC Batch	IG_BH03_GW013	RDL	QC Batch	IG_BH03_GW013 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L				73	1.0	7903961			
Carb. Alkalinity (calc. as CaCO3)	mg/L				<1.0	1.0	7903961			
Hydrox. Alkalinity (calc. as CaCO3)	mg/L				<1.0	1.0	7903961			
Total Nitrogen (N)	mg/L				5.8	5.0	7904166			
Inorganics								I		
Total Ammonia-N	mg/L				0.70	0.050	7909338			
Fluoride (F-)	mg/L	<0.10	0.10	7906077	0.12	0.10	7906077			
Total Inorganic Carbon (C)	mg/L				1	1	7906033	1	1	7906033
Dissolved lodide	mg/L	1.3	0.10	7916935	<0.10	0.10	7916935			
Total Kjeldahl Nitrogen (TKN)	mg/L				5.8	5.0	7909303			
Dissolved Organic Carbon	mg/L				110	0.80	7980705			
Total Organic Carbon (TOC)	mg/L				120	0.80	7980604			
Orthophosphate (P)	mg/L	<0.010	0.010	7906089	0.027	0.010	7906089			
рН	рН				6.94		7906079			
Total Phosphorus	mg/L				0.39	0.20	7909986			
Reactive Silica (SiO2)	mg/L				47	0.25	7920315			
Sulphide	mg/L				<0.020	0.020	7908265			
Alkalinity (Total as CaCO3)	mg/L				73	1.0	7906080			
Nitrite (N)	mg/L	<0.010	0.010	7905990	<0.010	0.010	7905990			
Dissolved Chloride (Cl-)	mg/L	<1.0	1.0	7906100	21000	200	7906100	21000	200	7906100
Nitrate (N)	mg/L	<0.10	0.10	7905990	<0.10	0.10	7905990			
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	7905990	<0.10	0.10	7905990			
Dissolved Bromide (Br-)	mg/L	<1.0	1.0	7906100	440	10	7906100	450	10	7906100
Dissolved Sulphate (SO4)	mg/L	<1.0	1.0	7906100	<10	10	7906100	<10	10	7906100
Metals				-		-	-		•	
Total Ruthenium (Ru)	ug/L				<2.0	2.0	7947187			
RDL = Reportable Detection Limit		<u>.</u>				-				
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Dup	licate									

Bureau Veritas ID		SEO811		SEO812		
Sampling Data		2022/03/22		2022/03/22		
Sampling Date		10:15		14:00		
COC Number		na		na		
	UNITS	IG_BH03_GW014	RDL	IG_BH03_GW013	RDL	QC Batch
Metals						
Dissolved Iron (Fe)	mg/L	<0.02	0.02	1.7	0.2	7901847
Dissolved Sulphur (S)	mg/L	<0.5	0.5	<5	5	7901847
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	<25	25	7906085
Dissolved Arsenic (As)	ug/L	<1.0	1.0	<5.0	5.0	7906085
Dissolved Barium (Ba)	ug/L	<2.0	2.0	350	10	7906085
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	<5.0	5.0	7906085
Dissolved Boron (B)	ug/L	<10	10	300	50	7906085
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	<0.45	0.45	7906085
Dissolved Calcium (Ca)	ug/L	<200	200	11000000	10000	7906085
Dissolved Cesium (Cs)	ug/L	<0.20	0.20	1.3	1.0	7906085
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	<25	25	7906085
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	<2.5	2.5	7906085
Dissolved Copper (Cu)	ug/L	<0.90	0.90	<4.5	4.5	7906085
Dissolved Iron (Fe)	ug/L	<100	100	1500	500	7906085
Dissolved Lead (Pb)	ug/L	<0.50	0.50	<2.5	2.5	7906085
Dissolved Lithium (Li)	ug/L	<5.0	5.0	280	25	7906085
Dissolved Magnesium (Mg)	ug/L	<50	50	3700	250	7906085
Dissolved Nickel (Ni)	ug/L	<1.0	1.0	8.5	5.0	7906085
Dissolved Potassium (K)	ug/L	<200	200	14000	1000	7906085
Dissolved Rubidium (Rb)	ug/L	<0.20	0.20	46	1.0	7906085
Dissolved Selenium (Se)	ug/L	<2.0	2.0	<10	10	7906085
Dissolved Silicon (Si)	ug/L	<50	50	6100	250	7906085
Dissolved Sodium (Na)	ug/L	<100	100	810000	500	7906085
Dissolved Strontium (Sr)	ug/L	<1.0	1.0	130000	5.0	7906085
Dissolved Thorium (Th)	ug/L	<2.0	2.0	<10	10	7906085
Dissolved Uranium (U)	ug/L	<0.10	0.10	<0.50	0.50	7906085
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	<5.0	5.0	7906085
RDL = Reportable Detection	Limit					-
QC Batch = Quality Control B	atch					

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

TEST SUMMARY

Bureau Veritas ID:	SEO811
Sample ID:	IG_BH03_GW014
Matrix:	Water

Collected:	2022/03/22
Shipped:	
Received:	2022/03/24

Collected: 2022/03/22

Received: 2022/03/24

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions	IC	7906100	N/A	2022/03/29	Lusine Khachatryan
Fluoride	ISE	7906077	2022/03/26	2022/03/28	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	7901847	2022/03/26	2022/03/30	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	7906085	N/A	2022/03/29	Prempal Bhatti
Iodide, Thiosulphate, Thiocyanate	IC/EC	7916935	N/A	2022/03/30	Taylor Mullings
Nitrate & Nitrite as Nitrogen in Water	LACH	7905990	N/A	2022/03/29	Samuel Law
Orthophosphate	KONE	7906089	N/A	2022/03/28	Alina Dobreanu

Bureau Veritas ID: SEO812 Sample ID: IG_BH03_GW013 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7906080	N/A	2022/03/28	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7903961	N/A	2022/03/29	Automated Statchk
Anions	IC	7906100	N/A	2022/03/29	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7980705	N/A	2022/05/09	Anna-Kay Gooden
Fluoride	ISE	7906077	2022/03/26	2022/03/28	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	7901847	2022/03/26	2022/03/30	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	7906085	N/A	2022/03/30	Prempal Bhatti
Iodide, Thiosulphate, Thiocyanate	IC/EC	7916935	N/A	2022/03/30	Taylor Mullings
Total Extractable Elements by ICP-MS	ICP/MSMS	7947187	2022/04/13	2022/04/19	Zineb El Ouali
Silica (Reactive)	KONE	7920315	N/A	2022/04/03	Serena Tian
Total Ammonia-N	LACH/NH4	7909338	N/A	2022/03/30	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7905990	N/A	2022/03/29	Samuel Law
рН	AT	7906079	2022/03/26	2022/03/28	Surinder Rai
Orthophosphate	KONE	7906089	N/A	2022/03/28	Alina Dobreanu
Sulphide	ISE/S	7908265	N/A	2022/03/29	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	7906033	N/A	2022/03/30	Massarat Jan
Total Kjeldahl Nitrogen in Water	SKAL	7909303	2022/03/29	2022/03/31	Massarat Jan
Total Nitrogen (calculated)	CALC	7904166	N/A	2022/03/31	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7980604	N/A	2022/05/09	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	7909986	2022/03/29	2022/03/30	Nimarta Singh

Bureau Veritas ID: Sample ID: Matrix:	SEO812 Dup IG_BH03_GW013 Water					Shipped:	2022/03/22 2022/03/24
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Anions		IC	7906100	N/A	2022/03/29	Lusine Kha	achatryan
Total Inorganic Carbon (T	IC)	TOCV/NDIR	7906033	N/A	2022/03/30	Massarat.	Jan

Page 5 of 11

GENERAL COMMENTS

Each to	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	2.3°C	
Revise	Report (2022/05	/06): Sample IDs	
ANION	S-L: Due to high c	oncentrations of	the target analytes, sample required dilution. Detection limits were adjusted accordingly.
Sample accord	• =	3_GW013]:Me	tals Analysis: Due to the sample matrix, the sample required dilution. Detection limits were adjusted
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

IC Type Iatrix Spike piked Blank Iethod Blank PD Iatrix Spike piked Blank Iethod Blank PD	ParameterDissolved Iron (Fe)Dissolved Sulphur (S)Dissolved Iron (Fe)Dissolved Iron (Fe)Dissolved Iron (Fe)Dissolved Sulphur (S)Dissolved Iron (Fe)Dissolved Sulphur (S)Nitrite (N)Nitrite (N)Nitrate (N)	Date Analyzed 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29 2022/03/29	<0.02 <0.5 NC 0.53	Recovery 100 NC 101 102 101 101	UNITS % % % mg/L % % %	QC Limits 80 - 120 80 - 120 80 - 120 80 - 120 25 25 80 - 120
piked Blank Iethod Blank PD Iatrix Spike piked Blank Iethod Blank PD	Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Iron (Fe) Dissolved Sulphur (S) Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Sulphur (S) Nitrite (N) Nitrate (N) Nitrate (N) Nitrate (N) Nitrate (N) Nitrate (N)	2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29	<0.5 NC	NC 101 102 101	% % mg/L mg/L % %	80 - 120 80 - 120 80 - 120 25 25
lethod Blank PD latrix Spike piked Blank lethod Blank PD	Dissolved Iron (Fe) Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Sulphur (S) Nitrite (N) Nitrate (N) Nitrate (N) Nitrate (N) Nitrite (N) Nitrite (N) Nitrite (N)	2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29	<0.5 NC	101 102 101	% mg/L mg/L % %	80 - 120 80 - 120 25 25
lethod Blank PD latrix Spike piked Blank lethod Blank PD	Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Sulphur (S) Nitrite (N) Nitrate (N) Nitrite (N) Nitrite (N) Nitrite (N) Nitrite (N) Nitrite (N)	2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29	<0.5 NC	102	% mg/L % % %	80 - 120 25 25
PD latrix Spike piked Blank lethod Blank PD latrix Spike [SEO812-01]	Dissolved Iron (Fe) Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Sulphur (S) Nitrite (N) Nitrate (N) Nitrate (N) Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/30 2022/03/30 2022/03/30 2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29	<0.5 NC	101	mg/L mg/L % %	25 25
PD latrix Spike piked Blank lethod Blank PD latrix Spike [SEO812-01]	Dissolved Sulphur (S) Dissolved Iron (Fe) Dissolved Sulphur (S) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/30 2022/03/30 2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29	<0.5 NC		mg/L % % %	25
latrix Spike piked Blank lethod Blank PD latrix Spike [SEO812-01]	Dissolved Iron (Fe) Dissolved Sulphur (S) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/30 2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29	NC		% % %	25
latrix Spike piked Blank lethod Blank PD latrix Spike [SEO812-01]	Dissolved Sulphur (S) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/30 2022/03/29 2022/03/29 2022/03/29 2022/03/29			% %	25
piked Blank Iethod Blank PD Iatrix Spike [SEO812-01]	Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/29 2022/03/29 2022/03/29 2022/03/29	0.53		%	
piked Blank Iethod Blank PD Iatrix Spike [SEO812-01]	Nitrate (N) Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/29 2022/03/29 2022/03/29				80 - 120
lethod Blank PD latrix Spike [SEO812-01]	Nitrite (N) Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/29 2022/03/29		101	0/	•
lethod Blank PD latrix Spike [SEO812-01]	Nitrate (N) Nitrite (N) Nitrate (N)	2022/03/29			%	80 - 120
PD latrix Spike [SEO812-01]	Nitrite (N) Nitrate (N)			108	%	80 - 120
PD latrix Spike [SEO812-01]	Nitrate (N)	2022/03/29		103	%	80 - 120
latrix Spike [SEO812-01]			<0.010		mg/L	
latrix Spike [SEO812-01]		2022/03/29	<0.10		mg/L	
	Nitrite (N)	2022/03/29	NC		%	20
	Nitrate (N)	2022/03/29	1.2		%	20
	Total Inorganic Carbon (C)	2022/03/30		43 (1)	%	80 - 120
piked Blank	Total Inorganic Carbon (C)	2022/03/30		95	%	80 - 120
lethod Blank	Total Inorganic Carbon (C)	2022/03/30	<1		mg/L	
PD [SEO812-01]	Total Inorganic Carbon (C)	2022/03/30	0.63		%	20
latrix Spike	Fluoride (F-)	2022/03/28		102	%	80 - 120
piked Blank	Fluoride (F-)	2022/03/28		101	%	80 - 120
lethod Blank	Fluoride (F-)	2022/03/28	<0.10		mg/L	
PD	Fluoride (F-)	2022/03/28	3.3		%	20
piked Blank	рН	2022/03/28		102	%	98 - 103
PD	pH	2022/03/28	0.67		%	N/A
piked Blank	Alkalinity (Total as CaCO3)	2022/03/28		98	%	85 - 115
lethod Blank	Alkalinity (Total as CaCO3)	2022/03/28	<1.0		mg/L	
PD	Alkalinity (Total as CaCO3)	2022/03/28	1.3		%	20
latrix Spike	Dissolved Aluminum (Al)	2022/03/28		103	%	80 - 120
	Dissolved Arsenic (As)	2022/03/28		98	%	80 - 120
	Dissolved Barium (Ba)	2022/03/28		100	%	80 - 120
	Dissolved Bismuth (Bi)	2022/03/28		100	%	80 - 120
	Dissolved Boron (B)	2022/03/28		96	%	80 - 120
	Dissolved Cadmium (Cd)	2022/03/28		101	%	80 - 120
	Dissolved Calcium (Ca)	2022/03/28		NC	%	80 - 120
	Dissolved Cesium (Cs)	2022/03/28		102	%	80 - 120
	· ,					80 - 120
						80 - 120
						80 - 120
						80 - 120
						80 - 120
	· · /					80 - 120
						80 - 120
						80 - 120
	. ,					80 - 120
						80 - 120
						80 - 120 80 - 120
						80 - 120 80 - 120
						80 - 120 80 - 120
		Dissolved Chromium (Cr) Dissolved Cobalt (Co) Dissolved Copper (Cu) Dissolved Iron (Fe) Dissolved Lead (Pb) Dissolved Lithium (Li) Dissolved Magnesium (Mg) Dissolved Nickel (Ni) Dissolved Potassium (K) Dissolved Rubidium (Rb) Dissolved Selenium (Se) Dissolved Silicon (Si)	Dissolved Chromium (Cr)2022/03/28Dissolved Cobalt (Co)2022/03/28Dissolved Copper (Cu)2022/03/28Dissolved Iron (Fe)2022/03/28Dissolved Lead (Pb)2022/03/28Dissolved Lithium (Li)2022/03/28Dissolved Magnesium (Mg)2022/03/28Dissolved Nickel (Ni)2022/03/28Dissolved Potassium (K)2022/03/28Dissolved Rubidium (Rb)2022/03/28Dissolved Selenium (Se)2022/03/28Dissolved Silicon (Si)2022/03/28	Dissolved Chromium (Cr)2022/03/28Dissolved Cobalt (Co)2022/03/28Dissolved Copper (Cu)2022/03/28Dissolved Iron (Fe)2022/03/28Dissolved Lead (Pb)2022/03/28Dissolved Lithium (Li)2022/03/28Dissolved Magnesium (Mg)2022/03/28Dissolved Nickel (Ni)2022/03/28Dissolved Potassium (K)2022/03/28Dissolved Rubidium (Rb)2022/03/28Dissolved Selenium (Se)2022/03/28Dissolved Silicon (Si)2022/03/28	Dissolved Chromium (Cr) 2022/03/28 97 Dissolved Cobalt (Co) 2022/03/28 94 Dissolved Copper (Cu) 2022/03/28 97 Dissolved Iron (Fe) 2022/03/28 99 Dissolved Lead (Pb) 2022/03/28 98 Dissolved Lithium (Li) 2022/03/28 91 Dissolved Magnesium (Mg) 2022/03/28 95 Dissolved Nickel (Ni) 2022/03/28 95 Dissolved Potassium (K) 2022/03/28 96 Dissolved Rubidium (Rb) 2022/03/28 99 Dissolved Selenium (Se) 2022/03/28 101	Dissolved Chromium (Cr) 2022/03/28 97 % Dissolved Cobalt (Co) 2022/03/28 94 % Dissolved Copper (Cu) 2022/03/28 97 % Dissolved Copper (Cu) 2022/03/28 97 % Dissolved Iron (Fe) 2022/03/28 99 % Dissolved Lead (Pb) 2022/03/28 98 % Dissolved Lithium (Li) 2022/03/28 95 % Dissolved Magnesium (Mg) 2022/03/28 95 % Dissolved Nickel (Ni) 2022/03/28 96 % Dissolved Potassium (K) 2022/03/28 96 % Dissolved Rubidium (Rb) 2022/03/28 99 % Dissolved Selenium (Se) 2022/03/28 101 % Dissolved Silicon (Si) 2022/03/28 101 %

Page 7 of 11

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Datem		de type	Dissolved Strontium (Sr)	2022/03/28	Value	100	%	80 - 120
			Dissolved Thorium (Th)	2022/03/28		99	%	80 - 120
			Dissolved Uranium (U)	2022/03/28		102	%	80 - 120
			Dissolved Zirconium (Zr)	2022/03/28		105	%	80 - 120
7906085	PBA	Spiked Blank	Dissolved Aluminum (Al)	2022/03/28		101	%	80 - 120
, , , , , , , , , , , , , , , , , , , ,	1 2/1	opined blank	Dissolved Arsenic (As)	2022/03/28		96	%	80 - 120
			Dissolved Barium (Ba)	2022/03/28		101	%	80 - 120
			Dissolved Bismuth (Bi)	2022/03/28		102	%	80 - 120
			Dissolved Boron (B)	2022/03/28		94	%	80 - 120
			Dissolved Cadmium (Cd)	2022/03/28		100	%	80 - 120
			Dissolved Calcium (Ca)	2022/03/28		103	%	80 - 120
			Dissolved Cesium (Cs)	2022/03/28		100	%	80 - 120
			Dissolved Chromium (Cr)	2022/03/28		96	%	80 - 120
			Dissolved Cobalt (Co)	2022/03/28		93	%	80 - 120
			Dissolved Copper (Cu)	2022/03/28		96	%	80 - 120
			Dissolved Iron (Fe)	2022/03/28		99	%	80 - 120 80 - 120
			Dissolved Lead (Pb)	2022/03/28		97	%	80 - 120 80 - 120
			Dissolved Lead (FD) Dissolved Lithium (Li)	2022/03/28		106	%	80 - 120 80 - 120
			Dissolved Magnesium (Mg)	2022/03/28		96	%	80 - 120 80 - 120
		e (e ,						
		Dissolved Nickel (Ni)	2022/03/28		94	%	80 - 120	
		Dissolved Potassium (K) Dissolved Rubidium (Rb)	2022/03/28		94	%	80 - 120	
			2022/03/28		97	%	80 - 120	
		Dissolved Selenium (Se)	2022/03/28		100	%	80 - 120	
		Dissolved Silicon (Si)	2022/03/28		100	%	80 - 120	
		Dissolved Sodium (Na)	2022/03/28		97	%	80 - 120	
			Dissolved Strontium (Sr)	2022/03/28		99	%	80 - 120
			Dissolved Thorium (Th)	2022/03/28		99	%	80 - 120
			Dissolved Uranium (U)	2022/03/28		102	%	80 - 120
7000005	004		Dissolved Zirconium (Zr)	2022/03/28	.1.0	102	%	80 - 120
7906085	PBA	Method Blank	Dissolved Aluminum (Al)	2022/03/28	<4.9		ug/L	
			Dissolved Arsenic (As)	2022/03/28	<1.0		ug/L	
			Dissolved Barium (Ba)	2022/03/28	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/03/28	<1.0		ug/L	
			Dissolved Boron (B)	2022/03/28	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/03/28	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/03/28	<200		ug/L	
			Dissolved Cesium (Cs)	2022/03/28	<0.20		ug/L	
			Dissolved Chromium (Cr)	2022/03/28	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/03/28	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/03/28	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/03/28	<100		ug/L	
			Dissolved Lead (Pb)	2022/03/28	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/03/28	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/03/28	<50		ug/L	
			Dissolved Nickel (Ni)	2022/03/28	<1.0		ug/L	
			Dissolved Potassium (K)	2022/03/28	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/03/28	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/03/28	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/03/28	<50		ug/L	

Page 8 of 11

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Sodium (Na)	2022/03/28	130, RDL=100		ug/L	
			Dissolved Strontium (Sr)	2022/03/28	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/03/28	<2.0		ug/L	
			Dissolved Uranium (U)	2022/03/28	<0.10		ug/L	
			Dissolved Zirconium (Zr)	2022/03/28	<1.0		ug/L	
7906085	PBA	RPD	Dissolved Arsenic (As)	2022/03/28	NC		%	20
7906089	ADB	Matrix Spike	Orthophosphate (P)	2022/03/28		NC	%	75 - 125
7906089	ADB	Spiked Blank	Orthophosphate (P)	2022/03/28		99	%	80 - 120
7906089	ADB	Method Blank	Orthophosphate (P)	2022/03/28	<0.010		mg/L	
7906089	ADB	RPD	Orthophosphate (P)	2022/03/28	0.74		%	25
7906100	LKH	Matrix Spike [SEO812-01]	Dissolved Chloride (Cl-)	2022/03/29		NC	%	80 - 120
			Dissolved Bromide (Br-)	2022/03/29		NC	%	80 - 120
			Dissolved Sulphate (SO4)	2022/03/29		96	%	80 - 120
7906100	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/03/29		100	%	70 - 130
			Dissolved Bromide (Br-)	2022/03/29		98	%	80 - 120
		Dissolved Sulphate (SO4)	2022/03/29		95	%	80 - 120	
7906100	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/03/29	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/03/29	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/03/29	<1.0		mg/L	
7906100	LKH	RPD [SEO812-01]	Dissolved Chloride (Cl-)	2022/03/29	0.64		%	20
			Dissolved Bromide (Br-)	2022/03/29	3.6		%	20
			Dissolved Sulphate (SO4)	2022/03/29	NC		%	20
7908265	ТАК	Matrix Spike	Sulphide	2022/03/29		92	%	80 - 120
7908265	ТАК	Spiked Blank	Sulphide	2022/03/29		92	%	80 - 120
7908265	ТАК	Method Blank	Sulphide	2022/03/29	<0.020		mg/L	
7908265	ТАК	RPD	Sulphide	2022/03/29	NC		%	20
7909303	MJ1	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/03/30		105	%	80 - 120
7909303	MJ1	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/03/30		94	%	80 - 120
7909303	MJ1	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/03/30		102	%	80 - 120
7909303	MJ1	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/03/30	<0.10		mg/L	
7909303	MJ1	RPD	Total Kjeldahl Nitrogen (TKN)	2022/03/30	19		%	20
7909338	RKF	Matrix Spike	Total Ammonia-N	2022/03/30		98	%	75 - 125
7909338	RKF	Spiked Blank	Total Ammonia-N	2022/03/30		99	%	80 - 120
7909338	RKF	Method Blank	Total Ammonia-N	2022/03/30	<0.050		mg/L	
7909338	RKF	RPD	Total Ammonia-N	2022/03/30	NC		%	20
7909986	NS3	Matrix Spike	Total Phosphorus	2022/03/30		97	%	80 - 120
7909986	NS3	QC Standard	Total Phosphorus	2022/03/30		98	%	80 - 120
7909986	NS3	Spiked Blank	Total Phosphorus	2022/03/30		96	%	80 - 120
7909986	NS3	Method Blank	Total Phosphorus	2022/03/30	<0.020		mg/L	
7909986	NS3	RPD	Total Phosphorus	2022/03/30	1.9		%	20
7916935	TMU	Matrix Spike	Dissolved Iodide	2022/03/30		97	%	80 - 120
7916935	TMU	Spiked Blank	Dissolved Iodide	2022/03/30		101	%	80 - 120
7916935	TMU	Method Blank	Dissolved Iodide	2022/03/30	<0.10		mg/L	
7920315	STI	Matrix Spike	Reactive Silica (SiO2)	2022/04/03	_ /	NC	%	80 - 120
7920315	STI	Spiked Blank	Reactive Silica (SiO2)	2022/04/03		104	%	80 - 120
7920315	STI	Method Blank	Reactive Silica (SiO2)	2022/04/03	<0.050	101	mg/L	22 120
7947187	EBO	Spiked Blank	Total Ruthenium (Ru)	2022/04/03	-0.000	110	%	70 - 130
, , , , , 107	200	opined blank	Total Ruthenium (Ru)	2022/04/19		110	%	70 - 130 70 - 130
7947187	EBO	Method Blank	Total Ruthenium (Ru)	2022/04/19	<2.0	110	ug/L	70 - 130

Page 9 of 11

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Ruthenium (Ru)	2022/04/19	<2.0		ug/L	
7980604	AGD	Matrix Spike	Total Organic Carbon (TOC)	2022/05/09		113	%	80 - 120
7980604	AGD	Spiked Blank	Total Organic Carbon (TOC)	2022/05/09		101	%	80 - 120
7980604	AGD	Method Blank	Total Organic Carbon (TOC)	2022/05/09	<0.40		mg/L	
7980604	AGD	RPD	Total Organic Carbon (TOC)	2022/05/09	2.3		%	20
7980705	AGD	Matrix Spike	Dissolved Organic Carbon	2022/05/09		99	%	80 - 120
7980705	AGD	Spiked Blank	Dissolved Organic Carbon	2022/05/09		103	%	80 - 120
7980705	AGD	Method Blank	Dissolved Organic Carbon	2022/05/09	<0.40		mg/L	
7980705	AGD	RPD	Dissolved Organic Carbon	2022/05/09	3.2		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ar<u>D</u>l

Jonathan Fauvel, B.Sc, Chimiste, Supervisor, Inorganics

Heather Groves, Dip.BioSci, Laboratory Manager – Organic

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site#: IGNACE, ON Your C.O.C. #: GFIM-BVLI_0006

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/06/23 Report #: R7183161 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C283100

Received: 2022/03/29, 16:26

Sample Matrix: Ground Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2022/04/01	CAM SOP-00448	SM 23 2320 B m
Alkalinity	1	N/A	2022/04/02	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	2	N/A	2022/04/04	CAM SOP-00102	APHA 4500-CO2 D
Anions	1	N/A	2022/03/31	CAM SOP-00435	SM 23 4110 B m
Anions	1	N/A	2022/04/04	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (3)	1	N/A	2022/03/31	CAM SOP-00446	SM 23 5310 B m
Dissolved Organic Carbon (DOC) (3)	1	N/A	2022/05/09	CAM SOP-00446	SM 23 5310 B m
Fluoride	1	2022/03/31	2022/04/01	CAM SOP-00449	SM 23 4500-F C m
Fluoride	1	2022/03/31	2022/04/02	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	2	2022/03/31	2022/04/04	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	1	N/A	2022/04/05	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2022/04/06	CAM SOP-00447	EPA 6020B m
Iodide, Thiosulphate, Thiocyanate (1)	2	N/A	2022/04/05	CAL SOP-00057	Dionex #034035 R09 m
Total Extractable Elements by ICP-MS (2, 4)	2	2022/04/13	2022/04/19	STL SOP-00071	MA.200–Mét. 1.2 R5 m
Silica (Reactive) (1)	2	N/A	2022/04/03	AB SOP-00011	EPA370.1 R1978 m
Total Ammonia-N	2	N/A	2022/04/02	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (5)	1	N/A	2022/03/31	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrate & Nitrite as Nitrogen in Water (5)	1	N/A	2022/04/04	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/03/31	2022/04/01	CAM SOP-00413	SM 4500H+ B m
рН	1	2022/03/31	2022/04/02	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	2	N/A	2022/04/01	CAM SOP-00461	EPA 365.1 m
Sulphide	2	N/A	2022/04/01	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	2	N/A	2022/04/01	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	2	2022/04/01	2022/04/04	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	2	N/A	2022/04/04	Auto Calc.	
Total Organic Carbon (TOC) (6)	1	N/A	2022/04/04	CAM SOP-00446	SM 23 5310B m
Total Organic Carbon (TOC) (6)	1	N/A	2022/05/09	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	2	2022/04/01	2022/04/04	CAM SOP-00407	SM 23 4500 P B H m

Remarks:

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site#: IGNACE, ON Your C.O.C. #: GFIM-BVLI_0006

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/06/23 Report #: R7183161 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C283100

Received: 2022/03/29, 16:26

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) This test was performed by Bureau Veritas Montreal, 889 Montée de Liesse , Ville St-Laurent, QC, H4T 1P5

(3) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(4) Non-accredited test method

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Katherine Szozda)ject Manager Jun 2022 17:16:35

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Total Cover Pages : 2 Page 2 of 15

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Geofirma Engineering Ltd Client Project #: 20-203-1 Your P.O. #: 202031-004 Sampler Initials: AC

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		SFM862			SFM862			SFM862		
Sampling Date		2022/03/25 10:00			2022/03/25 10:00			2022/03/25 10:00		
COC Number		GFIM-BVLI_0006			GFIM-BVLI_0006			GFIM-BVLI_0006		
	UNITS		RDL	QC Batch	IG_BH05_GW001 REPEAT	RDL	QC Batch	 IG_BH05_GW001 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	220	1.0	7911831						
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	7911831						
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	7911831						
Total Nitrogen (N)	mg/L	<1.0	1.0	7911832						
Inorganics		I	1		I				1	
Total Ammonia-N	mg/L	0.074	0.050	7917703				<0.050	0.050	7917703
Fluoride (F-)	mg/L	0.14	0.10	7915813				0.13	0.10	7915813
Total Inorganic Carbon (C)	mg/L	18	1	7914816				18	1	7914816
Dissolved Iodide	mg/L	<1.0 (1)	1.0	7925884						
Total Kjeldahl Nitrogen (TKN)	mg/L	<1.0 (2)	1.0	7916428						
Dissolved Organic Carbon	mg/L	200	2.0	7912192	190	2.0	7980705			
Total Organic Carbon (TOC)	mg/L	190	2.0	7917325	200	2.0	7980604			
Orthophosphate (P)	mg/L	<0.10 (2)	0.10	7913436						
рН	pН	6.64		7915815				6.70		7915815
Total Phosphorus	mg/L	0.083	0.040	7917090						
Reactive Silica (SiO2)	mg/L	14	0.25	7920315						
Sulphide	mg/L	<0.020	0.020	7916445						
Alkalinity (Total as CaCO3)	mg/L	220	1.0	7915818				220	1.0	7915818
Nitrite (N)	mg/L	0.030	0.010	7914468				0.029	0.010	7914468
Dissolved Chloride (Cl-)	mg/L	1900	20	7913443						
Nitrate (N)	mg/L	0.16	0.10	7914468				0.17	0.10	7914468
Nitrate + Nitrite (N)	mg/L	0.19	0.10	7914468				0.19	0.10	7914468
Dissolved Bromide (Br-)	mg/L	40	20	7913443						
Dissolved Sulphate (SO4)	mg/L	67	20	7913443						
Metals										
Total Ruthenium (Ru)	ug/L	<2.0	2.0	7947187						
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Dup (1) Detection limits raised due to m (2) Due to the sample matrix, samp	atrix inte		on limit	t was adius	ted accordingly.					

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		SFM863			SFM863		
Sampling Data		2022/03/26			2022/03/26		
Sampling Date		14:40			14:40		
COC Number		GFIM-BVLI_0006			GFIM-BVLI_0006		
	UNITS	IG_BH01_GW032	RDL	QC Batch	IG_BH01_GW032 Lab-Dup	RDL	QC Batch
Calculated Parameters							
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	9.1	1.0	7911831			
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	7911831			
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	7911831			
Total Nitrogen (N)	mg/L	<2.0	2.0	7911832			
Inorganics	•	•					
Total Ammonia-N	mg/L	0.069	0.050	7917703			
Fluoride (F-)	mg/L	0.82	0.10	7915813			
Total Inorganic Carbon (C)	mg/L	<1	1	7914816			
Dissolved Iodide	mg/L	0.57	0.10	7925884	0.58	0.10	7925884
Total Kjeldahl Nitrogen (TKN)	mg/L	<2.0 (1)	2.0	7916428			
Dissolved Organic Carbon	mg/L	1.3	0.40	7912192			
Total Organic Carbon (TOC)	mg/L	1.2	0.40	7917325			
Orthophosphate (P)	mg/L	<0.010	0.010	7914916			
рН	рН	7.19		7915815			
Total Phosphorus	mg/L	<0.10 (1)	0.10	7917090			
Reactive Silica (SiO2)	mg/L	24	0.25	7920315			
Sulphide	mg/L	<0.020	0.020	7916445			
Alkalinity (Total as CaCO3)	mg/L	9.1	1.0	7915818			
Nitrite (N)	mg/L	<0.010	0.010	7914922			
Dissolved Chloride (Cl-)	mg/L	9900	100	7915975			
Nitrate (N)	mg/L	<0.10	0.10	7914922			
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	7914922			
Dissolved Bromide (Br-)	mg/L	180	5.0	7915975			
Dissolved Sulphate (SO4)	mg/L	190	5.0	7915975			
Metals		•	-	•	-		
Total Ruthenium (Ru)	ug/L	<2.0	2.0	7947187			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							
	lianto						

Lab-Dup = Laboratory Initiated Duplicate

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

ELEMENTS BY ATOMIC SPECTROSCOPY (GROUND WATER)

Bureau Veritas ID		SFM862			SFM862			SFM863		
Sampling Date		2022/03/25			2022/03/25			2022/03/26		
		10:00			10:00			14:40		
COC Number		GFIM-BVLI_0006			GFIM-BVLI_0006			GFIM-BVLI_0006		
	UNITS	IG_BH05_GW001	RDL	QC Batch	IG_BH05_GW001 Lab-Dup	RDL	QC Batch	IG_BH01_GW032	RDL	QC Batch
Metals										
Dissolved Iron (Fe)	mg/L	37	0.02	7914747	37	0.02	7914747	0.08	0.02	7914747
Dissolved Sulphur (S)	mg/L	11	0.5	7914747	11	0.5	7914747	71	0.5	7914747
Dissolved Aluminum (Al)	ug/L	<4.9	4.9	7914770				<25	25	7914770
Dissolved Arsenic (As)	ug/L	<1.0	1.0	7914770				<5.0	5.0	7914770
Dissolved Barium (Ba)	ug/L	190	2.0	7914770				270	10	7914770
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	7914770				<5.0	5.0	7914770
Dissolved Boron (B)	ug/L	250	10	7914770				340	50	7914770
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	7914770				<0.45	0.45	7914770
Dissolved Calcium (Ca)	ug/L	930000	1000	7914770				4700000	10000	7914770
Dissolved Cesium (Cs)	ug/L	<0.20	0.20	7914770				<1.0	1.0	7914770
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	7914770				<25	25	7914770
Dissolved Cobalt (Co)	ug/L	2.7	0.50	7914770				<2.5	2.5	7914770
Dissolved Copper (Cu)	ug/L	<0.90	0.90	7914770				<4.5	4.5	7914770
Dissolved Iron (Fe)	ug/L	37000	100	7914770				<500	500	7914770
Dissolved Lead (Pb)	ug/L	<0.50	0.50	7914770				<2.5	2.5	7914770
Dissolved Lithium (Li)	ug/L	74	5.0	7914770				63	25	7914770
Dissolved Magnesium (Mg)	ug/L	6100	50	7914770				1000	250	7914770
Dissolved Nickel (Ni)	ug/L	8.6	1.0	7914770				<5.0	5.0	7914770
Dissolved Potassium (K)	ug/L	14000	200	7914770				12000	1000	7914770
Dissolved Rubidium (Rb)	ug/L	20	0.20	7914770				15	1.0	7914770
Dissolved Selenium (Se)	ug/L	<2.0	2.0	7914770				<10	10	7914770
Dissolved Silicon (Si)	ug/L	10000	50	7914770				3900	250	7914770
Dissolved Sodium (Na)	ug/L	240000	100	7914770				730000	500	7914770
Dissolved Strontium (Sr)	ug/L	11000	1.0	7914770				61000	5.0	7914770
Dissolved Thorium (Th)	ug/L	<2.0	2.0	7914770				<10	10	7914770
Dissolved Uranium (U)	ug/L	2.0	0.10	7914770				<0.50	0.50	7914770
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	7914770				<5.0	5.0	7914770
RDL = Reportable Detection I QC Batch = Quality Control B										

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

Bureau Veritas ID:	SFM862
Sample ID:	IG_BH05_GW001
Matrix:	Ground Water

Collected: 2022/03/25 Shipped: Received: 2022/03/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7915818	N/A	2022/04/01	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7911831	N/A	2022/04/04	Automated Statchk
Anions	IC	7913443	N/A	2022/03/31	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7980705	N/A	2022/05/09	Anna-Kay Gooden
Fluoride	ISE	7915813	2022/03/31	2022/04/01	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	7914747	2022/03/31	2022/04/04	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	7914770	N/A	2022/04/05	Arefa Dabhad
Iodide, Thiosulphate, Thiocyanate	IC/EC	7925884	N/A	2022/04/05	Taylor Mullings
Total Extractable Elements by ICP-MS	ICP/MSMS	7947187	2022/04/13	2022/04/19	Zineb El Ouali
Silica (Reactive)	KONE	7920315	N/A	2022/04/03	Serena Tian
Total Ammonia-N	LACH/NH4	7917703	N/A	2022/04/02	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7914468	N/A	2022/03/31	Samuel Law
pH	AT	7915815	2022/03/31	2022/04/01	Surinder Rai
Orthophosphate	KONE	7913436	N/A	2022/04/01	Chandra Nandlal
Sulphide	ISE/S	7916445	N/A	2022/04/01	Neil Dassanayake
Total Inorganic Carbon (TIC)	TOCV/NDIR	7914816	N/A	2022/04/01	Anna-Kay Gooden
Total Kjeldahl Nitrogen in Water	SKAL	7916428	2022/04/01	2022/04/04	Massarat Jan
Total Nitrogen (calculated)	CALC	7911832	N/A	2022/04/04	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7980604	N/A	2022/05/09	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	7917090	2022/04/01	2022/04/04	Shivani Shivani

Bureau Veritas ID: SFM862 Dup Sample ID: IG_BH05_GW001 Matrix: Ground Water

Collected: 2022/03/25 Shipped: Received: 2022/03/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7915818	N/A	2022/04/01	Surinder Rai
Fluoride	ISE	7915813	2022/03/31	2022/04/01	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	7914747	2022/03/31	2022/04/04	Suban Kanapathippllai
Total Ammonia-N	LACH/NH4	7917703	N/A	2022/04/02	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7914468	N/A	2022/03/31	Samuel Law
рН	AT	7915815	2022/03/31	2022/04/01	Surinder Rai
Total Inorganic Carbon (TIC)	TOCV/NDIR	7914816	N/A	2022/04/01	Anna-Kay Gooden

Bureau Veritas ID: SFM863 Sample ID: IG_BH01_GW032 Matrix: Ground Water

Collected: 2022/03/26 Shipped: Received: 2022/03/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7915818	N/A	2022/04/02	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7911831	N/A	2022/04/04	Automated Statchk
Anions	IC	7915975	N/A	2022/04/04	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7912192	N/A	2022/03/31	Anna-Kay Gooden
Fluoride	ISE	7915813	2022/03/31	2022/04/02	Surinder Rai

Page 6 of 15

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

TEST SUMMARY

Bureau Veritas ID:	SFM863
Sample ID:	IG_BH01_GW032
Matrix:	Ground Water

Collected:	2022/03/26
Shipped:	
Received:	2022/03/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals Analysis by ICP	ICP	7914747	2022/03/31	2022/04/04	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	7914770	N/A	2022/04/06	Arefa Dabhad
Iodide, Thiosulphate, Thiocyanate	IC/EC	7925884	N/A	2022/04/05	Taylor Mullings
Total Extractable Elements by ICP-MS	ICP/MSMS	7947187	2022/04/13	2022/04/19	Zineb El Ouali
Silica (Reactive)	KONE	7920315	N/A	2022/04/03	Serena Tian
Total Ammonia-N	LACH/NH4	7917703	N/A	2022/04/02	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	7914922	N/A	2022/04/04	Samuel Law
рН	AT	7915815	2022/03/31	2022/04/02	Surinder Rai
Orthophosphate	KONE	7914916	N/A	2022/04/01	Chandra Nandlal
Sulphide	ISE/S	7916445	N/A	2022/04/01	Neil Dassanayake
Total Inorganic Carbon (TIC)	TOCV/NDIR	7914816	N/A	2022/04/01	Anna-Kay Gooden
Total Kjeldahl Nitrogen in Water	SKAL	7916428	2022/04/01	2022/04/04	Massarat Jan
Total Nitrogen (calculated)	CALC	7911832	N/A	2022/04/04	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7917325	N/A	2022/04/04	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	7917090	2022/04/01	2022/04/04	Shivani Shivani

Bureau Veritas ID: SFM863 Dup Sample ID: IG_BH01_GW032 Matrix: Ground Water					Collected: 2022/03/26 Shipped: Received: 2022/03/29	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Iodide, Thiosulphate, Thiocyanate	IC/EC	7925884	N/A	2022/04/05	Taylor Mullings	

GENERAL COMMENTS

Each t	emperature is the a	average of up to t	hree cooler temperatures taken at receipt	
	Package 1	1.0°C		
Revise	d Report (2022/06/	'23): Report comr	nent amended and reworked results reported	
Revise	d Report (2022/05/	(10): Reworked TC	DC and DOC analysis per client request	
ANION	S-L: Due to high co	oncentrations of t	he target analytes, sample required dilution. Detection limits were adjusted accordingly.	
	• -		nalysis for DOC and TOC were performed past sample holding time.This may increase the variability fall within the method uncertainty for duplicates and are likely equivalent.	
	· -		< DOC: Both values fall within the method uncertainty for duplicates and are likely equivalent.	
Metals	Analysis: Due to t	he sample matrix	, sample required dilution. Detection limits were adjusted accordingly.	
			RESULTS OF ANALYSES OF GROUND WATER	
Anion	: ANIONS-L: Due t	o high concentrat	tions of the target analytes, sample required dilution. Detection limits were adjusted accordingly.	
Result	s relate only to the	e items tested.		

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7912192	AGD	Matrix Spike	Dissolved Organic Carbon	2022/03/31		96	%	80 - 120
7912192	AGD	Spiked Blank	Dissolved Organic Carbon	2022/03/31		100	%	80 - 120
7912192	AGD	Method Blank	Dissolved Organic Carbon	2022/03/31	<0.40		mg/L	
7912192	AGD	RPD	Dissolved Organic Carbon	2022/03/31	8.5		%	20
7913436	C_N	Matrix Spike	Orthophosphate (P)	2022/04/01		104	%	75 - 125
7913436	C_N	Spiked Blank	Orthophosphate (P)	2022/04/01		101	%	80 - 120
7913436	C_N	Method Blank	Orthophosphate (P)	2022/04/01	<0.010		mg/L	
7913436	C_N	RPD	Orthophosphate (P)	2022/04/01	NC		%	25
7913443	LKH	Matrix Spike	Dissolved Chloride (Cl-)	2022/03/31		95	%	80 - 120
			Dissolved Bromide (Br-)	2022/03/31		99	%	80 - 120
			Dissolved Sulphate (SO4)	2022/03/31		96	%	80 - 120
7913443	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/03/31		98	%	70 - 130
			Dissolved Bromide (Br-)	2022/03/31		102	%	80 - 120
			Dissolved Sulphate (SO4)	2022/03/31		99	%	80 - 120
7913443	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/03/31	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/03/31	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/03/31	<1.0		mg/L	
7914468	S1L	Matrix Spike [SFM862-01]	Nitrite (N)	2022/03/31		105	%	80 - 120
	011		Nitrate (N)	2022/03/31		95	%	80 - 120
7914468	S1L	Spiked Blank	Nitrite (N)	2022/03/31		106	%	80 - 120
/511100	011	opined Blaint	Nitrate (N)	2022/03/31		101	%	80 - 120
7914468	S1L	Method Blank	Nitrite (N)	2022/03/31	<0.010	101	mg/L	00 120
/ 514400	316	Method Blank	Nitrate (N)	2022/03/31	<0.10		mg/L	
7914468	S1L	RPD [SFM862-01]	Nitrite (N)	2022/03/31	3.8		%	20
514400	516		Nitrate (N)	2022/03/31	1.6		%	20
7914747	SUK	Matrix Spike [SFM862-06]	Dissolved Aluminum (Al)	2022/03/31	1.0	104	%	80 - 120
/ 514/4/	JUK		Dissolved Arsenic (As)	2022/04/04		89	%	80 - 120
			Dissolved Arsenic (As) Dissolved Barium (Ba)	2022/04/04		101	%	80 - 120
			Dissolved Barlan (Ba)	2022/04/04		101	%	80 - 120
			Dissolved Cadmium (Cd)	2022/04/04			%	80 - 120
						103 NG		80 - 120
			Dissolved Calcium (Ca)	2022/04/04		NC 99	%	80 - 120 80 - 120
			Dissolved Chromium (Cr)	2022/04/04			%	
			Dissolved Cobalt (Co)	2022/04/04		100	%	80 - 120
			Dissolved Copper (Cu)	2022/04/04		104	%	80 - 120
			Dissolved Iron (Fe)	2022/04/04		NC	%	80 - 120
			Dissolved Lead (Pb)	2022/04/04		97	%	80 - 120
			Dissolved Magnesium (Mg)	2022/04/04		96	%	80 - 120
			Dissolved Nickel (Ni)	2022/04/04		99	%	80 - 120
			Dissolved Potassium (K)	2022/04/04		NC	%	80 - 120
			Dissolved Selenium (Se)	2022/04/04		101	%	80 - 120
			Dissolved Silicon (Si)	2022/04/04		NC	%	80 - 120
			Dissolved Sodium (Na)	2022/04/04		NC	%	80 - 120
			Dissolved Strontium (Sr)	2022/04/04		120	%	80 - 120
			Dissolved Sulphur (S)	2022/04/04		NC	%	80 - 120
7914747	SUK	Spiked Blank	Dissolved Aluminum (Al)	2022/04/04		101	%	80 - 120
			Dissolved Arsenic (As)	2022/04/04		95	%	80 - 120
			Dissolved Barium (Ba)	2022/04/04		99	%	80 - 120
			Dissolved Boron (B)	2022/04/04		100	%	80 - 120
			Dissolved Cadmium (Cd)	2022/04/04		100	%	80 - 120
			Dissolved Calcium (Ca)	2022/04/04		103	%	80 - 120
			Dissolved Chromium (Cr)	2022/04/04		101	%	80 - 120

Page 9 of 15

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Cobalt (Co)	2022/04/04		99	%	80 - 120
			Dissolved Copper (Cu)	2022/04/04		100	%	80 - 120
			Dissolved Iron (Fe)	2022/04/04		102	%	80 - 120
			Dissolved Lead (Pb)	2022/04/04		100	%	80 - 120
			Dissolved Magnesium (Mg)	2022/04/04		100	%	80 - 120
			Dissolved Nickel (Ni)	2022/04/04		100	%	80 - 120
			Dissolved Potassium (K)	2022/04/04		101	%	80 - 120
			Dissolved Selenium (Se)	2022/04/04		97	%	80 - 120
			Dissolved Silicon (Si)	2022/04/04		100	%	80 - 120
			Dissolved Sodium (Na)	2022/04/04		99	%	80 - 120
			Dissolved Strontium (Sr)	2022/04/04		100	%	80 - 120
			Dissolved Sulphur (S)	2022/04/04		102	%	80 - 120
7914747	SUK	Method Blank	Dissolved Aluminum (Al)	2022/04/04	<0.1		mg/L	
			Dissolved Arsenic (As)	2022/04/04	<0.2		mg/L	
			Dissolved Barium (Ba)	2022/04/04	<0.005		mg/L	
			Dissolved Boron (B)	2022/04/04	<0.02		mg/L	
			Dissolved Cadmium (Cd)	2022/04/04	<0.005		mg/L	
			Dissolved Calcium (Ca)	2022/04/04	<0.05		mg/L	
			Dissolved Chromium (Cr)	2022/04/04	<0.01		mg/L	
			Dissolved Cobalt (Co)	2022/04/04	<0.02		mg/L	
			Dissolved Copper (Cu)	2022/04/04	<0.02		mg/L	
			Dissolved Iron (Fe)	2022/04/04	<0.02		mg/L	
			Dissolved Lead (Pb)	2022/04/04	<0.05		mg/L	
			Dissolved Magnesium (Mg)	2022/04/04	<0.05		mg/L	
			Dissolved Nickel (Ni)	2022/04/04	<0.05		mg/L	
			Dissolved Potassium (K)	2022/04/04	<1		mg/L	
			Dissolved Selenium (Se)	2022/04/04	<0.2		mg/L	
			Dissolved Silicon (Si)	2022/04/04	<0.2		mg/L	
			Dissolved Sodium (Na)	2022/04/04	<0.5		mg/L	
			Dissolved Strontium (Sr)	2022/04/04	<0.005		mg/L	
			Dissolved Sulphur (S)	2022/04/04	<0.5		mg/L	
7914747	SUK	RPD [SFM862-06]	Dissolved Aluminum (Al)	2022/04/04	NC		%	25
			Dissolved Arsenic (As)	2022/04/04	NC		%	25
			Dissolved Barium (Ba)	2022/04/04	0.10		%	25
			Dissolved Beryllium (Be)	2022/04/04	NC		%	25
			Dissolved Boron (B)	2022/04/04	0.39		%	25
			Dissolved Cadmium (Cd)	2022/04/04	NC		%	25
			Dissolved Chromium (Cr)	2022/04/04	NC		%	25
			Dissolved Cobalt (Co)	2022/04/04	NC		%	25
			Dissolved Copper (Cu)	2022/04/04	NC		%	25
			Dissolved Iron (Fe)	2022/04/04	0.22		%	25
			Dissolved Lead (Pb)	2022/04/04	NC		%	25
			Dissolved Magnesium (Mg)	2022/04/04	0.30		%	25
			Dissolved Manganese (Mn)	2022/04/04	0.087		%	25
			Dissolved Nickel (Ni)	2022/04/04	NC		%	25
			Dissolved Phosphorus (P)	2022/04/04	NC		%	25
			Dissolved Potassium (K)	2022/04/04	0.070		%	25
			Dissolved Selenium (Se)	2022/04/04	NC		%	25
			Dissolved Silicon (Si)	2022/04/04	0.39		%	25
			Dissolved Silver (Ag)	2022/04/04	NC		%	25
			Dissolved Sodium (Na)	2022/04/04	0.58		%	25

Page 10 of 15

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Sulphur (S)	2022/04/04	0.53		%	25
			Dissolved Tin (Sn)	2022/04/04	NC		%	25
			Dissolved Titanium (Ti)	2022/04/04	NC		%	25
			Dissolved Vanadium (V)	2022/04/04	NC		%	25
			Dissolved Zinc (Zn)	2022/04/04	0.64		%	25
7914770	ADA	Matrix Spike	Dissolved Aluminum (Al)	2022/04/05		101	%	80 - 120
			Dissolved Arsenic (As)	2022/04/05		100	%	80 - 120
			Dissolved Barium (Ba)	2022/04/05		100	%	80 - 120
			Dissolved Bismuth (Bi)	2022/04/05		94	%	80 - 120
			Dissolved Boron (B)	2022/04/05		94	%	80 - 120
			Dissolved Cadmium (Cd)	2022/04/05		98	%	80 - 120
			Dissolved Calcium (Ca)	2022/04/05		NC	%	80 - 120
			Dissolved Cesium (Cs)	2022/04/05		102	%	80 - 120
			Dissolved Chromium (Cr)	2022/04/05		94	%	80 - 120
			Dissolved Cobalt (Co)	2022/04/05		97	%	80 - 120
			Dissolved Copper (Cu)	2022/04/05		97	%	80 - 120
			Dissolved Iron (Fe)	2022/04/05		98	%	80 - 120
			Dissolved Lead (Pb)	2022/04/05		94	%	80 - 120
			Dissolved Lithium (Li)	2022/04/05		106	%	80 - 120
			Dissolved Magnesium (Mg)	2022/04/05		100	%	80 - 120
			Dissolved Nickel (Ni)	2022/04/05		93	%	80 - 120
			Dissolved Potassium (K)	2022/04/05		103	%	80 - 120
			Dissolved Rubidium (Rb)	2022/04/05		97	%	80 - 120
			Dissolved Selenium (Se)	2022/04/05		101	%	80 - 120
			Dissolved Silicon (Si)	2022/04/05		98	%	80 - 120
			Dissolved Sodium (Na)	2022/04/05		NC	%	80 - 120
			Dissolved Strontium (Sr)	2022/04/05		97	%	80 - 120
			Dissolved Thorium (Th)	2022/04/05		96	%	80 - 120
			Dissolved Uranium (U)	2022/04/05		93	%	80 - 120
			Dissolved Zirconium (Zr)	2022/04/05		105	%	80 - 120
7914770	ADA	Spiked Blank	Dissolved Aluminum (Al)	2022/04/05		100	%	80 - 120
			Dissolved Arsenic (As)	2022/04/05		99	%	80 - 120
			Dissolved Barium (Ba)	2022/04/05		97	%	80 - 120
			Dissolved Bismuth (Bi)	2022/04/05		96	%	80 - 120
			Dissolved Boron (B)	2022/04/05		89	%	80 - 120
			Dissolved Cadmium (Cd)	2022/04/05		97	%	80 - 120
			Dissolved Calcium (Ca)	2022/04/05		100	%	80 - 120
			Dissolved Cesium (Cs)	2022/04/05		99	%	80 - 120
			Dissolved Chromium (Cr)	2022/04/05		94	%	80 - 120
			Dissolved Cobalt (Co)	2022/04/05		101	%	80 - 120
			Dissolved Copper (Cu)	2022/04/05		96	%	80 - 120
			Dissolved Iron (Fe)	2022/04/05		98	%	80 - 120
			Dissolved Lead (Pb)	2022/04/05		96	%	80 - 120
			Dissolved Lithium (Li)	2022/04/05		100	%	80 - 120
			Dissolved Magnesium (Mg)	2022/04/05		100	%	80 - 120
			Dissolved Nickel (Ni)	2022/04/05		96	%	80 - 120
			Dissolved Potassium (K)	2022/04/05		101	%	80 - 120
			Dissolved Rubidium (Rb)	2022/04/05		95	%	80 - 120
			Dissolved Selenium (Se)	2022/04/05		101	%	80 - 120
			Dissolved Silicon (Si)	2022/04/05		98	%	80 - 120
			Dissolved Sodium (Na)	2022/04/05		98	%	80 - 120

Page 11 of 15

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Strontium (Sr)	2022/04/05		96	%	80 - 120
			Dissolved Thorium (Th)	2022/04/05		98	%	80 - 120
			Dissolved Uranium (U)	2022/04/05		95	%	80 - 120
			Dissolved Zirconium (Zr)	2022/04/05		100	%	80 - 120
7914770	ADA	Method Blank	Dissolved Aluminum (Al)	2022/04/05	<4.9		ug/L	
			Dissolved Arsenic (As)	2022/04/05	<1.0		ug/L	
			Dissolved Barium (Ba)	2022/04/05	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/04/05	<1.0		ug/L	
			Dissolved Boron (B)	2022/04/05	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/04/05	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/04/05	<200		ug/L	
			Dissolved Cesium (Cs)	2022/04/05	<0.20		ug/L	
			Dissolved Chromium (Cr)	2022/04/05	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/04/05	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/04/05	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/04/05	<100		ug/L	
			Dissolved Lead (Pb)	2022/04/05	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/04/05	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/04/05	<50		ug/L	
			Dissolved Nickel (Ni)	2022/04/05	<1.0		ug/L	
			Dissolved Potassium (K)	2022/04/05	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/04/05	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/04/05	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/04/05	<50		ug/L	
			Dissolved Sodium (Na)	2022/04/05	<100		ug/L	
			Dissolved Strontium (Sr)	2022/04/05	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/04/05	<2.0		ug/L	
			Dissolved Uranium (U)	2022/04/05	<0.10		ug/L	
			Dissolved Zirconium (Zr)	2022/04/05	<1.0		ug/L	
7914770	ADA	RPD	Dissolved Arsenic (As)	2022/04/05	NC		%	20
			Dissolved Barium (Ba)	2022/04/05	0.14		%	20
			Dissolved Boron (B)	2022/04/05	13		%	20
			Dissolved Cadmium (Cd)	2022/04/05	NC		%	20
			Dissolved Chromium (Cr)	2022/04/05	NC		%	20
			Dissolved Cobalt (Co)	2022/04/05	NC		%	20
			Dissolved Copper (Cu)	2022/04/05	0.16		%	20
			Dissolved Lead (Pb)	2022/04/05	NC		%	20
			Dissolved Nickel (Ni)	2022/04/05	NC		%	20
			Dissolved Selenium (Se)	2022/04/05	NC		%	20
			Dissolved Sodium (Na)	2022/04/05	0.39		%	20
			Dissolved Uranium (U)	2022/04/05	4.0		%	20
7914816	AGD	Matrix Spike [SFM862-01]	Total Inorganic Carbon (C)	2022/04/01		86	%	80 - 120
7914816	AGD	Spiked Blank	Total Inorganic Carbon (C)	2022/04/01		95	%	80 - 120
7914816	AGD	Method Blank	Total Inorganic Carbon (C)	2022/04/01	<1		mg/L	
914816	AGD	RPD [SFM862-01]	Total Inorganic Carbon (C)	2022/04/01	1.1		%	20
7914916	C_N	Matrix Spike	Orthophosphate (P)	2022/04/01	_	108	%	75 - 125
7914916	C_N	Spiked Blank	Orthophosphate (P)	2022/04/01		100	%	80 - 120
7914916	C_N	Method Blank	Orthophosphate (P)	2022/04/01	<0.010		mg/L	
/914916	C_N	RPD	Orthophosphate (P)	2022/04/01	NC		%	25
7914922	S1L	Matrix Spike	Nitrite (N)	2022/04/04		94	%	80 - 120
		·	Nitrate (N)	2022/04/04		NC	%	80 - 120

Page 12 of 15

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7914922	S1L	Spiked Blank	Nitrite (N)	2022/04/04		105	%	80 - 120
			Nitrate (N)	2022/04/04		102	%	80 - 120
7914922	S1L	Method Blank	Nitrite (N)	2022/04/04	<0.010		mg/L	
			Nitrate (N)	2022/04/04	<0.10		mg/L	
7914922	S1L	RPD	Nitrate (N)	2022/04/04	0.68		%	20
7915813	SAU	Matrix Spike [SFM862-01]	Fluoride (F-)	2022/04/01		90	%	80 - 120
7915813	SAU	Spiked Blank	Fluoride (F-)	2022/04/01		102	%	80 - 120
7915813	SAU	Method Blank	Fluoride (F-)	2022/04/01	<0.10		mg/L	
7915813	SAU	RPD [SFM862-01]	Fluoride (F-)	2022/04/01	8.9		%	20
7915815	SAU	Spiked Blank	рН	2022/04/01		102	%	98 - 103
7915815	SAU	RPD [SFM862-01]	рН	2022/04/01	0.89		%	N/A
7915818	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2022/04/01		98	%	85 - 115
7915818	SAU	Method Blank	Alkalinity (Total as CaCO3)	2022/04/01	<1.0		mg/L	
7915818	SAU	RPD [SFM862-01]	Alkalinity (Total as CaCO3)	2022/04/01	3.1		%	20
			p-Alkalinity	2022/04/01	NC		%	20
7915975	LKH	Matrix Spike	Dissolved Chloride (Cl-)	2022/04/04		NC	%	80 - 120
			Dissolved Bromide (Br-)	2022/04/04		102	%	80 - 120
			Dissolved Sulphate (SO4)	2022/04/04		NC	%	80 - 120
7915975	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/04/04		98	%	70 - 130
			Dissolved Bromide (Br-)	2022/04/04		102	%	80 - 120
			Dissolved Sulphate (SO4)	2022/04/04		98	%	80 - 120
7915975	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/04/04	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/04/04	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/04/04	<1.0		mg/L	
7915975	LKH	RPD	Dissolved Chloride (Cl-)	2022/04/04	5.8		%	20
			Dissolved Bromide (Br-)	2022/04/04	NC		%	20
			Dissolved Sulphate (SO4)	2022/04/04	9.5		%	20
7916428	MJ1	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/04/01		105	%	80 - 120
7916428	MJ1	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/04/01		99	%	80 - 120
7916428	MJ1	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/04/01		101	%	80 - 120
7916428	MJ1	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/04/01	<0.10		mg/L	
7916428	MJ1	RPD	Total Kjeldahl Nitrogen (TKN)	2022/04/01	NC		%	20
7916445	NYS	Matrix Spike	Sulphide	2022/04/01		91	%	80 - 120
7916445	NYS	Spiked Blank	Sulphide	2022/04/01		98	%	80 - 120
7916445	NYS	Method Blank	Sulphide	2022/04/01	<0.020		mg/L	
7916445	NYS	RPD	Sulphide	2022/04/01	NC		%	20
7917090	SSV	Matrix Spike	Total Phosphorus	2022/04/04		100	%	80 - 120
7917090		QC Standard	Total Phosphorus	2022/04/04		101	%	80 - 120
7917090	SSV	Spiked Blank	Total Phosphorus	2022/04/04		99	%	80 - 120
7917090	SSV	Method Blank	Total Phosphorus	2022/04/04	<0.020		mg/L	
7917090	SSV	RPD	Total Phosphorus	2022/04/04	1.3		%	20
7917325	AGD	Matrix Spike	Total Organic Carbon (TOC)	2022/04/04	2.0	94	%	80 - 120
7917325	AGD	Spiked Blank	Total Organic Carbon (TOC)	2022/04/04		102	%	80 - 120
7917325	AGD	Method Blank	Total Organic Carbon (TOC)	2022/04/04	<0.40	102	mg/L	00 120
7917325	AGD	RPD	Total Organic Carbon (TOC)	2022/04/04	<0.40 NC		///g/L %	20
7917703	ASP	Matrix Spike [SFM862-08]	Total Ammonia-N	2022/04/04	inc.	96	%	75 - 125
7917703	ASP	Spiked Blank	Total Ammonia-N	2022/04/02		98	%	80 - 120
7917703	ASP	Method Blank	Total Ammonia-N	2022/04/02	<0.050	20		00 - 120
		RPD [SFM862-08]					mg/L %	20
7917703	ASP		Total Ammonia-N	2022/04/02	NC	NC	%	20 80 120
7920315	STI	Matrix Spike	Reactive Silica (SiO2)	2022/04/03		NC	%	80 - 120
7920315	STI	Spiked Blank	Reactive Silica (SiO2)	2022/04/03		104	%	80 - 120

Page 13 of 15

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
7920315	STI	Method Blank	Reactive Silica (SiO2)	2022/04/03	<0.050		mg/L	
7925884	TMU	Matrix Spike [SFM863-01]	Dissolved Iodide	2022/04/05		98	%	80 - 120
7925884	TMU	Spiked Blank	Dissolved Iodide	2022/04/05		116	%	80 - 120
7925884	TMU	Method Blank	Dissolved lodide	2022/04/05	<0.10		mg/L	
7925884	TMU	RPD [SFM863-01]	Dissolved Iodide	2022/04/05	2.9		%	20
7947187	EBO	Spiked Blank	Total Ruthenium (Ru)	2022/04/19		110	%	70 - 130
			Total Ruthenium (Ru)	2022/04/19		110	%	70 - 130
7947187	EBO	Method Blank	Total Ruthenium (Ru)	2022/04/19	<2.0		ug/L	
			Total Ruthenium (Ru)	2022/04/19	<2.0		ug/L	
7980604	AGD	Matrix Spike	Total Organic Carbon (TOC)	2022/05/09		113	%	80 - 120
7980604	AGD	Spiked Blank	Total Organic Carbon (TOC)	2022/05/09		101	%	80 - 120
7980604	AGD	Method Blank	Total Organic Carbon (TOC)	2022/05/09	<0.40		mg/L	
7980604	AGD	RPD	Total Organic Carbon (TOC)	2022/05/09	2.3		%	20
7980705	AGD	Matrix Spike	Dissolved Organic Carbon	2022/05/09		99	%	80 - 120
7980705	AGD	Spiked Blank	Dissolved Organic Carbon	2022/05/09		103	%	80 - 120
7980705	AGD	Method Blank	Dissolved Organic Carbon	2022/05/09	<0.40		mg/L	
7980705	AGD	RPD	Dissolved Organic Carbon	2022/05/09	3.2		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

ARD L

Jonathan Fauvel, B.Sc, Chimiste, Supervisor, Inorganics

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Isotope Analyses for: Geofirma Engineering LTD

IT² FILE # 220158

2022-08-08

Approved by:

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1Z5 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	<u>220158</u>
Project Number:	<u>20-203-1</u>

#	Client ID	Sample #	Sampling	E ³ H	Result	± 1σ	
			Date Time			T.U.	
1	IG_BH03_GW013	97364	2022-03-23	11:45-16:30	Х	1.5	0.7
2	IG_BH03_GW015	97365	2022-03-23	11:30	Х	< 0.8	0.7
3	IG_BH05_GW001	97366	2022-03-25	11:00-16:30	Х	7.2	0.9
4	IG_BH01_GW032	97367	3/26/2022 + 3/27/2022	various	Х	< 0.8	0.7

E³H ANALYSES

Tritium is reported in Tritium Units.

1TU = 3.221 Picocurries/L per IAEA, 2000 Report.

1TU = 0.11919 Becquerels/L per IAEA, 2000 Report.

Approved by:

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	<u>220158</u>
Project Number:	<u>20-203-1</u>

#	Client ID	Sample #	Sampling		δ ¹⁸ 0	Aver	Stdv	δ²H	Aver	Stdv
			Date	Time	H ₂ O	VSMOW		H ₂ O	VSMOW	
1	IG_BH03_GW013	97364	2022-03-23	11:45-16:30	Х	-10.02	0.02	Х	-61.3	0.1
2	IG_BH03_GW015	97365	2022-03-23	11:30	Х	-13.26	0.03	Х	-88.7	0.2
3	IG_BH05_GW001	97366	2022-03-25	11:00-16:30	Х	-8.60	0.04	Х	-69.8	0.3
4	IG_BH01_GW032	97367	3/26/2022 + 3/27/2022	various	Х	-12.43	0.05	х	-85.0	0.2

¹⁸O & ²H (CRDS)

Instrument Used: Cavity Ring Down Spectroscopy (CRDS) CRDS (Model L2130-i) (Picarro, California, USA).

Standard Used:

 $IT^2\mbox{-}12C\ /\ IT^2\mbox{-}13B\ /\ IT^2\mbox{-}14B$ Calibrated with IAEA Standards (V-SMOW, SLAP, and GISP)

Typical Standard deviation:

 $({}^{18}O \pm 0.1\%)$ $({}^{2}H \pm 1\%)$

Approved by:

Stash Lan S-2

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

<u>220158</u>

File Number:

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

E	Pro	<u>ject Number:</u>	<u>20-203-1</u>						
ŧ	# Client ID Sample # Sampling					⁸⁷ Sr/ ⁸⁶ Sr	Result	StdErr (abs)	StdDev (abs)
				Date	Time				
	1	IG_BH03_GW013	97364	2022-03-23	11:45-16:30	Х	0.71828	5.409E-06	6.755E-05
	2	IG_BH03_GW015	97365	2022-03-23	11:30				
	3	IG_BH05_GW001	97366	2022-03-25	11:00-16:30	Х	0.71737	5.699E-06	7.431E-05
-	4	IG_BH01_GW032	97367	3/26/2022 + 3/27/2022	various	Х	0.71654	5.748E-06	7.964E-05

Approved by:

Orfan S-Stash Orfan Shouakar-Stash, PhD

Orfān Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

> 608 Weber St. N – Unit 3 – Waterloo – Ontario – N2V 1K4 – Canada Tel: 519-886-5555 – Fax: 519-886-5575 – E-mail: info@it2isotopes.com – www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	<u>220158</u>
Project Number:	<u>20-203-1</u>

#	Client ID	Sample #	Sampling		δ ³⁷ Cl	Result	Stdv
			Date Time				
1	IG_BH03_GW013	97364	2022-03-23	11:45-16:30	Х	-0.05	0.11
2	IG_BH03_GW015	97365	2022-03-23	11:30			
3	IG_BH05_GW001	97366	2022-03-25	11:00-16:30	Х	0.17	0.10
4	IG_BH01_GW032	97367	3/26/2022 + 3/27/2022	various	Х	-0.07	0.06

⁷CI ANALYSES

Instrument Used:

Isotope Ratio Mass Spectrometry (IRMS) - MAT 253, Thermo Scientific, Germany Coupled with an Agilent 6890 Gas Chromatograph (GC) Standard Used: SMOC Typical Standard deviation: $\pm 0.15\%$

Approved by:

rfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	<u>220158</u>
Project Number:	<u>20-203-1</u>

#	Client ID	Sample #	Sampling		$\delta^{13}C$	Result	Repeat	¹⁴ C	Result			
			Date	Time	DIC	PDB		DIC	14C yr BP	±	F14C	±
1	IG_BH03_GW013	97364	2022-03-23	11:45-16:30	Х	-12.5	-12.6	Х	5920	81	0.4785	0.0048
2	IG_BH03_GW015	97365	2022-03-23	11:30	Х	-11.1		х	7265	81	0.4048	0.0041
3	IG_BH05_GW001	97366	2022-03-25	11:00-16:30	Х	-12.1		Х	1430	80	0.8369	0.0083
4	IG_BH01_GW032	97367	3/26/2022 + 3/27/2022	various	Х	-15.1		Х	4859	81	0.5462	0.0055

¹³C DIC Analyses

Instrument Used: Finnigan MAT, DeltaPlus XL IRMS, Germany. Standard Used: IT²-27/IT²-34 /NBS-18/NBS-19 Typical Standard deviation: ± 0.2 ‰

¹⁴C DIC Analyses

Instrument Used: AMS (Accelerator Mass Spectrometry) Standard Used: OX1: 1.05 x e-10 OX2: 1.35 x e-10 C6: 1.5 x e-10 C7: 0.5 x e-10 Typical Standard deviation: 5 to 10% of Standard values listed above

Reporting of Data

In this analysis report, we have followed the conventions recommended by Millard (2014). Radiocarbon Analysis

Radiocarbon analyses are performed on a 3MV tandem accelerator mass spectrometer built by High Voltage Engineering (HVE). 12,13,14C+3 ions are measured at 2.5 MV terminal voltage with Ar stripping. The fraction modern carbon, F14C, is calculated according to Reimer et al. (2004) as the ratio of the sample 14C/12C ratio to the standard 14C/12C ratio (in our case 0x-II) measured in the same data block. Both 14C/12C ratios are background-corrected and the result is corrected for spectrometer and preparation fractionation using the AMS measured 13C/12C ratio and is normalized to δ 13C (PDB). Radiocarbon ages are calculated as -8033ln(F14C) and reported in 14C yr BP (BP=AD 1950) as described by Stuiver and Polach (1977). The errors on 14C ages (1\sigma) are based on counting statistics and 14C/12C and 13C/12C variation between data blocks. We do not report δ 13C as it is measured on the AMS and contains machine fractionation.

D14C (defined as per mil Depletion or Enrichment Relative to Standard Normalized for Isotope Fractionation) are calculated as $(F14C - 1) \cdot 1000$.

 $\Delta 14C$ (defined as age corrected D14C) are calculated as (F14C·e(1950-y)/8267) - 1) · 1000, where y = year of measurement.

Approved by: Orfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

André E. Lalonde AMS Laboratory

Radiohalides Laboratory

www.ams.uottawa.ca

Analysis Report

SUBMITTER SUMMARY							
Submitter Name:	David Zal	Affiliation:	Research Assistant				
Submitter Email:	dzal@uottawa.ca	Street Address:	25 Templeton Street				
Submitter Phone:	613-652-5800 ext 8699	City, Province:	Ottawa, Ontario				
Principal Investigator Name:	Sean Sterling	Postal Code:	K1N 7N9				
Principal Investigator Email:	ssterling@geofirma.com	Country:	Canada				
Principal Investigator Phone:	n/a	Date Submitted:	2021-11-19				

PROJECT INFORMATION				
Project Title:	n/a			
Country:	n/a			
Site Name:	Ignace			
Collection Date:	n/a			

SUBMISSION TIMELINE					
Date samples received (YYYY/MM/DD)	Report date (YYYY/MM/DD)				
2022-04-07	2022-07-04				

ANALYTICAL NOTES

Unit correction and methodology statement was updated on October 28 2022.

Please note: Unless otherwise specified in the submission form, any remaining sample material will be held for a period of six (6) months, after which time it will be discarded.

	CONTACT INFORMATION					
Should you have an	Should you have any questions regarding your data or sample preparation please contact:					
Name:	Barbara Francisco					
Email:	palvesfr@uottawa.ca					
Phone:	613-562-5800 (6830)					

Researchers are asked to report any publications that include data generated at the AEL AMS facility. Publication notifications should be sent to <u>ael-ams@uottawa.ca</u>. Published data should include the unique UO identifier number provided in this analytical report.

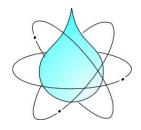
Summary

Analysis Report

Table 1. Analysis Results for Groundwater Samples

uOttawa	Submitter's	Sample	¹²⁷ l Concentration	Mass of Iodide Carrier Added	¹²⁹ I/ ¹²⁷ I Ratio (<i>x10</i> ⁻		¹²⁹ l Concer (x10 ⁶ atc		-	Ratio (OR) 0 ⁻⁹)**
Number	Sample I.D.	Weight (g)	Measured (ppb)	(mg)	Ratio	Standard Deviation	Concentration	Standard Deviation	OR	Standard Deviation
UOH - 4088	IG_BH01_GW032	200.93	743.04	1.98	101.1	4.3	5.09E-02	2.17E-03	1.44E-02	9.48E-04
UOH - 4089	IG_BH03_GW013	198.12	2135.39	1.96	308.7	13.2	1.77E-01	7.53E-03	1.74E-02	1.14E-03
UOH - 4090	IG_BH05_GW001	199.98	143.07	2.01	232.6	9.9	1.13E-01	4.80E-03	1.66E-01	1.09E-02

Note: $*^{129} I/^{127} I$ Ratio Measured includes both sample and carrier added. **Note 2:** $**^{129} I/^{127} I$ Ratio calculated before added the carrier.


André E. Lalonde AMS Laboratory Radiohalides Laboratory www.ams.uottawa.ca

Analysis Report

AMS Measurements

The ¹²⁹I analysis are performed on a 3MV accelerator mass spectrometer (AMS) built by High Voltage Engineering (HVE). ¹²⁹I⁺² ions are measured at 2.5 MV terminal voltage Ar stripping. The errors represent 68.3% confidence limits, based on 1 measurement each. These measurements were normalized with respect to ISO-6II in-house reference material for which ¹²⁹I/¹²⁷I = (5.71 ± 0.01)x10⁻¹², by calibration with the NIST 3230 I and II standard reference material. The AMS system background was monitored with our standard NaI blank material and found to be normal. No background corrections were applied to these data. A NaI blank measured on April 27th, 2022 set of samples yielded a ¹²⁹I/¹²⁷I ratio of (1.1 ± 0.2) x10⁻¹⁴.

Hydrogeochemistry Laboratory Analytical Report - Clark group

University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

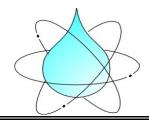
Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description				
Site	Ignace			
Туре	Water			
Container	Nalgene			
Volume	1L			

Analysis			
Analyte	³⁶ Cl in dissolved Cl		
Method	AMS		
Facility	Hydrogeochemistry Laboratory, University of Ottawa		
Report Approved by	Jalah Ian Clark, P.Geo.		

Timeline				
Samples received	Analyses completed	Report date		
Decmeber 09, 2020 (2)				
March 25, 2021 (2)				
October 01, 2021 (2)		Co		
December 13, 2021 (3)	36Cl	September 20, 2022		
April 06, 2022 (3)				
June 23, 2022 (4)				


Notes

Samples were collected in the field by Geofirma staff. Bottles were received sealed and in good condition. Samples were extracted as Cl⁻ from solution on an anion exchange column, eluted and precipitated as AgCl target material. AMS analysis was undertaken on a 6 MV tandem accelerator mass spectrometer at ETH Zurich and PRIME Lab, Purdue

Report prepared for: Geofirma Engineering Ltd.

Analytical Report - Clark group

Sample	Lab ID	Comment	Cl (mg/L)	³⁶ CI/CI final (10 ⁻¹⁵)	±	³⁶ Cl atoms/L (10 ⁶)	±
IG_BH01_GW032	PRIME	prepared at uOttawa	9900	15.2	0.5	2553	84.0
IG_BH03_GW013	PRIME	prepared at uOttawa	21000	15.1	1.2	5379	427.5
IG_BH05_GW001	PRIME	prepared at uOttawa	1900	16.9	1.1	545	35.5

Hydrogeochemistry Laboratory Analytical Report - Clark group University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description			
Site	Ignace		
Туре	Noble gas		
Container	Nalgene		
Volume	Cu tubes		
Report Approved by	Jack Ian Clark, P.Geo.		

Analysis	
Analyte	Noble gases
Method	Mass spectrometry
Facility	Noble gas laboratory, University of Utah

Timeline		
Samples received	Analyses completed	Report date
		Rev 0: 2022-10-26
2022 Q1 and Q2	He, Ne, Ar, Kr, Xe	Rev 1: 2023-03-30
		Rev 2: 2024-01-04

Notes

Gas extraction from water follows the procedure outlined in Aeschbach-Hertig & Solomon 2013. Please see sheet tab titled "Notes" for further explanation of the noble gas analysis.

Report prepared for:

Geofirma Engineering Ltd.

Analytica	I Report -	Clark group
-----------	------------	--------------------

Quarter	Sample ID	Mass g	He3		He4		x/Ra	HeTotal	
			cc/g	<u>±</u>	cc/g	<u>+</u>		cc/g	±
2022 Q1	IG_BH03_GW013	4.3	6.28E-11	6.28E-13	2.17E-03	2.17E-05	0.0209	2.17E-03	2.17E-05
2022 Q1	IG_BH05_GW001	4.5	4.00E-12	4.00E-14	1.49E-04	1.49E-06	0.0194	1.49E-04	1.49E-06
2022 Q1	IG_BH01_GW032	4.5	5.66E-13	5.66E-15	1.76E-05	1.76E-07	0.0232	1.76E-05	1.76E-07
2022 Q2	IG_BH01_GW033	3.6	4.68E-11	4.68E-13	1.52E-03	1.52E-05	0.0222	1.52E-03	1.52E-05
2022 Q2	IG_BH01_GW034	3.1	4.77E-11	4.77E-13	1.62E-03	1.62E-05	0.0213	1.62E-03	1.62E-05
2022 Q2	IG_BH05_GW002	4.7	1.23E-12	1.23E-14	4.67E-05	4.67E-07	0.0190	4.67E-05	4.67E-07
2022 Q2	IG_BH03_GW016	4.6	1.31E-12	1.31E-14	4.45E-05	4.45E-07	0.0213	4.45E-05	4.45E-07

Report prepared for:

Geofirma Engineering Ltd.

Analyt	ical R	eport -	Clar	k group
--------	--------	---------	------	---------

Quarter	Sample ID	Ne20		Ne	Ne22		NeTotal		Ar36
		cc/g	<u>+</u>	cc/g	<u>±</u>	cc/g	<u>+</u>		
2022 Q1	IG_BH03_GW013	2.57E-07	7.71E-09	2.55E-08	7.65E-10	2.82E-07	8.47E-09	10.070	7.02E-07
2022 Q1	IG_BH05_GW001	1.49E-07	4.46E-09	1.52E-08	4.55E-10	1.64E-07	4.91E-09	9.801	1.05E-06
2022 Q1	IG_BH01_GW032	1.25E-07	3.74E-09	1.17E-08	3.52E-10	1.36E-07	4.09E-09	10.628	5.44E-07
2022 Q2	IG_BH01_GW033	2.71E-06	8.13E-08	2.67E-07	8.01E-09	2.98E-06	8.93E-08	10.149	3.76E-06
2022 Q2	IG_BH01_GW034	3.72E-06	1.11E-07	3.76E-07	1.13E-08	4.09E-06	1.23E-07	9.890	5.82E-06
2022 Q2	IG_BH05_GW002	1.10E-07	3.31E-09	1.16E-08	3.48E-10	1.22E-07	3.66E-09	9.517	5.79E-07
2022 Q2	IG_BH03_GW016	8.91E-08	2.67E-09	7.91E-09	2.37E-10	9.70E-08	2.91E-09	11.270	4.64E-07

Report prepared for:

Geofirma Engineering Ltd.

Analy	vtical	Report -	C	larl	k group
And	ricui	neport	-		n Broup

Quarter	Sample ID	Ar40	ArTotal		36Ar/40Ar	KrTotal		XeTotal	
			cc/g	<u>±</u>		cc/g	<u>±</u>	cc/g	<u>±</u>
2022 Q1	IG_BH03_GW013	3.90E-03	3.90E-03	1.17E-04	1.80E-04	4.99E-08	2.50E-09	7.64E-09	3.82E-10
2022 Q1	IG_BH05_GW001	4.23E-04	4.24E-04	1.27E-05	2.48E-03	7.97E-08	3.99E-09	1.24E-08	6.21E-10
2022 Q1	IG_BH01_GW032	2.54E-04	2.55E-04	7.65E-06	2.14E-03	4.27E-08	2.13E-09	6.68E-09	3.34E-10
2022 Q2	IG_BH01_GW033	2.64E-03	2.64E-03	7.93E-05	1.42E-03	1.76E-07	8.82E-09	1.76E-08	8.79E-10
2022 Q2	IG_BH01_GW034	3.30E-03	3.31E-03	9.93E-05	1.76E-03	2.52E-07	1.26E-08	2.29E-08	1.14E-09
2022 Q2	IG_BH05_GW002	3.44E-04	3.44E-04	1.03E-05	1.68E-03	4.72E-08	2.36E-09	7.72E-09	3.86E-10
2022 Q2	IG_BH03_GW016	4.99E-04	4.99E-04	1.50E-05	9.31E-04	2.69E-08	1.35E-09	4.32E-09	2.16E-10

- cc/g cc of noble gas at STP per gram of sample solution
 - ± analytical uncertainty, as cc/g
- xRa 3He/4He ratio in sample normalized to the ratio in Air (1.38E–6)

Noble Gas Analysis

Gas extraction from water follows the procedure outlined in *Aeschbach-Hertig & Solomon 2013*. This involves gas extraction from copper tube water samples under vacuum by water vapour sweep into a stainless steel gas flask. The extracted gases are let into a sample preparation line and cryogenically separated. For light noble gases (He and Ne), standards and samples are introduced into an ultra-high vacuum preparation system where bulk (N₂, O₂) and trace gases (CO₂, Ar) are removed using liquid N₂ charcoal traps and two SAES getters, followed by analysis on a Thermo Scientific Helix SFT Noble Gas Mass Spectrometer. Internal standards using precise aliquots from a tank of clean dry atmospheric air are run each morning and during analysis to measure instrument drift and sensitivity. Internal standards of air equilibrated water (AEW) are also run as internal checks on the water extraction procedure and analyses. Following purification, He is separated from Ne using a He cooled cryo trap that cycles down to 5K, before releasing He at 28K and Ne at 70K. He and Ne are introduced separately into the Helix SFT operating under static vacuum. Each analysis undergoes a mass peak center, followed by separate integrations on each mass peak. These integrations generate a linear regression used to calculate peak intensity at time zero (when the sample was released into the mass spectrometer).For Ar, Kr and Xe, gases, residual water vapour was removed cryogenically prior to gettering of reactive gases and cryogenic separation of Kr and Xe from Ar. Abundance analysis was done by guadrupole mass spectrometry at the University of Utah Noble Gas Lab.

References:

Aeschbach-Hertig W., Solomon D.K. (2013) Noble Gas Thermometry in Groundwater Hydrology. In: Burnard P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg

2022 Q2 (June)

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE,ON Your C.O.C. #: GFIM_BVL_007

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/07/12 Report #: R7207110 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2F0223

Received: 2022/06/01, 16:01

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2022/06/07	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/06/08	CAM SOP-00102	APHA 4500-CO2 D
Anions	2	N/A	2022/06/06	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (3)	1	N/A	2022/06/06	CAM SOP-00446	SM 23 5310 B m
Fluoride	2	2022/06/03	2022/06/07	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	2	2022/06/06	2022/06/08	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	2	N/A	2022/06/08	CAM SOP-00447	EPA 6020B m
lodide, Thiosulphate, Thiocyanate (1)	2	N/A	2022/06/09	CAL SOP-00057	Dionex #034035 R09 m
Total Extractable Elements by ICP-MS (2, 4)	1	2022/06/23	2022/06/23	STL SOP-00071	MA.200–Mét. 1.2 R5 m
Silica (Reactive) (1)	1	N/A	2022/06/09	AB SOP-00011	EPA370.1 R1978 m
Total Ammonia-N	1	N/A	2022/06/04	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (5)	2	N/A	2022/06/03	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/06/03	2022/06/07	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	2	N/A	2022/06/08	CAM SOP-00461	EPA 365.1 m
Sulphide	1	N/A	2022/06/06	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	1	N/A	2022/06/07	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	1	2022/06/03	2022/06/06	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	1	N/A	2022/06/07	Auto Calc.	
Total Organic Carbon (TOC) (6)	1	N/A	2022/06/06	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	1	2022/06/06	2022/06/09	CAM SOP-00407	SM 23 4500 P B H m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 13

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE,ON Your C.O.C. #: GFIM_BVL_007

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/07/12 Report #: R7207110 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2F0223

Received: 2022/06/01, 16:01

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) This test was performed by Bureau Veritas Montreal., 889 Montée de Liesse , Ville St-Laurent, QC, H4T 1P5

(3) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(4) Non-accredited test method

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Katherine Szozda Project Manager 12 Jul 2022 15:10:23

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 13

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SUB548			SUB548			SUB549		
Sampling Date		2022/05/29			2022/05/29			2022/05/29		
		12:30			12:30			09:50		
COC Number		GFIM_BVL_007			GFIM_BVL_007			GFIM_BVL_007		
	UNITS	IG_BH05_GW002	RDL	QC Batch	IG_BH05_GW002 Lab-Dup	RDL	QC Batch	IG_BH05_GW003	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	230	1.0	8029689						
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8029689						
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8029689						
Total Nitrogen (N)	mg/L	0.75	0.10	8030719						
Inorganics		-	-					-		-
Total Ammonia-N	mg/L	0.10	0.050	8032558						
Fluoride (F-)	mg/L	0.20	0.10	8032680				<0.10	0.10	8032680
Total Inorganic Carbon (C)	mg/L	23	1	8035828	25	1	8035828			
Dissolved Iodide	mg/L	4.0	2.0	8049904				<0.10	0.10	8049904
Total Kjeldahl Nitrogen (TKN)	mg/L	0.63	0.10	8032542						
Dissolved Organic Carbon	mg/L	120	0.80	8031517						
Total Organic Carbon (TOC)	mg/L	130	0.80	8032536						
Orthophosphate (P)	mg/L	<0.010	0.010	8031704				<0.010	0.010	8031704
рН	рН	6.61		8032691						
Total Phosphorus	mg/L	<0.10 (1)	0.10	8035251						
Reactive Silica (SiO2)	mg/L	23	0.25	8049905						
Sulphide	mg/L	0.45	0.020	8035176						
Alkalinity (Total as CaCO3)	mg/L	230	1.0	8032686						
Nitrite (N)	mg/L	0.020	0.010	8031525				<0.010	0.010	8031525
Dissolved Chloride (Cl-)	mg/L	5200 (2)	50	8089921				1.2	1.0	8032241
Nitrate (N)	mg/L	0.10	0.10	8031525				<0.10	0.10	8031525
Nitrate + Nitrite (N)	mg/L	0.12	0.10	8031525				<0.10	0.10	8031525
Dissolved Bromide (Br-)	mg/L	72 (2)	20	8032241				<1.0	1.0	8032241
Dissolved Sulphate (SO4)	mg/L	55 (2)	20	8032241				<1.0	1.0	8032241
Metals			-	•	·		•		•	-
Total Ruthenium (Ru)	ug/L	<2.0	2.0	8082082						
RDL = Reportable Detection Limit		•			•			-		
QC Batch = Quality Control Batch										
Lab Dun - Laboratory Initiated Dun	licato									

Lab-Dup = Laboratory Initiated Duplicate

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) ANIONS-L: Due to high concentrations of the target analytes, sample required dilution. Detection limits were adjusted accordingly.

RESULTS OF ANALYSES OF WATER

	SUB549		
	2022/05/29 09:50		
	GFIM_BVL_007		
UNITS	IG_BH05_GW003 Lab-Dup	RDL	QC Batch
mg/L	1.2	1.0	8032241
mg/L	<1.0	1.0	8032241
mg/L	<1.0	1.0	8032241
•			
	mg/L mg/L	2022/05/29 09:50 GFIM_BVL_007 UNITS IG_BH05_GW003 Lab-Dup mg/L 1.2 mg/L <1.0	Image: Description of the sector of

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		SUB548			SUB548			SUB549		
Comulia - Doto		2022/05/29			2022/05/29			2022/05/29		
Sampling Date		12:30			12:30			09:50		
COC Number		GFIM_BVL_007			GFIM_BVL_007			GFIM_BVL_007		
	UNITS	IG_BH05_GW002	RDL	QC Batch	IG_BH05_GW002 Lab-Dup	RDL	QC Batch	IG_BH05_GW003	RDL	QC Batch
Metals										
Dissolved Iron (Fe)	mg/L	14	0.02	8036421	14	0.02	8036421	<0.02	0.02	8036421
Dissolved Sulphur (S)	mg/L	15	0.5	8036421	13	0.5	8036421	<0.5	0.5	8036421
Dissolved Aluminum (Al)	ug/L	<25	25	8036447				<4.9	4.9	8036447
Dissolved Arsenic (As)	ug/L	<5.0	5.0	8036447				<1.0	1.0	8036447
Dissolved Barium (Ba)	ug/L	320	10	8036447				<2.0	2.0	8036447
Dissolved Bismuth (Bi)	ug/L	<5.0	5.0	8036447				<1.0	1.0	8036447
Dissolved Boron (B)	ug/L	320	50	8036447				<10	10	8036447
Dissolved Cadmium (Cd)	ug/L	<0.45	0.45	8036447				<0.090	0.090	8036447
Dissolved Calcium (Ca)	ug/L	2500000	2000	8036447				480	200	8036447
Dissolved Cesium (Cs)	ug/L	<1.0	1.0	8036447				<0.20	0.20	8036447
Dissolved Chromium (Cr)	ug/L	<25	25	8036447				<5.0	5.0	8036447
Dissolved Cobalt (Co)	ug/L	<2.5	2.5	8036447				<0.50	0.50	8036447
Dissolved Copper (Cu)	ug/L	<4.5	4.5	8036447				<0.90	0.90	8036447
Dissolved Iron (Fe)	ug/L	14000	500	8036447				<100	100	8036447
Dissolved Lead (Pb)	ug/L	<2.5	2.5	8036447				<0.50	0.50	8036447
Dissolved Lithium (Li)	ug/L	81	25	8036447				<5.0	5.0	8036447
Dissolved Magnesium (Mg)	ug/L	7500	250	8036447				<50	50	8036447
Dissolved Nickel (Ni)	ug/L	<5.0	5.0	8036447				<1.0	1.0	8036447
Dissolved Potassium (K)	ug/L	19000	1000	8036447				<200	200	8036447
Dissolved Rubidium (Rb)	ug/L	31	1.0	8036447				<0.20	0.20	8036447
Dissolved Selenium (Se)	ug/L	<10	10	8036447				<2.0	2.0	8036447
Dissolved Silicon (Si)	ug/L	11000	250	8036447				<50	50	8036447
Dissolved Sodium (Na)	ug/L	510000	500	8036447				160	100	8036447
Dissolved Strontium (Sr)	ug/L	30000	5.0	8036447				5.6	1.0	8036447
Dissolved Thorium (Th)	ug/L	<10	10	8036447				<2.0	2.0	8036447
Dissolved Uranium (U)	ug/L	0.50	0.50	8036447				<0.10	0.10	8036447
Dissolved Zirconium (Zr)	ug/L	<5.0	5.0	8036447				<1.0	1.0	8036447
RDL = Reportable Detection I	Limit	-								
QC Batch = Quality Control B	atch									

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

Bureau Veritas ID:	SUB548
Sample ID:	IG_BH05_GW002
Matrix:	Water

Collected:	2022/05/29
Shipped: Received:	2022/06/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8032686	N/A	2022/06/07	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8029689	N/A	2022/06/08	Automated Statchk
Anions	IC	8032241	N/A	2022/06/06	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8031517	N/A	2022/06/06	Anna-Kay Gooden
Fluoride	ISE	8032680	2022/06/03	2022/06/07	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8036421	2022/06/06	2022/06/08	Indira HarryPaul
Dissolved Metals by ICPMS	ICP/MS	8036447	N/A	2022/06/08	Nan Raykha
Iodide, Thiosulphate, Thiocyanate	IC/EC	8049904	N/A	2022/06/09	Kathleen Dalton
Total Extractable Elements by ICP-MS	ICP/MSMS	8082082	2022/06/23	2022/06/23	Brandon Kinnear
Silica (Reactive)	KONE	8049905	N/A	2022/06/09	Fadia Mostafa
Total Ammonia-N	LACH/NH4	8032558	N/A	2022/06/04	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	8031525	N/A	2022/06/03	Samuel Law
рН	AT	8032691	2022/06/03	2022/06/07	Surinder Rai
Orthophosphate	KONE	8031704	N/A	2022/06/08	Chandra Nandlal
Sulphide	ISE/S	8035176	N/A	2022/06/06	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8035828	N/A	2022/06/07	Anna-Kay Gooden
Total Kjeldahl Nitrogen in Water	SKAL	8032542	2022/06/03	2022/06/06	Rajni Tyagi
Total Nitrogen (calculated)	CALC	8030719	N/A	2022/06/07	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8032536	N/A	2022/06/06	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	8035251	2022/06/06	2022/06/09	Shivani Shivani

Bureau Veritas ID: SUB548 Du Sample ID: IG_BH05_G Matrix: Water					Collected: Shipped: Received:	2022/05/29 2022/06/01
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Metals Analysis by ICP	ICP	8036421	2022/06/06	2022/06/08	Indira Harr	yPaul
Total Inorganic Carbon (TIC)	TOCV/NDIR	8035828	N/A	2022/06/07	Anna-Kav (Gooden

Bureau Veritas ID: SUB549 Sample ID: IG_BH05_GW003 Matrix: Water

Collected:	2022/05/29
Shipped:	
Received:	2022/06/01

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions	IC	8032241	N/A	2022/06/06	Lusine Khachatryan
Fluoride	ISE	8032680	2022/06/03	2022/06/07	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8036421	2022/06/06	2022/06/08	Indira HarryPaul
Dissolved Metals by ICPMS	ICP/MS	8036447	N/A	2022/06/08	Nan Raykha
lodide, Thiosulphate, Thiocyanate	IC/EC	8049904	N/A	2022/06/09	Kathleen Dalton
Nitrate & Nitrite as Nitrogen in Water	LACH	8031525	N/A	2022/06/03	Samuel Law
Orthophosphate	KONE	8031704	N/A	2022/06/08	Chandra Nandlal

Page 6 of 13

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	SUB549 Dup IG_BH05_GW003 Water					Collected: Shipped: Received:	2022/05/29 2022/06/01	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Anions		IC	8032241	N/A	2022/06/06	Lusine Kha	chatrvan	

GENERAL COMMENTS

Each t	emperature is the	e average of up to	o three cooler temperatures taken at receipt
	Package 1	5.3°C	
Revise	d Report (2022/07	7/12): Chloride a	nalysis reworked per client request
ANION	S-L: Chloride re-a	analysis was perfo	etal Analysis:Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly. ormed on a different bottle (part 06), from the original reported result (bottle part 01). Chloride re-analysis vas within our RPD acceptance criteria for dupplicates.
Sampl	e SUB548, Anions	: Test repeated.	

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8031517	AGD	Matrix Spike	Dissolved Organic Carbon	2022/06/04		98	%	80 - 120
8031517	AGD	Spiked Blank	Dissolved Organic Carbon	2022/06/04		99	%	80 - 120
8031517	AGD	Method Blank	Dissolved Organic Carbon	2022/06/04	<0.40		mg/L	
8031517	AGD	RPD	Dissolved Organic Carbon	2022/06/04	1.1		%	20
8031525	S1L	Matrix Spike	Nitrite (N)	2022/06/03		101	%	80 - 120
			Nitrate (N)	2022/06/03		NC	%	80 - 120
8031525	S1L	Spiked Blank	Nitrite (N)	2022/06/03		105	%	80 - 120
			Nitrate (N)	2022/06/03		104	%	80 - 120
8031525	S1L	Method Blank	Nitrite (N)	2022/06/03	<0.010		mg/L	
			Nitrate (N)	2022/06/03	<0.10		mg/L	
8031525	S1L	RPD	Nitrite (N)	2022/06/03	NC		%	20
			Nitrate (N)	2022/06/03	0.25		%	20
8031704	C_N	Matrix Spike	Orthophosphate (P)	2022/06/08		110	%	75 - 125
8031704	C_N	Spiked Blank	Orthophosphate (P)	2022/06/08		97	%	80 - 120
8031704	C_N	Method Blank	Orthophosphate (P)	2022/06/08	<0.010		mg/L	
8031704	C_N	RPD	Orthophosphate (P)	2022/06/08	NC		%	25
8032241	LKH	Matrix Spike [SUB549-01]	Dissolved Chloride (Cl-)	2022/06/06		98	%	80 - 120
			Dissolved Bromide (Br-)	2022/06/06		100	%	80 - 120
			Dissolved Sulphate (SO4)	2022/06/06		101	%	80 - 120
8032241	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/06/06		98	%	70 - 130
			Dissolved Bromide (Br-)	2022/06/06		100	%	80 - 120
			Dissolved Sulphate (SO4)	2022/06/06		100	%	80 - 120
8032241	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/06/06	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/06/06	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/06/06	<1.0		mg/L	
8032241	LKH	RPD [SUB549-01]	Dissolved Chloride (Cl-)	2022/06/06	1.1		%	20
			Dissolved Bromide (Br-)	2022/06/06	NC		%	20
			Dissolved Sulphate (SO4)	2022/06/06	NC		%	20
8032536	AGD	Matrix Spike	Total Organic Carbon (TOC)	2022/06/06		92	%	80 - 120
8032536	AGD	Spiked Blank	Total Organic Carbon (TOC)	2022/06/06		94	%	80 - 120
8032536	AGD	Method Blank	Total Organic Carbon (TOC)	2022/06/06	<0.40		mg/L	
8032536	AGD	RPD	Total Organic Carbon (TOC)	2022/06/06	1.9		%	20
8032542	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/06/06		NC	%	80 - 120
8032542	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/06/06		100	%	80 - 120
8032542	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/06/06		92	%	80 - 120
8032542	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/06/06	<0.10		mg/L	
8032542	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2022/06/06	0 (1)		%	20
8032558		Matrix Spike	Total Ammonia-N	2022/06/04		97	%	75 - 125
8032558	ASP	Spiked Blank	Total Ammonia-N	2022/06/04		100	%	80 - 120
8032558	ASP	Method Blank	Total Ammonia-N	2022/06/04	<0.050		mg/L	
8032558	ASP	RPD	Total Ammonia-N	2022/06/04	13		%	20
8032680	SAU	Matrix Spike	Fluoride (F-)	2022/06/07		110	%	80 - 120
8032680	SAU	Spiked Blank	Fluoride (F-)	2022/06/07		96	%	80 - 120
8032680	SAU	Method Blank	Fluoride (F-)	2022/06/07	<0.10		mg/L	
8032680	SAU	RPD	Fluoride (F-)	2022/06/07	8.4		%	20
3032686	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2022/06/07		97	%	85 - 115
3032686	SAU	Method Blank	Alkalinity (Total as CaCOS)	2022/06/07	<1.0	57	 mg/L	55 11.
3032686	SAU	RPD	Alkalinity (Total as CaCO3)	2022/06/07	0.18		111g/L %	20
8032680 8032691	SAU	Spiked Blank	pH	2022/06/07	0.10	102	%	20 98 - 103
8032691		RPD			0.0018	102	%	
0032031	SAU	NF D	рН	2022/06/07	0.0010		70	N/A

Page 9 of 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8035176	TAK	Matrix Spike	Sulphide	2022/06/06		89	%	80 - 120
8035176	ТАК	Spiked Blank	Sulphide	2022/06/06		95	%	80 - 120
8035176	ТАК	Method Blank	Sulphide	2022/06/06	<0.020		mg/L	
8035176	ТАК	RPD	Sulphide	2022/06/06	NC		%	20
8035251	SSV	Matrix Spike	Total Phosphorus	2022/06/09		97	%	80 - 120
8035251	SSV	QC Standard	Total Phosphorus	2022/06/09		97	%	80 - 120
8035251	SSV	Spiked Blank	Total Phosphorus	2022/06/09		99	%	80 - 120
8035251	SSV	Method Blank	Total Phosphorus	2022/06/09	<0.020		mg/L	
8035828	AGD	Matrix Spike [SUB548-01]	Total Inorganic Carbon (C)	2022/06/07		83	%	80 - 120
8035828	AGD	Spiked Blank	Total Inorganic Carbon (C)	2022/06/07		97	%	80 - 120
8035828	AGD	Method Blank	Total Inorganic Carbon (C)	2022/06/07	<1		mg/L	
8035828	AGD	RPD [SUB548-01]	Total Inorganic Carbon (C)	2022/06/07	8.1		%	20
8036421	IHP	Matrix Spike [SUB548-05]	Dissolved Iron (Fe)	2022/06/08	0.1	NC	%	80 - 120
0000421			Dissolved Sulphur (S)	2022/06/08		NC	%	80 - 120
8036421	IHP	Spiked Blank	Dissolved Iron (Fe)	2022/06/08		102	%	80 - 120
0000121		opiked Blank	Dissolved Sulphur (S)	2022/06/08		99	%	80 - 120
8036421	IHP	Method Blank	Dissolved Iron (Fe)	2022/06/08	<0.02	55	mg/L	00 120
0000421		Method Blank	Dissolved Sulphur (S)	2022/06/08	<0.5		mg/L	
8036421	IHP	RPD [SUB548-05]	Dissolved Iron (Fe)	2022/06/08	0.074		%	25
0000421		N D [00D0+0 00]	Dissolved Sulphur (S)	2022/06/08	9.9		%	25
8036447	NR	Matrix Spike	Dissolved Aluminum (Al)	2022/06/07	5.5	NC	%	80 - 120
0050447	<u>N_</u> N		Dissolved Arsenic (As)	2022/06/07		102	%	80 - 120
			Dissolved Barium (Ba)	2022/06/07		102	%	80 - 120
			Dissolved Bismuth (Bi)	2022/06/07		96	%	80 - 120
			Dissolved Bismath (B)	2022/06/07		106	%	80 - 120 80 - 120
			Dissolved Cadmium (Cd)	2022/06/07		100	%	80 - 120
			Dissolved Calcium (Ca)	2022/06/07		NC	%	80 - 120 80 - 120
			Dissolved Cesium (Cs)	2022/06/07		108	%	80 - 120 80 - 120
			Dissolved Chromium (Cr)	2022/06/07		96	%	80 - 120 80 - 120
			Dissolved Cobalt (Co)	2022/06/07		100	%	80 - 120
			Dissolved Copper (Cu)	2022/06/07		100	%	80 - 120 80 - 120
			Dissolved Iron (Fe)			97	%	80 - 120 80 - 120
			Dissolved Lead (Pb)	2022/06/07 2022/06/07		97	%	80 - 120 80 - 120
			• •					
			Dissolved Lithium (Li)	2022/06/07		103 97	% %	80 - 120 80 - 120
			Dissolved Magnesium (Mg)	2022/06/07				
			Dissolved Nickel (Ni)	2022/06/07		96	%	80 - 120
			Dissolved Potassium (K)	2022/06/07		103	%	80 - 120
			Dissolved Rubidium (Rb)	2022/06/07		103	%	80 - 120
			Dissolved Selenium (Se)	2022/06/07		100	%	80 - 120
			Dissolved Silicon (Si)	2022/06/07		95	%	80 - 120
			Dissolved Sodium (Na)	2022/06/07		NC	%	80 - 120
			Dissolved Strontium (Sr)	2022/06/07		100	%	80 - 120
			Dissolved Thorium (Th)	2022/06/07		97	%	80 - 120
			Dissolved Uranium (U)	2022/06/07		95	%	80 - 120
0000			Dissolved Zirconium (Zr)	2022/06/07		109	%	80 - 120
8036447	N_R	Spiked Blank	Dissolved Aluminum (Al)	2022/06/07		92	%	80 - 120
			Dissolved Arsenic (As)	2022/06/07		98	%	80 - 120
			Dissolved Barium (Ba)	2022/06/07		105	%	80 - 120
			Dissolved Bismuth (Bi)	2022/06/07		93	%	80 - 120
			Dissolved Boron (B)	2022/06/07		99	%	80 - 120

Page 10 of 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Cadmium (Cd)	2022/06/07		98	%	80 - 120
			Dissolved Calcium (Ca)	2022/06/07		96	%	80 - 120
			Dissolved Cesium (Cs)	2022/06/07		108	%	80 - 120
			Dissolved Chromium (Cr)	2022/06/07		93	%	80 - 120
			Dissolved Cobalt (Co)	2022/06/07		95	%	80 - 120
			Dissolved Copper (Cu)	2022/06/07		98	%	80 - 120
			Dissolved Iron (Fe)	2022/06/07		96	%	80 - 120
			Dissolved Lead (Pb)	2022/06/07		95	%	80 - 120
			Dissolved Lithium (Li)	2022/06/07		102	%	80 - 120
			Dissolved Magnesium (Mg)	2022/06/07		93	%	80 - 120
			Dissolved Nickel (Ni)	2022/06/07		93	%	80 - 120
			Dissolved Potassium (K)	2022/06/07		98	%	80 - 120
			Dissolved Rubidium (Rb)	2022/06/07		99	%	80 - 120
			Dissolved Selenium (Se)	2022/06/07		98	%	80 - 120
			Dissolved Silicon (Si)	2022/06/07		93	%	80 - 120
			Dissolved Sodium (Na)	2022/06/07		92	%	80 - 120
			Dissolved Strontium (Sr)	2022/06/07		98	%	80 - 120
			Dissolved Thorium (Th)	2022/06/07		93	%	80 - 120
			Dissolved Uranium (U)	2022/06/07		91	%	80 - 120
			Dissolved Zirconium (Zr)	2022/06/07		103	%	80 - 120
8036447	NR	Method Blank	Dissolved Aluminum (Al)	2022/06/07	<4.9	105	ug/L	00 120
5050447		Method Blank	Dissolved Arsenic (As)	2022/06/07	<1.0		ug/L	
			Dissolved Barium (Ba)	2022/06/07	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/06/07	<1.0		ug/L	
			Dissolved Boron (B)	2022/06/07	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/06/07	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/06/07	<200		ug/L	
			Dissolved Cesium (Cs)	2022/06/07	<0.20		ug/L	
			Dissolved Cestulii (Cs)	2022/06/07	<5.0		ug/L ug/L	
			Dissolved Cobalt (Co)	2022/06/07	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/06/07	<0.90		ug/L ug/L	
			Dissolved Iron (Fe)	2022/06/07	<100		ug/L	
			Dissolved Lead (Pb)	2022/06/07	<0.50		ug/L	
			Dissolved Lead (FD) Dissolved Lithium (Li)	2022/06/07	<5.0		ug/L ug/L	
			Dissolved Magnesium (Mg)	· · ·	<50		-	
			Dissolved Nickel (Ni)	2022/06/07 2022/06/07	<1.0		ug/L ug/L	
			Dissolved Potassium (K)	2022/06/07	<200		-	
							ug/L	
			Dissolved Rubidium (Rb) Dissolved Selenium (Se)	2022/06/07 2022/06/07	<0.20		ug/L	
					<2.0		ug/L	
			Dissolved Silicon (Si) Dissolved Sodium (Na)	2022/06/07 2022/06/07	<50		ug/L	
					<100		ug/L	
			Dissolved Strontium (Sr)	2022/06/07	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/06/07	<2.0		ug/L	
			Dissolved Uranium (U)	2022/06/07	<0.10		ug/L	
040004	KDO	Materia Call-	Dissolved Zirconium (Zr)	2022/06/07	<1.0	1010 (2)	ug/L	00 10
049904	KD9	Matrix Spike	Dissolved Iodide	2022/06/09		1010 (2)	%	80 - 120
049904	KD9	Spiked Blank	Dissolved Iodide	2022/06/09	.0.10	106	%	80 - 120
049904	KD9	Method Blank	Dissolved Iodide	2022/06/09	<0.10	· · -	mg/L	00.1-
049905	FM0	Matrix Spike	Reactive Silica (SiO2)	2022/06/09		117	%	80 - 120
8049905	FM0	Spiked Blank	Reactive Silica (SiO2)	2022/06/09		100	%	80 - 120

Page 11 of 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8049905	FM0	Method Blank	Reactive Silica (SiO2)	2022/06/09	<0.050		mg/L	
8082082	BKI	Spiked Blank	Total Ruthenium (Ru)	2022/06/23		103	%	70 - 130
8082082	BKI	Method Blank	Total Ruthenium (Ru)	2022/06/23	<2.0		ug/L	
8082082	BKI	RPD	Total Ruthenium (Ru)	2022/06/23	NC		%	30
8089921	LKH	Matrix Spike	Dissolved Chloride (Cl-)	2022/07/05		98	%	80 - 120
8089921	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/07/05		98	%	70 - 130
8089921	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/07/05	<1.0		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) TKN < NH4: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Sze Yeung Fock, B.Sc., Scientific Specialist

Zinel

Zineb El Ouali mbre OCO#2021-051

Zineb El Ouali, Analyst 1

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE, ON Your C.O.C. #: GFIM_BVL_0008

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> **Report Date: 2022/06/29** Report #: R7191190 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2F6327

Received: 2022/06/07, 14:02

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	3	N/A	2022/06/10	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	3	N/A	2022/06/13	CAM SOP-00102	APHA 4500-CO2 D
Anions	3	N/A	2022/06/10	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (3)	3	N/A	2022/06/09	CAM SOP-00446	SM 23 5310 B m
Fluoride	3	2022/06/09	2022/06/10	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	3	2022/06/09	2022/06/14	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	3	N/A	2022/06/13	CAM SOP-00447	EPA 6020B m
lodide, Thiosulphate, Thiocyanate (1)	3	N/A	2022/06/12	CAL SOP-00057	Dionex #034035 R09 m
Total Extractable Elements by ICP-MS (2, 4)	3	2022/06/23	2022/06/23	STL SOP-00071	MA.200–Mét. 1.2 R5 m
Silica (Reactive) (1)	1	N/A	2022/06/11	AB SOP-00011	EPA370.1 R1978 m
Silica (Reactive) (1)	2	N/A	2022/06/15	AB SOP-00011	EPA370.1 R1978 m
Nitrate & Nitrite as Nitrogen in Water (5)	3	N/A	2022/06/09	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	3	2022/06/09	2022/06/10	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	3	N/A	2022/06/09	CAM SOP-00461	EPA 365.1 m
Sulphide	3	N/A	2022/06/09	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	3	N/A	2022/06/09	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	3	2022/06/08	2022/06/09	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	3	N/A	2022/06/09	Auto Calc.	
Total Organic Carbon (TOC) (6)	3	N/A	2022/06/10	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	3	2022/06/24	2022/06/24	CAM SOP-00407	SM 23 4500 P B H m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 14

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE, ON Your C.O.C. #: GFIM_BVL_0008

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> **Report Date: 2022/06/29** Report #: R7191190 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2F6327

Received: 2022/06/07, 14:02

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) This test was performed by Bureau Veritas Montreal, 889 Montée de Liesse , Ville St-Laurent, QC, H4T 1P5

(3) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(4) Non-accredited test method

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Katherine Szozda, Project Manager

Email: Katherine.Szozda@bureauveritas.com

Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 14 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SVK328			SVK328			SVK329		
Sampling Date		2022/06/02			2022/06/02			2022/06/04		
		15:25			15:25			15:25		
COC Number		GFIM_BVL_0008			GFIM_BVL_0008			GFIM_BVL_0008		
	UNITS	IG_BH03_GW016	RDL	QC Batch	IG_BH03_GW016 Lab-Dup	RDL	QC Batch	IG_BH01_GW033	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	66	1.0	8040466				4.7	1.0	8040466
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8040466				<1.0	1.0	8040466
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8040466				<1.0	1.0	8040466
Total Nitrogen (N)	mg/L	8.8	5.0	8040615				4.2	2.0	8040615
Inorganics	•				•	-			•	
Fluoride (F-)	mg/L	0.13	0.10	8043737	0.14	0.10	8043737	0.97	0.10	8043737
Total Inorganic Carbon (C)	mg/L	2	1	8042809	1	1	8042809	<1	1	8042809
Dissolved Iodide	mg/L	<2.0	2.0	8056888	<2.0	2.0	8056888	<2.0	2.0	8056888
Total Kjeldahl Nitrogen (TKN)	mg/L	8.8	5.0	8040710				4.2	2.0	8040710
Dissolved Organic Carbon	mg/L	110	0.80	8040199				0.55	0.40	8040199
Total Organic Carbon (TOC)	mg/L	110	0.80	8043985				1.3	0.40	8043985
Orthophosphate (P)	mg/L	<0.010	0.010	8042224				0.013	0.010	8042224
рН	pН	6.86		8043738	7.02		8043738	6.72		8043738
Total Phosphorus	mg/L	<0.10 (1)	0.10	8073404				0.38	0.10	8072834
Reactive Silica (SiO2)	mg/L	41 (2)	0.50	8056889				12	0.25	8056889
Sulphide	mg/L	<0.020	0.020	8041084				<0.020	0.020	8041084
Alkalinity (Total as CaCO3)	mg/L	66	1.0	8043739	68	1.0	8043739	4.7	1.0	8043739
Nitrite (N)	mg/L	<0.050	0.050	8042228				<0.010	0.010	8042228
Dissolved Chloride (Cl-)	mg/L	20000	400	8044213				9000	400	8044213
Nitrate (N)	mg/L	<0.50	0.50	8042228				<0.10	0.10	8042228
Nitrate + Nitrite (N)	mg/L	<0.50	0.50	8042228				<0.10	0.10	8042228
Dissolved Bromide (Br-)	mg/L	<400	400	8044213				<400	400	8044213
Dissolved Sulphate (SO4)	mg/L	<400	400	8044213				<400	400	8044213
Metals										
Total Ruthenium (Ru)	ug/L	<2.0	2.0	8082082				<2.0	2.0	8082082
RDL = Reportable Detection Limit										-
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Dup	licate									

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

(2) Duplicate exceeds acceptance criteria due to sample matrix. Reanalysis yields similar results.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		SVK329			SVK330			SVK330		
Sampling Date		2022/06/04 15:25			2022/06/04 12:00			2022/06/04 12:00		
COC Number		GFIM_BVL_0008			GFIM_BVL_0008			GFIM_BVL_0008		
	UNITS	IG_BH01_GW033 Lab-Dup	RDL	QC Batch	IG_BH01_GW034	RDL	QC Batch	IG_BH01_GW034 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L				5.7	1.0	8040466			
Carb. Alkalinity (calc. as CaCO3)	mg/L				<1.0	1.0	8040466			
Hydrox. Alkalinity (calc. as CaCO3)	mg/L				<1.0	1.0	8040466			
Total Nitrogen (N)	mg/L				3.1	1.0	8040615			
Inorganics										
Fluoride (F-)	mg/L				0.92	0.10	8043737			
Total Inorganic Carbon (C)	mg/L				<1	1	8042809			
Dissolved Iodide	mg/L				<2.0	2.0	8056888			
Total Kjeldahl Nitrogen (TKN)	mg/L				3.1	1.0	8040710			
Dissolved Organic Carbon	mg/L				0.51	0.40	8040199			
Total Organic Carbon (TOC)	mg/L				1.2	0.40	8043985			
Orthophosphate (P)	mg/L	0.011	0.010	8042224	0.011	0.010	8042224			
рН	pН				6.74		8043738			
Total Phosphorus	mg/L				0.23	0.10	8072834			
Reactive Silica (SiO2)	mg/L				27	0.25	8056890			
Sulphide	mg/L				<0.020	0.020	8041084			
Alkalinity (Total as CaCO3)	mg/L				5.7	1.0	8043739			
Nitrite (N)	mg/L				<0.010	0.010	8042228			
Dissolved Chloride (Cl-)	mg/L				9700	400	8044213			
Nitrate (N)	mg/L				<0.10	0.10	8042228			
Nitrate + Nitrite (N)	mg/L				<0.10	0.10	8042228			
Dissolved Bromide (Br-)	mg/L				<400	400	8044213			
Dissolved Sulphate (SO4)	mg/L				<400	400	8044213			
Metals		<u>!</u>			<u>-</u>			<u>!</u>		
Total Ruthenium (Ru)	ug/L				<2.0	2.0	8082082	<2.0	2.0	8082082
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									-	
Lab-Dup = Laboratory Initiated Dup	licate									

SVK329 Bureau Veritas ID SVK328 SVK330 2022/06/02 2022/06/04 2022/06/04 Sampling Date 15:25 15:25 12:00 GFIM_BVL_0008 COC Number GFIM_BVL_0008 GFIM BVL 0008 UNITS IG_BH03_GW016 IG_BH01_GW034 RDL IG_BH01_GW033 RDL QC Batch Metals Dissolved Iron (Fe) mg/L 0.9 0.2 0.06 0.05 0.02 8040784 Dissolved Sulphur (S) 5 76 8040784 <5 76 0.5 mg/L Dissolved Aluminum (Al) <49 49 <25 25 8043311 ug/L <25 Dissolved Arsenic (As) ug/L <10 10 <5.0 <5.0 5.0 8043311 Dissolved Barium (Ba) ug/L 350 20 310 340 10 8043311 Dissolved Bismuth (Bi) <10 ug/L 10 <5.0 <5.0 5.0 8043311 Dissolved Boron (B) 320 ug/L 100 330 360 50 8043311 Dissolved Cadmium (Cd) ug/L < 0.90 0.90 <0.45 < 0.45 0.45 8043311 Dissolved Calcium (Ca) 11000000 10000 5100000 ug/L 4900000 10000 8043311 Dissolved Cesium (Cs) ug/L <2.0 2.0 <1.0 <1.0 1.0 8043311 Dissolved Chromium (Cr) ug/L <50 50 <25 <25 25 8043311 Dissolved Cobalt (Co) ug/L <5.0 5.0 <2.5 <2.5 2.5 8043311 Dissolved Copper (Cu) ug/L <9.0 9.0 <4.5 <4.5 4.5 8043311 Dissolved Iron (Fe) ug/L <1000 1000 <500 <500 500 8043311 Dissolved Lead (Pb) ug/L <5.0 5.0 <2.5 <2.5 2.5 8043311 Dissolved Lithium (Li) ug/L 260 50 58 57 25 8043311 Dissolved Magnesium (Mg) ug/L 2900 500 750 880 250 8043311 Dissolved Nickel (Ni) ug/L <10 <5.0 <5.0 5.0 8043311 10 Dissolved Potassium (K) ug/L 14000 2000 13000 13000 1000 8043311 Dissolved Rubidium (Rb) 45 2.0 8043311 ug/L 15 16 1.0 Dissolved Selenium (Se) ug/L <10 8043311 <20 20 <10 10 ug/L Dissolved Silicon (Si) 5800 500 4000 4100 250 8043311 Dissolved Sodium (Na) ug/L 740000 1000 700000 730000 500 8043311 Dissolved Strontium (Sr) 140000 63000 8043311 ug/L 10 60000 5.0 Dissolved Thorium (Th) ug/L <20 20 <10 <10 10 8043311 Dissolved Uranium (U) <1.0 <0.50 <0.50 0.50 8043311 ug/L 1.0 Dissolved Zirconium (Zr) ug/L <10 10 <5.0 <5.0 5.0 8043311 RDL = Reportable Detection Limit QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

TEST SUMMARY

Bureau Veritas ID:	SVK328
Sample ID:	IG_BH03_GW016
Matrix:	Water

Collected: 2022/06/02 Shipped: Received: 2022/06/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8043739	N/A	2022/06/10	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8040466	N/A	2022/06/13	Automated Statchk
Anions	IC	8044213	N/A	2022/06/10	Surleen Kaur Romana
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8040199	N/A	2022/06/09	Anna-Kay Gooden
Fluoride	ISE	8043737	2022/06/09	2022/06/10	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8040784	2022/06/09	2022/06/14	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	8043311	N/A	2022/06/13	Rupinder Gill
Iodide, Thiosulphate, Thiocyanate	IC/EC	8056888	N/A	2022/06/12	Karen Graham
Total Extractable Elements by ICP-MS	ICP/MSMS	8082082	2022/06/23	2022/06/23	Brandon Kinnear
Silica (Reactive)	KONE	8056889	N/A	2022/06/15	Fadia Mostafa
Nitrate & Nitrite as Nitrogen in Water	LACH	8042228	N/A	2022/06/09	Samuel Law
рН	AT	8043738	2022/06/09	2022/06/10	Surinder Rai
Orthophosphate	KONE	8042224	N/A	2022/06/09	Chandra Nandlal
Sulphide	ISE/S	8041084	N/A	2022/06/09	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8042809	N/A	2022/06/09	Anna-Kay Gooden
Total Kjeldahl Nitrogen in Water	SKAL	8040710	2022/06/08	2022/06/09	Rajni Tyagi
Total Nitrogen (calculated)	CALC	8040615	N/A	2022/06/09	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8043985	N/A	2022/06/10	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	8073404	2022/06/24	2022/06/24	Shivani Shivani

Bureau Veritas ID: SVK328 Dup Sample ID: IG_BH03_GW016 Matrix: Water Collected: 2022/06/02 Shipped: Received: 2022/06/07

Collected: 2022/06/04

Received: 2022/06/07

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8043739	N/A	2022/06/10	Surinder Rai
Fluoride	ISE	8043737	2022/06/09	2022/06/10	Surinder Rai
Iodide, Thiosulphate, Thiocyanate	IC/EC	8056888	N/A	2022/06/12	Karen Graham
рН	AT	8043738	2022/06/09	2022/06/10	Surinder Rai
Total Inorganic Carbon (TIC)	TOCV/NDIR	8042809	N/A	2022/06/09	Anna-Kay Gooden

Bureau Veritas ID: SVK329 Sample ID: IG_BH01_GW033 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8043739	N/A	2022/06/10	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8040466	N/A	2022/06/13	Automated Statchk
Anions	IC	8044213	N/A	2022/06/10	Surleen Kaur Romana
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8040199	N/A	2022/06/09	Anna-Kay Gooden
Fluoride	ISE	8043737	2022/06/09	2022/06/10	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8040784	2022/06/09	2022/06/14	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	8043311	N/A	2022/06/13	Rupinder Gill

Page 6 of 14

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

TEST SUMMARY

Bureau Veritas ID:	SVK329
Sample ID:	IG_BH01_GW033
Matrix:	Water

Collected: 2022/06/04 Shipped: Received: 2022/06/07

Collected: 2022/06/04

Received: 2022/06/07

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Iodide, Thiosulphate, Thiocyanate	IC/EC	8056888	N/A	2022/06/12	Karen Graham
Total Extractable Elements by ICP-MS	ICP/MSMS	8082082	2022/06/23	2022/06/23	Brandon Kinnear
Silica (Reactive)	KONE	8056889	N/A	2022/06/15	Fadia Mostafa
Nitrate & Nitrite as Nitrogen in Water	LACH	8042228	N/A	2022/06/09	Samuel Law
рН	AT	8043738	2022/06/09	2022/06/10	Surinder Rai
Orthophosphate	KONE	8042224	N/A	2022/06/09	Chandra Nandlal
Sulphide	ISE/S	8041084	N/A	2022/06/09	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8042809	N/A	2022/06/09	Anna-Kay Gooden
Total Kjeldahl Nitrogen in Water	SKAL	8040710	2022/06/08	2022/06/09	Rajni Tyagi
Total Nitrogen (calculated)	CALC	8040615	N/A	2022/06/09	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8043985	N/A	2022/06/10	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	8072834	2022/06/24	2022/06/24	Shivani Shivani

	SVK329 Dup IG_BH01_GW033 Water					Collected: 2022/06/04 Shipped: Received: 2022/06/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Orthophosphate		KONE	8042224	N/A	2022/06/09	Chandra Nandlal

orthophosphate	RONE	0042224	N/A	2022/00/05

Bureau Veritas ID: SVK330 Sample ID: IG_BH01_GW034 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8043739	N/A	2022/06/10	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8040466	N/A	2022/06/13	Automated Statchk
Anions	IC	8044213	N/A	2022/06/10	Surleen Kaur Romana
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8040199	N/A	2022/06/09	Anna-Kay Gooden
Fluoride	ISE	8043737	2022/06/09	2022/06/10	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8040784	2022/06/09	2022/06/14	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	8043311	N/A	2022/06/13	Rupinder Gill
Iodide, Thiosulphate, Thiocyanate	IC/EC	8056888	N/A	2022/06/12	Karen Graham
Total Extractable Elements by ICP-MS	ICP/MSMS	8082082	2022/06/23	2022/06/23	Brandon Kinnear
Silica (Reactive)	KONE	8056890	N/A	2022/06/11	Fadia Mostafa
Nitrate & Nitrite as Nitrogen in Water	LACH	8042228	N/A	2022/06/09	Samuel Law
рН	AT	8043738	2022/06/09	2022/06/10	Surinder Rai
Orthophosphate	KONE	8042224	N/A	2022/06/09	Chandra Nandlal
Sulphide	ISE/S	8041084	N/A	2022/06/09	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8042809	N/A	2022/06/09	Anna-Kay Gooden
Total Kjeldahl Nitrogen in Water	SKAL	8040710	2022/06/08	2022/06/09	Rajni Tyagi
Total Nitrogen (calculated)	CALC	8040615	N/A	2022/06/09	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8043985	N/A	2022/06/10	Anna-Kay Gooden

Page 7 of 14

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	SVK330 IG_BH01_GW034 Water					Collected: Shipped: Received:	2022/06/04 2022/06/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Phosphorus (Colour	imetric)	LACH/P	8072834	2022/06/24	2022/06/24	Shivani Sh	ivani
Bureau Veritas ID: Sample ID: Matrix:	SVK330 Dup IG_BH01_GW034 Water					Collected: Shipped: Received:	2022/06/04 2022/06/07
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Extractable Elements by ICP-MS		ICP/MSMS	8082082	2022/06/23	2022/06/23	Brandon K	innear

GENERAL COMMENTS

Each te	emperature is the av	verage of u	p to three	cooler temper	ratures taken	at receipt					
	Package 1	7.3°C									
ANION	S-L: Due to high cor	ncentration	s of the ta	irget analytes, s	sample requir	ed dilution. [Detection lin	nits were adjus	ted accordi	ngly.	
TP-COI	OR-L : Due to the sa	ample matr	rix, sample	e required dilut	tion. Detectior	n limit was ad	justed accor	dingly.			
	SVK328 [IG_BH03_ Analysis: Due to the		-						n limit was a	idjusted acco	rdingly.
Metals	Analysis: Due to the	e sample m	atrix, samı	ple required dil	ilution. Detect	tion limit was	adjusted acc	cordingly.			
Sample	SVK329 [IG_BH01_	_GW033]:	Metals An	nalysis: Due to t	the sample m	atrix, sample	required dil	ution. Detectio	on limit was	adjusted acco	ordingly.
Sample	SVK330 [IG_BH01_	_GW034]:	Metals An		the sample m			ution. Detectio	on limit was	adjusted acco	ordingly.
Sample	e SVK328 [IG_BH03_ e SVK329 [IG_BH01_		odide, Thio	osulphate, Thio	ocyanate: Dete	ection limits r	aised due to	matrix interfe	erence.		
Sample	e SVK330 [IG_BH01_	_GW034] Io	odide, Thio	osulphate, Thio	ocyanate: Dete	ection limits r	aised due to	matrix interfe	rence.		

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8040199	AGD	Matrix Spike	Dissolved Organic Carbon	2022/06/09		91	%	80 - 120
8040199	AGD	Spiked Blank	Dissolved Organic Carbon	2022/06/09		95	%	80 - 120
8040199	AGD	Method Blank	Dissolved Organic Carbon	2022/06/09	<0.40		mg/L	
8040199	AGD	RPD	Dissolved Organic Carbon	2022/06/09	0.68		%	20
8040710	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/06/09		NC	%	80 - 120
8040710	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/06/09		101	%	80 - 120
8040710	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/06/09		103	%	80 - 120
8040710	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/06/09	<0.10		mg/L	
8040710	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2022/06/09	0.85		%	20
8040784	SUK	Matrix Spike	Dissolved Iron (Fe)	2022/06/14		97	%	80 - 120
			Dissolved Sulphur (S)	2022/06/14		NC	%	80 - 120
8040784	SUK	Spiked Blank	Dissolved Iron (Fe)	2022/06/14		101	%	80 - 120
			Dissolved Sulphur (S)	2022/06/14		98	%	80 - 120
8040784	SUK	Method Blank	Dissolved Iron (Fe)	2022/06/14	<0.02		mg/L	
			Dissolved Sulphur (S)	2022/06/14	<0.5		mg/L	
8041084	TAK	Matrix Spike	Sulphide	2022/06/09		90	%	80 - 120
8041084	ТАК	Spiked Blank	Sulphide	2022/06/09		93	%	80 - 120
8041084	TAK	Method Blank	Sulphide	2022/06/09	<0.020		mg/L	
8041084	TAK	RPD	Sulphide	2022/06/09	NC		%	20
8042224	C_N	Matrix Spike [SVK329-01]	Orthophosphate (P)	2022/06/09		123	%	75 - 125
8042224	C_N	Spiked Blank	Orthophosphate (P)	2022/06/09		99	%	80 - 120
8042224	C_N	Method Blank	Orthophosphate (P)	2022/06/09	<0.010		mg/L	
8042224	C_N	RPD [SVK329-01]	Orthophosphate (P)	2022/06/09	17		%	25
8042228	S1L	Matrix Spike	Nitrite (N)	2022/06/09		104	%	80 - 120
			Nitrate (N)	2022/06/09		NC	%	80 - 120
8042228	S1L	Spiked Blank	Nitrite (N)	2022/06/09		106	%	80 - 120
			Nitrate (N)	2022/06/09		100	%	80 - 120
8042228	S1L	Method Blank	Nitrite (N)	2022/06/09	<0.010		mg/L	
			Nitrate (N)	2022/06/09	<0.10		mg/L	
8042228	S1L	RPD	Nitrate (N)	2022/06/09	0.81		%	20
8042809	AGD	Matrix Spike [SVK328-01]	Total Inorganic Carbon (C)	2022/06/09		94	%	80 - 120
8042809	AGD	Spiked Blank	Total Inorganic Carbon (C)	2022/06/09		98	%	80 - 120
8042809	AGD	Method Blank	Total Inorganic Carbon (C)	2022/06/09	<1		mg/L	
8042809	AGD	RPD [SVK328-01]	Total Inorganic Carbon (C)	2022/06/09	5.2		%	20
8043311	RG4	Matrix Spike	Dissolved Aluminum (Al)	2022/06/13		103	%	80 - 120
			Dissolved Arsenic (As)	2022/06/13		102	%	80 - 120
			Dissolved Barium (Ba)	2022/06/13		102	%	80 - 120
			Dissolved Bismuth (Bi)	2022/06/13		94	%	80 - 120
			Dissolved Boron (B)	2022/06/13		107	%	80 - 120
			Dissolved Cadmium (Cd)	2022/06/13		102	%	80 - 120
			Dissolved Calcium (Ca)	2022/06/13		NC	%	80 - 120
			Dissolved Cesium (Cs)	2022/06/13		104	%	80 - 120
			Dissolved Chromium (Cr)	2022/06/13		102	%	80 - 120
			Dissolved Cobalt (Co)	2022/06/13		101	%	80 - 120
			Dissolved Copper (Cu)	2022/06/13		101	%	80 - 120
			Dissolved Iron (Fe)	2022/06/13		102	%	80 - 120
			Dissolved Lead (Pb)	2022/06/13		94	%	80 - 120
			Dissolved Lithium (Li)	2022/06/13		100	%	80 - 120
			Dissolved Magnesium (Mg)	2022/06/13		100	%	80 - 120
			Dissolved Nickel (Ni)	2022/06/13		102	%	80 - 120

Page 10 of 14

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Duton		LO . <i>I</i> P =	Dissolved Potassium (K)	2022/06/13	10100	106	%	80 - 120
			Dissolved Rubidium (Rb)	2022/06/13		101	%	80 - 120
			Dissolved Selenium (Se)	2022/06/13		101	%	80 - 120
			Dissolved Silicon (Si)	2022/06/13		105	%	80 - 120
			Dissolved Sodium (Na)	2022/06/13		NC	%	80 - 120
			Dissolved Strontium (Sr)	2022/06/13		102	%	80 - 120
			Dissolved Thorium (Th)	2022/06/13		99	%	80 - 120
			Dissolved Uranium (U)	2022/06/13		99	%	80 - 120
			Dissolved Zirconium (Zr)	2022/06/13		107	%	80 - 120
8043311	RG4	Spiked Blank	Dissolved Aluminum (Al)	2022/06/13		99	%	80 - 120
0010011		opined blann	Dissolved Arsenic (As)	2022/06/13		98	%	80 - 120
			Dissolved Barium (Ba)	2022/06/13		98	%	80 - 120
			Dissolved Bismuth (Bi)	2022/06/13		95	%	80 - 120
			Dissolved Boron (B)	2022/06/13		99	%	80 - 120
			Dissolved Cadmium (Cd)	2022/06/13		98	%	80 - 120
			Dissolved Calcium (Ca)	2022/06/13		100	%	80 - 120
			Dissolved Cesium (Cs)	2022/06/13		100	%	80 - 120
			Dissolved Chromium (Cr)	2022/06/13		97	%	80 - 120
			Dissolved Cobalt (Co)	2022/06/13		98	%	80 - 120
			Dissolved Copper (Cu)	2022/06/13		96	%	80 - 120
			Dissolved Iron (Fe)	2022/06/13		99	%	80 - 120
			Dissolved Holi (Fe)	2022/06/13		95	%	80 - 120
			Dissolved Lithium (Li)	2022/06/13		100	%	80 - 120
			Dissolved Magnesium (Mg)	2022/06/13		96	%	80 - 120
			Dissolved Nickel (Ni)	2022/06/13		96	%	80 - 120
			Dissolved Potassium (K)	2022/06/13		99	%	80 - 120
			Dissolved Rubidium (R)	2022/06/13		96	%	80 - 120
			Dissolved Kublicum (Kb)	2022/06/13		99	%	80 - 120
			Dissolved Selendin (Se)	2022/06/13		99	%	80 - 120
			Dissolved Solium (Si)	2022/06/13		95	%	80 - 120
			Dissolved Strontium (Sr)	2022/06/13		98	%	80 - 120 80 - 120
			Dissolved Strontum (Sr)	2022/06/13		98	%	80 - 120
			Dissolved Uranium (U)	2022/06/13		98 99	%	80 - 120
			Dissolved Zirconium (Zr)	2022/06/13		99	%	80 - 120 80 - 120
0042211		Mathad Blank	. ,		-10	99		80 - 120
8043311	RG4	Method Blank	Dissolved Aluminum (Al) Dissolved Arsenic (As)	2022/06/13	<4.9		ug/L	
			Dissolved Arsenic (As) Dissolved Barium (Ba)	2022/06/13 2022/06/13	<1.0 <2.0		ug/L	
			. ,				ug/L	
			Dissolved Bismuth (Bi)	2022/06/13	<1.0		ug/L	
			Dissolved Boron (B)	2022/06/13	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/06/13	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/06/13	<200		ug/L	
			Dissolved Cesium (Cs)	2022/06/13	<0.20		ug/L	
			Dissolved Chromium (Cr)	2022/06/13	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/06/13	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/06/13	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/06/13	<100		ug/L	
			Dissolved Lead (Pb)	2022/06/13	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/06/13	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/06/13	<50		ug/L	
			Dissolved Nickel (Ni)	2022/06/13	<1.0		ug/L	

Page 11 of 14

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Potassium (K)	2022/06/13	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/06/13	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/06/13	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/06/13	<50		ug/L	
			Dissolved Sodium (Na)	2022/06/13	<100		ug/L	
			Dissolved Strontium (Sr)	2022/06/13	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/06/13	<2.0		ug/L	
			Dissolved Uranium (U)	2022/06/13	<0.10		ug/L	
			Dissolved Zirconium (Zr)	2022/06/13	<1.0		ug/L	
8043311	RG4	RPD	Dissolved Aluminum (Al)	2022/06/13	4.5		%	20
			Dissolved Arsenic (As)	2022/06/13	NC		%	20
			Dissolved Barium (Ba)	2022/06/13	3.8		%	20
			Dissolved Bismuth (Bi)	2022/06/13	NC		%	20
			Dissolved Boron (B)	2022/06/13	1.8		%	20
			Dissolved Cadmium (Cd)	2022/06/13	NC		%	20
			Dissolved Calcium (Ca)	2022/06/13	0.44		%	20
			Dissolved Chromium (Cr)	2022/06/13	NC		%	20
			Dissolved Cobalt (Co)	2022/06/13	NC		%	20
			Dissolved Copper (Cu)	2022/06/13	1.8		%	20
			Dissolved Iron (Fe)	2022/06/13	NC		%	20
			Dissolved Lead (Pb)	2022/06/13	NC		%	20
			Dissolved Lithium (Li)	2022/06/13	NC		%	20
			Dissolved Magnesium (Mg)	2022/06/13	0.64		%	20
			Dissolved Nickel (Ni)	2022/06/13	NC		%	20
			Dissolved Potassium (K)	2022/06/13	1.8		%	20
			Dissolved Selenium (Se)	2022/06/13	NC		%	20
			Dissolved Silicon (Si)	2022/06/13	0.14		%	20
			Dissolved Sodium (Na)	2022/06/13	0.81		%	20
			Dissolved Strontium (Sr)	2022/06/13	1.5		%	20
			Dissolved Uranium (U)	2022/06/13	8.4		%	20
			Dissolved Zirconium (Zr)	2022/06/13	NC		%	20
8043737	SAU	Matrix Spike [SVK328-01]	Fluoride (F-)	2022/06/10		33 (1)	%	80 - 120
8043737	SAU	Spiked Blank	Fluoride (F-)	2022/06/10		104	%	80 - 120
8043737	SAU	Method Blank	Fluoride (F-)	2022/06/10	<0.10		mg/L	
8043737	SAU	RPD [SVK328-01]	Fluoride (F-)	2022/06/10	6.7		%	20
8043738	SAU	Spiked Blank	pH	2022/06/10		102	%	98 - 103
8043738	SAU	RPD [SVK328-01]	pH	2022/06/10	2.3		%	N/A
8043739	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2022/06/10	2.0	95	%	85 - 115
8043739	SAU	Method Blank	Alkalinity (Total as CaCO3)	2022/06/10	<1.0		mg/L	
8043739	SAU	RPD [SVK328-01]	Alkalinity (Total as CaCO3)	2022/06/10	4.1		%	20
8043985	AGD	Matrix Spike	Total Organic Carbon (TOC)	2022/06/10		NC	%	80 - 120
8043985	AGD	Spiked Blank	Total Organic Carbon (TOC)	2022/06/10		97	%	80 - 120
8043985	AGD	Method Blank	Total Organic Carbon (TOC)	2022/06/10	<0.40	57	mg/L	50 120
8043985	AGD	RPD	Total Organic Carbon (TOC)	2022/06/10	0.95		۳۳۵/۲ %	20
8043383	SUR	Matrix Spike	Dissolved Chloride (Cl-)	2022/06/10	0.55	90	%	80 - 120
	501		Dissolved Bromide (Br-)	2022/06/10		91	%	80 - 120
			Dissolved Sulphate (SO4)	2022/06/10		92	%	80 - 120
8044213	SUR	Spiked Blank	Dissolved Scipitate (SO4) Dissolved Chloride (Cl-)	2022/06/10		94	%	70 - 130
0044210	301		Dissolved Bromide (Br-)	2022/06/10		94 96	%	70 - 130 80 - 120
			Dissolved Sulphate (SO4)	2022/06/10		96 97	%	80 - 120 80 - 120

Page 12 of 14

04/00

Geofirma Engineering Ltd Client Project #: 20-203-1 Site Location: IGNACE, ON Your P.O. #: 202031-004 Sampler Initials: AC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8044213	SUR	Method Blank	Dissolved Chloride (Cl-)	2022/06/10	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/06/10	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/06/10	<1.0		mg/L	
8044213	SUR	RPD	Dissolved Bromide (Br-)	2022/06/10	NC		%	20
8056888	KGR	Matrix Spike [SVK328-01]	Dissolved lodide	2022/06/12		118	%	80 - 120
8056888	KGR	Spiked Blank	Dissolved Iodide	2022/06/12		110	%	80 - 120
8056888	KGR	Method Blank	Dissolved lodide	2022/06/12	<0.10		mg/L	
8056888	KGR	RPD [SVK328-01]	Dissolved lodide	2022/06/12	NC		%	20
8056889	FM0	Matrix Spike [SVK328-02]	Reactive Silica (SiO2)	2022/06/15		NC	%	80 - 120
8056889	FM0	Spiked Blank	Reactive Silica (SiO2)	2022/06/15		100	%	80 - 120
8056889	FM0	Method Blank	Reactive Silica (SiO2)	2022/06/15	<0.050		mg/L	
8056890	FM0	Matrix Spike	Reactive Silica (SiO2)	2022/06/11		113	%	80 - 120
8056890	FM0	Spiked Blank	Reactive Silica (SiO2)	2022/06/11		100	%	80 - 120
8056890	FM0	Method Blank	Reactive Silica (SiO2)	2022/06/11	<0.050		mg/L	
8072834	SSV	Matrix Spike	Total Phosphorus	2022/06/24		98	%	80 - 120
8072834	SSV	QC Standard	Total Phosphorus	2022/06/24		104	%	80 - 120
8072834	SSV	Spiked Blank	Total Phosphorus	2022/06/24		101	%	80 - 120
8072834	SSV	Method Blank	Total Phosphorus	2022/06/24	<0.020		mg/L	
8072834	SSV	RPD	Total Phosphorus	2022/06/24	2.0		%	20
8073404	SSV	Matrix Spike	Total Phosphorus	2022/06/24		99	%	80 - 120
8073404	SSV	QC Standard	Total Phosphorus	2022/06/24		100	%	80 - 120
8073404	SSV	Spiked Blank	Total Phosphorus	2022/06/24		96	%	80 - 120
8073404	SSV	Method Blank	Total Phosphorus	2022/06/24	<0.020		mg/L	
8073404	SSV	RPD	Total Phosphorus	2022/06/24	2.1		%	20
8082082	BKI	Spiked Blank	Total Ruthenium (Ru)	2022/06/23		103	%	70 - 130
8082082	BKI	Method Blank	Total Ruthenium (Ru)	2022/06/23	<2.0		ug/L	
8082082	BKI	RPD [SVK330-04]	Total Ruthenium (Ru)	2022/06/23	NC		%	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Enagen

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Zinel

Zineb El Ouali

Zineb El Ouali, Analyst 1

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Isotope Analyses for: Geofirma Engineering LTD

IT² FILE # 220237

2023-01-19

Approved by:

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1Z5 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Reported: 2022-08-08 Revised: 2023-01-19

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. KIR 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	220237
Project Number:	<u>20-203-1</u>

#	Client ID	Sample #	Sampling		E ³ H	Result	± 1σ	Repeat	± 1σ
			Date	Time			TU	TU	
1	IG_BH05_GW002	99471	2022-05-29/30	various	Х	3.7	1.1		
2	IG_BH05_GW004	99472	2022-05-30	12:35	Х	1.9	1.1	<0.8	0.9
3	IG_BH03_GW016	99473	2022-06-2/3	various	Х	2.1	1.0		
4	IG_BH01_GW033	99474	2022-06-4/5/6	various	Х	1.6	1.0		
5	IG_BH01_GW034	99475	2022-06-4/5/6	various	Х	1.6	1.0		

Repeated on Dec. 2, 2022

E³H ANALYSES

Tritium is reported in Tritium Units.

1TU = 3.221 Picocurries/L per IAEA, 2000 Report.

1TU = 0.11919 Becquerels/L per IAEA, 2000 Report.

Approved by:

lan S-Stash ٤

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

File Number:	220237
Project Number:	20-203-1

#	Client ID	Sample #	Sampling		δ ¹⁸ Ο	Aver	Stdv	$\delta^2 H$	Aver	Stdv
			Date	Time	H ₂ O	VS	MOW	H ₂ O	VS	MOW
1	IG_BH05_GW002	99471	2022-05-29/30	various	Х	-10.85	0.02	Х	-78.0	0.2
2	IG_BH05_GW004	99472	2022-05-30	12:35	Х	-13.18	0.04	х	-88.7	0.3
3	IG_BH03_GW016	99473	2022-06-2/3	various	Х	-9.89	0.03	х	-61.2	0.2
4	IG_BH01_GW033	99474	2022-06-4/5/6	various	Х	-12.39	0.02	х	-84.9	0.3
5	IG_BH01_GW034	99475	2022-06-4/5/6	various	Х	-12.38	0.05	Х	-85.2	0.2

¹⁸O & ²H (CRDS)

Instrument Used: Cavity Ring Down Spectroscopy (CRDS) CRDS (Model L2130-i) (Picarro, California, USA). Standard Used: Π²-12C / Π²-13B / Π²-14B Calibrated with IAEA Standards (V-SMOW, SLAP, and GISP) Typical Standard deviation:

 $({}^{18}O \pm 0.1\%)$ $({}^{2}H \pm 1\%)$

Approved by:

lan S-Stash 2 υ

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2Isotopes.com Website: www.it2Isotopes.com

<u>File Number:</u> Project Number:		<u>220237</u> 20-203-1	
#	Client ID	Sample #	Samp

#	Client ID	Sample #	Sampling		⁸⁷ Sr/ ⁸⁶ Sr	Result	StdErr (abs)	StdDev (abs)	Repeat	StdErr (abs)	StdDev (abs)
			Date	Time							
1	IG_BH05_GW002	99471	2022-05-29/30	various	Х	0.71603	4.829E-06	5.992E-05			
2	IG_BH05_GW004	99472	2022-05-30	12:35							
3	IG_BH03_GW016	99473	2022-06-2/3	various	Х	0.71821	5.291E-06	6.524E-05			
4	IG_BH01_GW033	99474	2022-06-4/5/6	various	Х	0.71710	5.496E-06	6.908E-05	0.71711	6.213E-06	8.219E-05
5	IG_BH01_GW034	99475	2022-06-4/5/6	various	Х	0.71701	4.045E-06	5.117E-05			

⁸⁷Sr/⁸⁶Sr ANALYSES

Instrument Used:

Thermal Ionization Mass Spectrometry (TIMS), TI-Box, spectromat, Germany Standard Used:

NIST-987

Typical Standard deviation:

 ± 0.0001

Approved by: Orfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

File Number:	220237
Project Number:	<u>20-203-1</u>

#	Client ID	Sample #	Sampling		δ ³⁷ Cl	Result	Stdv
			Date	Time			
1	IG_BH05_GW002	99471	2022-05-29/30	various	Х	-0.22	0.12
2	IG_BH05_GW004	99472	2022-05-30	12:35			
3	IG_BH03_GW016	99473	2022-06-2/3	various	Х	-0.13	0.10
4	IG_BH01_GW033	99474	2022-06-4/5/6	various	Х	-0.30	0.08
5	IG_BH01_GW034	99475	2022-06-4/5/6	various	Х	-0.17	0.13

³⁷CI ANALYSES

Instrument Used:

Isotope Ratio Mass Spectrometry (IRMS) - MAT 253, Thermo Scientific, Germany Coupled with an Agilent 6890 Gas Chromatograph (GC)

Standard Used:

SMOC

Typical Standard deviation:

 $\pm \ 0.15\%$

Approved by: Irfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2Isotopes.com Website: www.it2Isotopes.com

File Number:	220237
Project Number	<u>20-203-1</u>

#	Client ID	Sample #	Sampling		δ ¹³ C	Result	Repeat	¹⁴ C		Re	sult	
			Date	Time	DIC	PDB		DIC	14C yr BP	±	F14C	±
1	IG_BH05_GW002	99471	2022-05-29/30	various	Х	-24.2		х	780	28	0.9075	0.0032
2	IG_BH05_GW004	99472	2022-05-30	12:35	Х	-11.0		х	7651	30	0.3858	0.0015
3	IG_BH03_GW016	99473	2022-06-2/3	various	Х	-18.5	-18.6	х	5632	31	0.4960	0.0019
4	IG_BH01_GW033	99474	2022-06-4/5/6	various	Х	-13.1		х	3940	32	0.6124	0.0024
5	IG_BH01_GW034	99475	2022-06-4/5/6	various	Х	-13.8		Х	3534	31	0.6441	0.0025

¹³C DIC Analyses

Instrument Used: Finnigan MAT, DeltaPlus XL IRMS, Germany. Standard Used: IT²-27/IT²-34/ NBS-18/NBS-19 Typical Standard deviation: ± 0.2 ‰

¹⁴C DIC Analyses

Instrument Used: AMS (Accelerator Mass Spectrometry) Standard Used: OX1: 1.05 x e-10 OX2: 1.35 x e-10 C6: 1.5 x e-10 C7: 0.5 x e-10 **Typical Standard deviation:** 5 to 10% of Standard values listed above

Reporting of Data

In this analysis report, we have followed the conventions recommended by Millard (2014).

Radiocarbon Analysis

Radiocarbon analyses are performed on a 3MV tandem accelerator mass spectrometer built by High Voltage Engineering (HVE). 12,13,14C+3 ions are measured at 2.5 MV terminal voltage with Ar stripping. The fraction modern carbon, F14C, is calculated according to Reimer et al. (2004) as the ratio of the sample 14C/12C ratio to the standard 14C/12C ratio (in our case Ox-II) measured in the same data block. Both 14C/12C ratios are background-corrected and the result is corrected for spectrometer and preparation fractionation using the AMS measured 13C/12C ratio and is normalized to δ 13C (PDB). Radiocarbon ages are calculated as -8033ln(F14C) and reported in 14C yr BP (BP=AD 1950) as described by Stuiver and Polach (1977). The errors on 14C ages (1\sigma) are based on counting statistics and 14C/12C and 13C/12C variation between data blocks. We do not report δ 13C as it is measured on the AMS and contains machine fractionation.

D14C (defined as per mil Depletion or Enrichment Relative to Standard Normalized for Isotope Fractionation) are calculated as $(F14C - 1) \cdot 1000$.

 $\Delta 14C$ (defined as age corrected D14C) are calculated as (F14C·e(1950-y)/8267) - 1) · 1000, where y = year of measurement.

Approved by:

lan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

André E. Lalonde AMS Laboratory

Radiohalides Laboratory

www.ams.uottawa.ca

Analysis Report

SUBMITTER SUMMARY								
Submitter Name:	: David Zal Affiliation		Research Assistant					
Submitter Email:	dzal@uottawa.ca	Street Address:	25 Templeton Street					
Submitter Phone:	613-652-5800 ext 8699	City, Province:	Ottawa, Ontario					
Principal Investigator Name:	Sean Sterling	Postal Code:	K1N 7N9					
Principal Investigator Email:	ssterling@geofirma.com	Country:	Canada					
Principal Investigator Phone:	n/a	Date Submitted:	2021-11-19					

PROJECT INFORMATION					
Project Title:	n/a				
Country:	n/a				
Site Name:	Ignace				
Collection Date:	n/a				

SUBMISSION TIMELINE					
Date samples received (YYYY/MM/DD)	Report date (YYYY/MM/DD)				
2022-06-23	2022-10-28				

ANA	LYTICAL NOTES

Please note: Unless otherwise specified in the submission form, any remaining sample material will be held for a period of six (6) months, after which time it will be discarded.

CONTACT INFORMATION					
Should you have an	Should you have any questions regarding your data or sample preparation please contact:				
Name: Barbara Francisco					
Email:	<u>balvesfr@uottawa.ca</u>				
Phone:	613-562-5800 (6830)				

Researchers are asked to report any publications that include data generated at the AEL AMS facility. Publication notifications should be sent to <u>ael-ams@uottawa.ca</u>. Published data should include the unique UO identifier number provided in this analytical report.

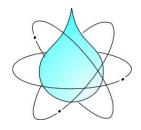
Summary

Analysis Report

Table 1. Analysis Results for Water Samples

	Submitter's Sample Sample I.D. Weight (g)	Concentration	Mass of lodide	¹²⁹ I/ ¹²⁷ I Ratio Measured (<i>x10</i> ⁻¹⁴) *		129 I Concentration (x10 ⁶ atoms/g)		Original Ratio (OR) (x10 ⁻⁹)**		
		Weight (g)	Measured (ppb)	Carrier Added (mg)	Ratio	Standard Deviation	Concentration	Standard Deviation	OR	Standard Deviation
UOH-4103	IG_BH05_GW002	209.53	367.33	1.99	1.18E+02	8.26E+00	5.53E-02	3.86E-03	3.17E-02	2.72E-03
UOH-4104	IG_BH03_GW016	205.07	1705.11	1.99	3.13E+02	1.12E+01	1.69E-01	6.07E-03	2.09E-02	1.29E-03
UOH-4105	IG_BH01_GW034	202.02	722.03	1.99	8.72E+01	3.86E+00	4.37E-02	1.93E-03	1.28E-02	8.51E-04
UOH-4106	IG_BH01_GW033	206.01	760.74	1.99	9.71E+01	4.05E+00	4.80E-02	2.00E-03	1.33E-02	8.65E-04

Note: $*^{129} I/^{127} I$ Ratio Measured includes both sample and carrier added. **Note 2:** $**^{129} I/^{127} I$ Ratio calculated before added the carrier.


André E. Lalonde AMS Laboratory Radiohalides Laboratory www.ams.uottawa.ca

Analysis Report

AMS Measurements

The ¹²⁹I analysis are performed on a 3MV accelerator mass spectrometer (AMS) built by High Voltage Engineering (HVE). ¹²⁹I⁺² ions are measured at 2.5 MV terminal voltage Ar stripping. The errors represent 68.3% confidence limits, based on 1 measurement each. These measurements were normalized with respect to ISO-6II in-house reference material for which ¹²⁹I/¹²⁷I = (5.71 ± 0.01)x10⁻¹², by calibration with the NIST 3230 I and II standard reference material. The AMS system background was monitored with our standard NaI blank material and found to be normal. No background corrections were applied to these data. A NaI blank measured on October 8th, 2022 set of samples yielded a ¹²⁹I/¹²⁷I ratio of (1.5 ± 0.2) x10⁻¹⁴.

Hydrogeochemistry Laboratory Analytical Report - Clark group

University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

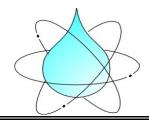
Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description				
Site	Ignace			
Туре	Water			
Container	Nalgene			
Volume	1L			

Analysis	
Analyte	³⁶ Cl in dissolved Cl
Method	AMS
Facility	Hydrogeochemistry Laboratory, University of Ottawa
Report Approved by	Jalah Ian Clark, P.Geo.

Timeline				
Samples received	Analyses completed	Report date		
Decmeber 09, 2020 (2)				
March 25, 2021 (2)				
October 01, 2021 (2)		Co		
December 13, 2021 (3)	36Cl	September 20, 2022		
April 06, 2022 (3)				
June 23, 2022 (4)				


Notes

Samples were collected in the field by Geofirma staff. Bottles were received sealed and in good condition. Samples were extracted as Cl⁻ from solution on an anion exchange column, eluted and precipitated as AgCl target material. AMS analysis was undertaken on a 6 MV tandem accelerator mass spectrometer at ETH Zurich and PRIME Lab, Purdue

Report prepared for:

Analytical Report - Clark group

Sample	Lab ID	Comment	Cl (mg/L)	³⁶ CI/CI final (10 ⁻¹⁵)	±	³⁶ Cl atoms/L (10 ⁶)	±
IG_BH01_GW033	PRIME	prepared at uOttawa	9000	15.0	0.4	2290	61.1
IG_BH01_GW034	PRIME	prepared at uOttawa	9700	14.0	2.3	2304	378.5
IG_BH03_GW016	PRIME	prepared at uOttawa	20000	16.7	1.0	5666	339.3
IG_BH05_GW002	PRIME	prepared at uOttawa	5200	13.6	0.4	1200	35.3

Hydrogeochemistry Laboratory Analytical Report - Clark group University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description					
Site	Ignace				
Туре	Noble gas				
Container	Nalgene				
Volume	Cu tubes				
Report Approved by	Jack Ian Clark, P.Geo.				

Analysis	
Analyte	Noble gases
Method	Mass spectrometry
Facility	Noble gas laboratory, University of Utah

Timeline							
Samples received	Analyses completed	Report date					
		Rev 0: 2022-10-26					
2022 Q1 and Q2	He, Ne, Ar, Kr, Xe	Rev 1: 2023-03-30					
		Rev 2: 2024-01-04					

Notes

Gas extraction from water follows the procedure outlined in Aeschbach-Hertig & Solomon 2013. Please see sheet tab titled "Notes" for further explanation of the noble gas analysis.

Report prepared for:

Analytica	I Report -	Clark group
-----------	------------	--------------------

Quarter	Sample ID	Mass g	He3 He4		x/Ra	НеТ	otal		
			cc/g	<u>±</u>	cc/g	<u>+</u>		cc/g	±
2022 Q1	IG_BH03_GW013	4.3	6.28E-11	6.28E-13	2.17E-03	2.17E-05	0.0209	2.17E-03	2.17E-05
2022 Q1	IG_BH05_GW001	4.5	4.00E-12	4.00E-14	1.49E-04	1.49E-06	0.0194	1.49E-04	1.49E-06
2022 Q1	IG_BH01_GW032	4.5	5.66E-13	5.66E-15	1.76E-05	1.76E-07	0.0232	1.76E-05	1.76E-07
2022 Q2	IG_BH01_GW033	3.6	4.68E-11	4.68E-13	1.52E-03	1.52E-05	0.0222	1.52E-03	1.52E-05
2022 Q2	IG_BH01_GW034	3.1	4.77E-11	4.77E-13	1.62E-03	1.62E-05	0.0213	1.62E-03	1.62E-05
2022 Q2	IG_BH05_GW002	4.7	1.23E-12	1.23E-14	4.67E-05	4.67E-07	0.0190	4.67E-05	4.67E-07
2022 Q2	IG_BH03_GW016	4.6	1.31E-12	1.31E-14	4.45E-05	4.45E-07	0.0213	4.45E-05	4.45E-07

Report prepared for:

Analyt	ical R	eport -	Clar	k group
--------	--------	---------	------	---------

Quarter	Sample ID	Ne20		Ne22		NeTotal		20Ne/22Ne	Ar36
		cc/g	<u>±</u>	cc/g	<u>±</u>	cc/g	\pm		
2022 Q1	IG_BH03_GW013	2.57E-07	7.71E-09	2.55E-08	7.65E-10	2.82E-07	8.47E-09	10.070	7.02E-07
2022 Q1	IG_BH05_GW001	1.49E-07	4.46E-09	1.52E-08	4.55E-10	1.64E-07	4.91E-09	9.801	1.05E-06
2022 Q1	IG_BH01_GW032	1.25E-07	3.74E-09	1.17E-08	3.52E-10	1.36E-07	4.09E-09	10.628	5.44E-07
2022 Q2	IG_BH01_GW033	2.71E-06	8.13E-08	2.67E-07	8.01E-09	2.98E-06	8.93E-08	10.149	3.76E-06
2022 Q2	IG_BH01_GW034	3.72E-06	1.11E-07	3.76E-07	1.13E-08	4.09E-06	1.23E-07	9.890	5.82E-06
2022 Q2	IG_BH05_GW002	1.10E-07	3.31E-09	1.16E-08	3.48E-10	1.22E-07	3.66E-09	9.517	5.79E-07
2022 Q2	IG_BH03_GW016	8.91E-08	2.67E-09	7.91E-09	2.37E-10	9.70E-08	2.91E-09	11.270	4.64E-07

Report prepared for:

Analy	vtical	Report -	C	lar	k group
And	ricui	neport	-		n Broup

Quarter	Sample ID	Ar40	ArTotal		36Ar/40Ar	KrTotal		XeTotal	
			cc/g	<u>±</u>		cc/g	±	cc/g	<u>±</u>
2022 Q1	IG_BH03_GW013	3.90E-03	3.90E-03	1.17E-04	1.80E-04	4.99E-08	2.50E-09	7.64E-09	3.82E-10
2022 Q1	IG_BH05_GW001	4.23E-04	4.24E-04	1.27E-05	2.48E-03	7.97E-08	3.99E-09	1.24E-08	6.21E-10
2022 Q1	IG_BH01_GW032	2.54E-04	2.55E-04	7.65E-06	2.14E-03	4.27E-08	2.13E-09	6.68E-09	3.34E-10
2022 Q2	IG_BH01_GW033	2.64E-03	2.64E-03	7.93E-05	1.42E-03	1.76E-07	8.82E-09	1.76E-08	8.79E-10
2022 Q2	IG_BH01_GW034	3.30E-03	3.31E-03	9.93E-05	1.76E-03	2.52E-07	1.26E-08	2.29E-08	1.14E-09
2022 Q2	IG_BH05_GW002	3.44E-04	3.44E-04	1.03E-05	1.68E-03	4.72E-08	2.36E-09	7.72E-09	3.86E-10
2022 Q2	IG_BH03_GW016	4.99E-04	4.99E-04	1.50E-05	9.31E-04	2.69E-08	1.35E-09	4.32E-09	2.16E-10

- cc/g cc of noble gas at STP per gram of sample solution
 - ± analytical uncertainty, as cc/g
- xRa 3He/4He ratio in sample normalized to the ratio in Air (1.38E–6)

Noble Gas Analysis

Gas extraction from water follows the procedure outlined in *Aeschbach-Hertig & Solomon 2013*. This involves gas extraction from copper tube water samples under vacuum by water vapour sweep into a stainless steel gas flask. The extracted gases are let into a sample preparation line and cryogenically separated. For light noble gases (He and Ne), standards and samples are introduced into an ultra-high vacuum preparation system where bulk (N₂, O₂) and trace gases (CO₂, Ar) are removed using liquid N₂ charcoal traps and two SAES getters, followed by analysis on a Thermo Scientific Helix SFT Noble Gas Mass Spectrometer. Internal standards using precise aliquots from a tank of clean dry atmospheric air are run each morning and during analysis to measure instrument drift and sensitivity. Internal standards of air equilibrated water (AEW) are also run as internal checks on the water extraction procedure and analyses. Following purification, He is separated from Ne using a He cooled cryo trap that cycles down to 5K, before releasing He at 28K and Ne at 70K. He and Ne are introduced separately into the Helix SFT operating under static vacuum. Each analysis undergoes a mass peak center, followed by separate integrations on each mass peak. These integrations generate a linear regression used to calculate peak intensity at time zero (when the sample was released into the mass spectrometer).For Ar, Kr and Xe, gases, residual water vapour was removed cryogenically prior to gettering of reactive gases and cryogenic separation of Kr and Xe from Ar. Abundance analysis was done by guadrupole mass spectrometry at the University of Utah Noble Gas Lab.

References:

Aeschbach-Hertig W., Solomon D.K. (2013) Noble Gas Thermometry in Groundwater Hydrology. In: Burnard P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg

2022 Q3 (September)

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/11/25 Report #: R7404044 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2R5589

Received: 2022/09/22, 11:12

Sample Matrix: Ground Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2022/09/27	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/09/27	CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/09/28	CAM SOP-00102	APHA 4500-CO2 D
Anions	2	N/A	2022/09/28	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (3)	2	N/A	2022/09/26	CAM SOP-00446	SM 23 5310 B m
Fluoride	1	2022/09/24	2022/09/27	CAM SOP-00449	SM 23 4500-F C m
Fluoride	1	2022/09/26	2022/09/27	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	2	2022/09/26	2022/09/28	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	2	N/A	2022/09/27	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICP	2	2022/09/27	2022/09/29	CAM SOP-00408	EPA 6010D m
lodide, Thiosulphate, Thiocyanate (1)	2	N/A	2022/09/30	CAL SOP-00057	Dionex #034035 R09 m
Total Extractable Elements by ICP-MS (2, 4)	2	2022/10/21	2022/10/26	STL SOP-00071	MA.200–Mét. 1.2 R5 m
Silica (Reactive) (1)	2	N/A	2022/09/30	AB SOP-00011	EPA370.1 R1978 m
Total Ammonia-N	2	N/A	2022/09/27	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (5)	1	N/A	2022/09/26	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrate & Nitrite as Nitrogen in Water (5)	1	N/A	2022/09/28	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/09/24	2022/09/27	CAM SOP-00413	SM 4500H+ B m
рН	1	2022/09/26	2022/09/27	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2022/09/26	CAM SOP-00461	EPA 365.1 m
Orthophosphate	1	N/A	2022/09/28	CAM SOP-00461	EPA 365.1 m
Sulphide	2	N/A	2022/09/26	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	2	N/A	2022/09/28	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	1	2022/11/18	2022/11/18	CAM SOP-00938	OMOE E3516 m
Total Kjeldahl Nitrogen in Water	1	2022/11/21	2022/11/22	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	1	N/A	2022/09/28	Auto Calc.	
Total Nitrogen (calculated)	1	N/A	2022/09/29	Auto Calc.	
Total Organic Carbon (TOC) (6)	2	N/A	2022/09/28	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	1	2022/09/26	2022/09/28	CAM SOP-00407	SM 23 4500-P I
Total Phosphorus (Colourimetric)	1	2022/09/26	2022/09/29	CAM SOP-00407	SM 23 4500-P I

Page 1 of 14

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/11/25 Report #: R7404044 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2R5589 Received: 2022/09/22, 11:12 Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) This test was performed by Bureau Veritas Montreal., 889 Montée de Liesse , Ville St-Laurent, QC, H4T 1P5

(3) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(4) Non-accredited test method

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Page 2 of 14

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/11/25 Report #: R7404044 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2R5589 Received: 2022/09/22, 11:12

Encryption Key

Katherine Szozda Project Manager 25 Nov 2022 14:50:50 Katherine Szzda

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 3 Page 3 of 14 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF GROUND WATER

Bureau Veritas ID		TUY161			TUY161			TUY162		
Sampling Date		2022/09/20			2022/09/20			2022/09/20		
	UNITS	IG_BH03_GW017	RDL	QC Batch	IG_BH03_GW017 Lab-Dup	RDL	QC Batch	IG_BH03_GW018	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	58	1.0	8244079				64	1.0	8244079
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8244079				<1.0	1.0	8244079
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8244079				<1.0	1.0	8244079
Total Nitrogen (N)	mg/L	4.0	2.0	8244236				5.9	5.0	8244236
Inorganics								•		
Total Ammonia-N	mg/L	0.63	0.050	8247760				0.61	0.050	8247760
Fluoride (F-)	mg/L	0.10	0.10	8247892				0.11	0.10	8245864
Total Inorganic Carbon (C)	mg/L	4	1	8249575	4	1	8249575	4	1	8249575
Dissolved lodide	mg/L	<10 (1)	10	8262296				<10 (1)	10	8262296
Total Kjeldahl Nitrogen (TKN)	mg/L	4.0	2.0	8354415				5.9	5.0	8352019
Dissolved Organic Carbon	mg/L	110	2.0	8246984				110	2.0	8246984
Total Organic Carbon (TOC)	mg/L	110	2.0	8247251				110	2.0	8247251
Orthophosphate (P)	mg/L	0.65	0.010	8247777				0.88	0.010	8245557
рН	pН	6.32		8247907				6.71		8245866
Total Phosphorus	mg/L	1.3	0.020	8248571				1.2	0.020	8248571
Reactive Silica (SiO2)	mg/L	31	0.55	8258950				29	0.55	8258950
Sulphide	mg/L	<0.020	0.020	8247011				<0.020	0.020	8247011
Alkalinity (Total as CaCO3)	mg/L	58	1.0	8247905				64	1.0	8245860
Nitrite (N)	mg/L	<0.010	0.010	8248432				<0.050	0.050	8245848
Dissolved Chloride (Cl-)	mg/L	21000	200	8251949	20000	200	8251949	21000	200	8251949
Nitrate (N)	mg/L	<0.10	0.10	8248432				<0.50	0.50	8245848
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	8248432				<0.50	0.50	8245848
Dissolved Bromide (Br-)	mg/L	390	10	8251949	390	10	8251949	390	10	8251949
Dissolved Sulphate (SO4)	mg/L	<10	10	8251949	<10	10	8251949	<10	10	8251949
Metals										
Total Ruthenium (Ru)	ug/L	<2.0	2.0	8310346				<2.0	2.0	8310346
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Dup (1) Detection limits raised due to m		erference.								

Bureau Veritas ID		TUY161	TUY162		
Sampling Date		2022/09/20	2022/09/20		
	UNITS	IG_BH03_GW017	IG_BH03_GW018	RDL	QC Batch
Metals					
Dissolved Iron (Fe)	mg/L	1.2	1.2	0.2	8248066
Total Iron (Fe)	mg/L	0.32	<0.02	0.02	8252050
Dissolved Sulphur (S)	mg/L	<5	<5	5	8248066
Total Sulphur (S)	mg/L	0.6	11	0.5	8252050
Dissolved Aluminum (Al)	ug/L	26	30	25	8248122
Dissolved Arsenic (As)	ug/L	<5.0	<5.0	5.0	8248122
Dissolved Barium (Ba)	ug/L	350	350	10	8248122
Dissolved Bismuth (Bi)	ug/L	<5.0	<5.0	5.0	8248122
Dissolved Boron (B)	ug/L	270	280	50	8248122
Dissolved Cadmium (Cd)	ug/L	<0.45	<0.45	0.45	8248122
Dissolved Calcium (Ca)	ug/L	11000000	11000000	10000	8248122
Dissolved Cesium (Cs)	ug/L	1.4	1.3	1.0	8248122
Dissolved Chromium (Cr)	ug/L	<25	<25	25	8248122
Dissolved Cobalt (Co)	ug/L	<2.5	<2.5	2.5	8248122
Dissolved Copper (Cu)	ug/L	<4.5	<4.5	4.5	8248122
Dissolved Iron (Fe)	ug/L	1200	1200	500	8248122
Dissolved Lead (Pb)	ug/L	<2.5	<2.5	2.5	8248122
Dissolved Lithium (Li)	ug/L	260	270	25	8248122
Dissolved Magnesium (Mg)	ug/L	3200	3400	250	8248122
Dissolved Nickel (Ni)	ug/L	5.1	7.8	5.0	8248122
Dissolved Potassium (K)	ug/L	12000	13000	1000	8248122
Dissolved Rubidium (Rb)	ug/L	44	47	1.0	8248122
Dissolved Selenium (Se)	ug/L	<10	<10	10	8248122
Dissolved Silicon (Si)	ug/L	5400	5400	250	8248122
Dissolved Sodium (Na)	ug/L	760000	770000	500	8248122
Dissolved Strontium (Sr)	ug/L	140000	140000	5.0	8248122
Dissolved Thorium (Th)	ug/L	<10	<10	10	8248122
Dissolved Uranium (U)	ug/L	<0.50	<0.50	0.50	8248122
Dissolved Zirconium (Zr)	ug/L	<5.0	<5.0	5.0	8248122
RDL = Reportable Detection I QC Batch = Quality Control B					

ELEMENTS BY ATOMIC SPECTROSCOPY (GROUND WATER)

TEST SUMMARY

Bureau Veritas ID:	TUY161
Sample ID:	IG_BH03_GW017
Matrix:	Ground Water

Collected: 2022/09/20 Shipped: Received: 2022/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8247905	N/A	2022/09/27	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8244079	N/A	2022/09/28	Automated Statchk
Anions	IC	8251949	N/A	2022/09/28	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8246984	N/A	2022/09/26	Nimarta Singh
Fluoride	ISE	8247892	2022/09/26	2022/09/27	Kien Tran
Dissolved Metals Analysis by ICP	ICP	8248066	2022/09/26	2022/09/28	Thuy Linh Nguyen
Dissolved Metals by ICPMS	ICP/MS	8248122	N/A	2022/09/27	Arefa Dabhad
Total Metals Analysis by ICP	ICP	8252050	2022/09/27	2022/09/29	Indira HarryPaul
Iodide, Thiosulphate, Thiocyanate	IC/EC	8262296	N/A	2022/09/30	Kanwardeep Brar
Total Extractable Elements by ICP-MS	ICP/MSMS	8310346	2022/10/21	2022/10/26	Sinthuja Thambiayah
Silica (Reactive)	KONE	8258950	N/A	2022/09/30	Shanna McKort
Total Ammonia-N	LACH/NH4	8247760	N/A	2022/09/27	Anna-Kay Gooden
Nitrate & Nitrite as Nitrogen in Water	LACH	8248432	N/A	2022/09/28	Chandra Nandlal
рН	AT	8247907	2022/09/26	2022/09/27	Kien Tran
Orthophosphate	KONE	8247777	N/A	2022/09/28	Samuel Law
Sulphide	ISE/S	8247011	N/A	2022/09/26	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8249575	N/A	2022/09/28	Nimarta Singh
Total Kjeldahl Nitrogen in Water	SKAL	8354415	2022/11/18	2022/11/18	Rajni Tyagi
Total Nitrogen (calculated)	CALC	8244236	N/A	2022/09/29	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8247251	N/A	2022/09/28	Nimarta Singh
Total Phosphorus (Colourimetric)	SKAL/P	8248571	2022/09/26	2022/09/29	Shivani Shivani

 Bureau Veritas ID:
 TUY161 Dup
 Collected:
 2022/09/20

 Sample ID:
 IG_BH03_GW017
 Shipped:
 Received:
 2022/09/22

 Matrix:
 Ground Water
 Instrumentation
 Batch
 Extracted
 Date Analyzed
 Analyst

rest Description	instrumentation	Dattri	Extracted	Date Analyzeu	Analyst
Anions	IC	8251949	N/A	2022/09/28	Lusine Khachatryan
Total Inorganic Carbon (TIC)	TOCV/NDIR	8249575	N/A	2022/09/28	Nimarta Singh

Bureau Veritas ID: TUY162 Sample ID: IG_BH03_GW018 Matrix: Ground Water Collected: 2022/09/20 Shipped: Received: 2022/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8245860	N/A	2022/09/27	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8244079	N/A	2022/09/27	Automated Statchk
Anions	IC	8251949	N/A	2022/09/28	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8246984	N/A	2022/09/26	Nimarta Singh
Fluoride	ISE	8245864	2022/09/24	2022/09/27	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8248066	2022/09/26	2022/09/28	Thuy Linh Nguyen
Dissolved Metals by ICPMS	ICP/MS	8248122	N/A	2022/09/27	Arefa Dabhad
Total Metals Analysis by ICP	ICP	8252050	2022/09/27	2022/09/29	Indira HarryPaul

Page 6 of 14

TEST SUMMARY

Bureau Veritas ID:	TUY162
Sample ID:	IG_BH03_GW018
Matrix:	Ground Water

Collected:	2022/09/20
Shipped:	
Received:	2022/09/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Iodide, Thiosulphate, Thiocyanate	IC/EC	8262296	N/A	2022/09/30	Kanwardeep Brar
Total Extractable Elements by ICP-MS	ICP/MSMS	8310346	2022/10/21	2022/10/26	Sinthuja Thambiayah
Silica (Reactive)	KONE	8258950	N/A	2022/09/30	Shanna McKort
Total Ammonia-N	LACH/NH4	8247760	N/A	2022/09/27	Anna-Kay Gooden
Nitrate & Nitrite as Nitrogen in Water	LACH	8245848	N/A	2022/09/26	Chandra Nandlal
рН	AT	8245866	2022/09/24	2022/09/27	Surinder Rai
Orthophosphate	KONE	8245557	N/A	2022/09/26	Samuel Law
Sulphide	ISE/S	8247011	N/A	2022/09/26	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8249575	N/A	2022/09/28	Nimarta Singh
Total Kjeldahl Nitrogen in Water	SKAL	8352019	2022/11/21	2022/11/22	Jency Sara Johnson
Total Nitrogen (calculated)	CALC	8244236	N/A	2022/09/28	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8247251	N/A	2022/09/28	Nimarta Singh
Total Phosphorus (Colourimetric)	SKAL/P	8248571	2022/09/26	2022/09/28	Shivani Shivani

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt
Package 13.0°C
Revised Report (2022/11/25): After investigation and re-analyzing IG_BH03_GW018, total kjeldahl nitrogen value amended
Sample TUY161 [IG_BH03_GW017] : Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Sample TUY162 [IG_BH03_GW018] : Nitrite/Nitrate: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
RESULTS OF ANALYSES OF GROUND WATER
Sample TUY161 [IG_BH03_GW017] Iodide, Thiosulphate, Thiocyanate: Detection limits raised due to matrix interference.
Sample TUY162 [IG_BH03_GW018] Iodide, Thiosulphate, Thiocyanate: Detection limits raised due to matrix interference.
Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8245557	S1L	Matrix Spike	Orthophosphate (P)	2022/09/26		109	%	75 - 125
8245557	S1L	Spiked Blank	Orthophosphate (P)	2022/09/26		100	%	80 - 120
8245557	S1L	Method Blank	Orthophosphate (P)	2022/09/26	<0.010		mg/L	
8245557	S1L	RPD	Orthophosphate (P)	2022/09/26	NC		%	25
8245848	C_N	Matrix Spike	Nitrite (N)	2022/09/26		105	%	80 - 120
			Nitrate (N)	2022/09/26		96	%	80 - 120
8245848	C_N	Spiked Blank	Nitrite (N)	2022/09/26		102	%	80 - 120
			Nitrate (N)	2022/09/26		93	%	80 - 120
8245848	C_N	Method Blank	Nitrite (N)	2022/09/26	<0.010		mg/L	
			Nitrate (N)	2022/09/26	<0.10		mg/L	
8245848	C_N	RPD	Nitrite (N)	2022/09/26	NC		%	20
			Nitrate (N)	2022/09/26	0.43		%	20
8245860	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2022/09/27		95	%	85 - 115
8245860	SAU	Method Blank	Alkalinity (Total as CaCO3)	2022/09/27	<1.0		mg/L	
8245860	SAU	RPD	Alkalinity (Total as CaCO3)	2022/09/27	3.3		%	20
8245864	SAU	Matrix Spike	Fluoride (F-)	2022/09/27		94	%	80 - 120
8245864	SAU	Spiked Blank	Fluoride (F-)	2022/09/27		102	%	80 - 120
8245864	SAU	Method Blank	Fluoride (F-)	2022/09/27	<0.10		mg/L	
8245864	SAU	RPD	Fluoride (F-)	2022/09/27	NC		%	20
8245866	SAU	Spiked Blank	рН	2022/09/27		102	%	98 - 103
8245866	SAU	RPD	pH	2022/09/27	0.18		%	N/A
8246984	NS3	Matrix Spike	Dissolved Organic Carbon	2022/09/26		96	%	80 - 120
8246984	NS3	Spiked Blank	Dissolved Organic Carbon	2022/09/26		96	%	80 - 120
8246984	NS3	Method Blank	Dissolved Organic Carbon	2022/09/26	<0.40		mg/L	
8246984	NS3	RPD	Dissolved Organic Carbon	2022/09/26	0.52		%	20
8247011	ТАК	Matrix Spike	Sulphide	2022/09/26		88	%	80 - 120
8247011	TAK	Spiked Blank	Sulphide	2022/09/26		92	%	80 - 120
8247011	TAK	Method Blank	Sulphide	2022/09/26	<0.020		mg/L	
8247011	TAK	RPD	Sulphide	2022/09/26	NC		%	20
8247251	NS3	Matrix Spike	Total Organic Carbon (TOC)	2022/09/28		95	%	80 - 120
8247251	NS3	Spiked Blank	Total Organic Carbon (TOC)	2022/09/28		96	%	80 - 120
8247251	NS3	Method Blank	Total Organic Carbon (TOC)	2022/09/28	<0.40		mg/L	
8247251	NS3	RPD	Total Organic Carbon (TOC)	2022/09/28	1.3		%	20
8247760	AGD	Matrix Spike	Total Ammonia-N	2022/09/27		98	%	75 - 125
8247760	AGD	Spiked Blank	Total Ammonia-N	2022/09/27		101	%	80 - 120
8247760	AGD	Method Blank	Total Ammonia-N	2022/09/27	<0.050		mg/L	
8247760	AGD	RPD	Total Ammonia-N	2022/09/27	NC		%	20
8247777	S1L	Matrix Spike	Orthophosphate (P)	2022/09/28		NC	%	75 - 125
8247777	S1L	Spiked Blank	Orthophosphate (P)	2022/09/28		98	%	80 - 120
8247777	S1L	Method Blank	Orthophosphate (P)	2022/09/28	<0.010		mg/L	
8247777	S1L	RPD	Orthophosphate (P)	2022/09/28	3.0		%	25
8247892	КІТ	Matrix Spike	Fluoride (F-)	2022/09/27		83	%	80 - 120
8247892	КІТ	Spiked Blank	Fluoride (F-)	2022/09/27		102	%	80 - 120
8247892	KIT	Method Blank	Fluoride (F-)	2022/09/27	<0.10		mg/L	
8247892	KIT	RPD	Fluoride (F-)	2022/09/27	0.95		%	20
8247905	КІТ	Spiked Blank	Alkalinity (Total as CaCO3)	2022/09/27		93	%	85 - 115
8247905	КІТ	Method Blank	Alkalinity (Total as CaCO3)	2022/09/27	<1.0		mg/L	
8247905	КІТ	RPD	Alkalinity (Total as CaCO3)	2022/09/27	0.45		%	20
8247907	КІТ	Spiked Blank	pH	2022/09/27		102	%	98 - 103
8247907	КІТ	RPD	рН	2022/09/27	0.68		%	N/A

Page 9 of 14

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8248066	TLG	Matrix Spike	Dissolved Iron (Fe)	2022/09/27		102	%	80 - 120
			Dissolved Sulphur (S)	2022/09/27		NC	%	80 - 120
8248066	TLG	Spiked Blank	Dissolved Iron (Fe)	2022/09/27		105	%	80 - 120
			Dissolved Sulphur (S)	2022/09/27		101	%	80 - 120
8248066	TLG	Method Blank	Dissolved Iron (Fe)	2022/09/28	<0.02		mg/L	
			Dissolved Sulphur (S)	2022/09/28	<0.5		mg/L	
8248122	ADA	Matrix Spike	Dissolved Aluminum (Al)	2022/09/27		102	%	80 - 120
			Dissolved Arsenic (As)	2022/09/27		102	%	80 - 120
			Dissolved Barium (Ba)	2022/09/27		102	%	80 - 120
			Dissolved Bismuth (Bi)	2022/09/27		102	%	80 - 120
			Dissolved Boron (B)	2022/09/27		96	%	80 - 120
			Dissolved Cadmium (Cd)	2022/09/27		103	%	80 - 120
			Dissolved Calcium (Ca)	2022/09/27		NC	%	80 - 120
			Dissolved Cesium (Cs)	2022/09/27		104	%	80 - 120
			Dissolved Chromium (Cr)	2022/09/27		99	%	80 - 120
			Dissolved Cobalt (Co)	2022/09/27		102	%	80 - 120
			Dissolved Copper (Cu)	2022/09/27		96	%	80 - 120
			Dissolved Iron (Fe)	2022/09/27		104	%	80 - 120
			Dissolved Lead (Pb)	2022/09/27		100	%	80 - 120
			Dissolved Lithium (Li)	2022/09/27		110	%	80 - 120
			Dissolved Magnesium (Mg)	2022/09/27		NC	%	80 - 120
			Dissolved Nickel (Ni)	2022/09/27		99	%	80 - 120
			Dissolved Potassium (K)	2022/09/27		108	%	80 - 120
			Dissolved Rubidium (Rb)	2022/09/27		102	%	80 - 120
			Dissolved Selenium (Se)	2022/09/27		102	%	80 - 120
			Dissolved Silicon (Si)	2022/09/27		101	%	80 - 120
			Dissolved Sodium (Na)	2022/09/27		101	%	80 - 120
			Dissolved Strontium (Sr)	2022/09/27		NC	%	80 - 120
			Dissolved Thorium (Th)	2022/09/27		100	%	80 - 120
			Dissolved Uranium (U)	2022/09/27		101	%	80 - 120
			Dissolved Zirconium (Zr)	2022/09/27		107	%	80 - 120
8248122	ADA	Spiked Blank	Dissolved Aluminum (Al)	2022/09/27		103	%	80 - 120
02.0122	71271	opinea Blaint	Dissolved Arsenic (As)	2022/09/27		101	%	80 - 120
			Dissolved Barium (Ba)	2022/09/27		101	%	80 - 120
			Dissolved Bismuth (Bi)	2022/09/27		99	%	80 - 120
			Dissolved Boron (B)	2022/09/27		97	%	80 - 120
			Dissolved Cadmium (Cd)	2022/09/27		102	%	80 - 120
			Dissolved Calcium (Ca)	2022/09/27		101	%	80 - 120
			Dissolved Cesium (Cs)	2022/09/27		104	%	80 - 120
			Dissolved Chromium (Cr)	2022/09/27		98	%	80 - 120
			Dissolved Cobalt (Co)	2022/09/27		102	%	80 - 120
			Dissolved Copper (Cu)	2022/09/27		102	%	80 - 120
			Dissolved lopper (ed)	2022/09/27		100	%	80 - 120
			Dissolved Lead (Pb)	2022/09/27		100	%	80 - 120
			Dissolved Lithium (Li)	2022/09/27		110	%	80 - 120 80 - 120
			Dissolved Magnesium (Mg)	2022/09/27		108	%	80 - 120 80 - 120
			Dissolved Nickel (Ni)	2022/09/27		108	%	80 - 120 80 - 120
			Dissolved Potassium (K)	2022/09/27		102	%	80 - 120 80 - 120
						104	70	
			Dissolved Rubidium (Rb)	2022/09/27		102	%	80 - 120

Page 10 of 14

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	مان مرا	OC Turne	Deveryeter	Date Archine	Value	Decourse		001
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Silicon (Si)	2022/09/27		102	%	80 - 120
			Dissolved Sodium (Na)	2022/09/27		105	%	80 - 120
			Dissolved Strontium (Sr)	2022/09/27		101	%	80 - 120
			Dissolved Thorium (Th)	2022/09/27		101	%	80 - 120
			Dissolved Uranium (U)	2022/09/27		101	%	80 - 120
0040400			Dissolved Zirconium (Zr)	2022/09/27		105	%	80 - 120
8248122	ADA	Method Blank	Dissolved Aluminum (Al)	2022/09/27	<4.9		ug/L	
			Dissolved Arsenic (As)	2022/09/27	<1.0		ug/L	
			Dissolved Barium (Ba)	2022/09/27	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/09/27	<1.0		ug/L	
			Dissolved Boron (B)	2022/09/27	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/09/27	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/09/27	<200		ug/L	
			Dissolved Cesium (Cs)	2022/09/27	<0.20		ug/L	
			Dissolved Chromium (Cr)	2022/09/27	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/09/27	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/09/27	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/09/27	<100		ug/L	
			Dissolved Lead (Pb)	2022/09/27	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/09/27	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/09/27	<50		ug/L	
			Dissolved Nickel (Ni)	2022/09/27	<1.0		ug/L	
			Dissolved Potassium (K)	2022/09/27	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/09/27	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/09/27	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/09/27	<50		ug/L	
			Dissolved Sodium (Na)	2022/09/27	<100		ug/L	
			Dissolved Strontium (Sr)	2022/09/27	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/09/27	<2.0		ug/L	
			Dissolved Uranium (U)	2022/09/27	<0.10		ug/L	
			Dissolved Zirconium (Zr)	2022/09/27	<1.0		ug/L	
8248122	ADA	RPD	Dissolved Iron (Fe)	2022/09/27	2.6		%	20
			Dissolved Lead (Pb)	2022/09/27	NC		%	20
8248432	C_N	Matrix Spike	Nitrite (N)	2022/09/28		108	%	80 - 120
			Nitrate (N)	2022/09/28		107	%	80 - 120
8248432	C_N	Spiked Blank	Nitrite (N)	2022/09/28		104	%	80 - 120
			Nitrate (N)	2022/09/28		103	%	80 - 120
8248432	C_N	Method Blank	Nitrite (N)	2022/09/28	<0.010		mg/L	
			Nitrate (N)	2022/09/28	<0.10		mg/L	
8248432	C_N	RPD	Nitrite (N)	2022/09/28	NC		%	20
			Nitrate (N)	2022/09/28	0.17		%	20
8248571	SSV	Matrix Spike	Total Phosphorus	2022/09/28		99	%	80 - 120
8248571	SSV	QC Standard	Total Phosphorus	2022/09/28		97	%	80 - 120
8248571	SSV	Spiked Blank	Total Phosphorus	2022/09/28		101	%	80 - 120
8248571	SSV	Method Blank	Total Phosphorus	2022/09/28	<0.020		mg/L	
8248571	SSV	RPD	Total Phosphorus	2022/09/28	2.0		%	20
8249575	NS3	Matrix Spike [TUY161-01]	Total Inorganic Carbon (C)	2022/09/28		37 (1)	%	80 - 120
8249575	NS3	Spiked Blank	Total Inorganic Carbon (C)	2022/09/28		96	%	80 - 120
8249575	NS3	Method Blank	Total Inorganic Carbon (C)	2022/09/28	<1		mg/L	
8249575	NS3	RPD [TUY161-01]	Total Inorganic Carbon (C)	2022/09/28	0.44		%	20

Page 11 of 14

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8251949	LKH	Matrix Spike [TUY161-01]	Dissolved Chloride (Cl-)	2022/09/28		NC	%	80 - 120
			Dissolved Bromide (Br-)	2022/09/28		NC	%	80 - 120
			Dissolved Sulphate (SO4)	2022/09/28		103	%	80 - 120
8251949	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/09/28		100	%	70 - 130
			Dissolved Bromide (Br-)	2022/09/28		103	%	80 - 120
			Dissolved Sulphate (SO4)	2022/09/28		103	%	80 - 120
8251949	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/09/28	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/09/28	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/09/28	<1.0		mg/L	
8251949	LKH	RPD [TUY161-01]	Dissolved Chloride (Cl-)	2022/09/28	0.54		%	20
			Dissolved Bromide (Br-)	2022/09/28	0.033		%	20
			Dissolved Sulphate (SO4)	2022/09/28	NC		%	20
8252050	IHP	Matrix Spike	Total Iron (Fe)	2022/09/29		NC	%	80 - 120
			Total Sulphur (S)	2022/09/29		NC	%	80 - 120
8252050	IHP	Spiked Blank	Total Iron (Fe)	2022/09/29		98	%	80 - 120
			Total Sulphur (S)	2022/09/29		98	%	80 - 120
8252050	IHP	Method Blank	Total Iron (Fe)	2022/09/29	<0.02		mg/L	
			Total Sulphur (S)	2022/09/29	<0.5		mg/L	
8252050	IHP	RPD	Total Iron (Fe)	2022/09/29	1.9		%	25
8258950	éH2	Matrix Spike	Reactive Silica (SiO2)	2022/09/30		104	%	80 - 120
8258950	éH2	Spiked Blank	Reactive Silica (SiO2)	2022/09/30		107	%	80 - 120
8258950	éH2	Method Blank	Reactive Silica (SiO2)	2022/09/30	<0.050		mg/L	
8262296	KDB	Matrix Spike	Dissolved Iodide	2022/09/30		102	%	80 - 120
8262296	KDB	Spiked Blank	Dissolved Iodide	2022/09/30		101	%	80 - 120
8262296	KDB	Method Blank	Dissolved lodide	2022/09/30	<0.10		mg/L	
8262296	KDB	RPD	Dissolved lodide	2022/09/30	NC		%	20
8310346	ST5	Spiked Blank	Total Ruthenium (Ru)	2022/10/26		94	%	70 - 130
8310346	ST5	Method Blank	Total Ruthenium (Ru)	2022/10/26	<2.0		ug/L	
8310346	ST5	RPD	Total Ruthenium (Ru)	2022/10/26	NC		%	30
8352019	IJΗ	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/11/21		102	%	80 - 120
8352019	IJΗ	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/11/21		94	%	80 - 120
8352019	IJΗ	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/11/21		97	%	80 - 120
8352019	IJΗ	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/11/21	<0.10		mg/L	
8352019	IJΗ	RPD	Total Kjeldahl Nitrogen (TKN)	2022/11/21	10		%	20
8354415	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/11/18		NC	%	80 - 120
8354415	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/11/18		90	%	80 - 120
8354415	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/11/18		94	%	80 - 120
8354415	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/11/18	<0.10		mg/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8354415	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2022/11/18	10		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

APR L

Jonathan Fauvel, B.Sc, Chimiste, Supervisor, Inorganics

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE, ON Your C.O.C. #: N/A

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/11/17 Report #: R7392002 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2S0594

Received: 2022/09/27, 16:24

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	3	N/A	2022/10/01	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	3	N/A	2022/10/03	CAM SOP-00102	APHA 4500-CO2 D
Anions	4	N/A	2022/09/30	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (3)	3	N/A	2022/09/29	CAM SOP-00446	SM 23 5310 B m
Fluoride	4	2022/09/29	2022/10/01	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	3	2022/10/01	2022/10/04	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	3	N/A	2022/10/04	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS	1	N/A	2022/09/30	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICP	1	2022/10/05	2022/10/05	CAM SOP-00408	EPA 6010D m
lodide, Thiosulphate, Thiocyanate (1)	4	N/A	2022/10/06	CAL SOP-00057	Dionex #034035 R09 m
Total Extractable Elements by ICP-MS (2, 4)	3	2022/10/21	2022/10/26	STL SOP-00071	MA.200–Mét. 1.2 R5 m
Silica (Reactive) (1)	3	N/A	2022/10/11	AB SOP-00011	EPA370.1 R1978 m
Total Ammonia-N	3	N/A	2022/10/01	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (5)	4	N/A	2022/09/30	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	3	2022/09/29	2022/10/01	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	4	N/A	2022/10/04	CAM SOP-00461	EPA 365.1 m
Sulphide	3	N/A	2022/09/30	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	3	N/A	2022/09/30	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	2	2022/09/29	2022/10/03	CAM SOP-00938	OMOE E3516 m
Total Kjeldahl Nitrogen in Water	1	2022/09/30	2022/10/04	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	2	N/A	2022/10/03	Auto Calc.	
Total Nitrogen (calculated)	1	N/A	2022/10/04	Auto Calc.	
Total Organic Carbon (TOC) (6)	3	N/A	2022/09/30	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	2	2022/09/29	2022/09/30	CAM SOP-00407	SM 23 4500-P I
Total Phosphorus (Colourimetric)	1	2022/09/30	2022/10/05	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Page 1 of 18

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE, ON Your C.O.C. #: N/A

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/11/17 Report #: R7392002 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2S0594

Received: 2022/09/27, 16:24

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) This test was performed by Bureau Veritas Montreal., 889 Montée de Liesse , Ville St-Laurent, QC, H4T 1P5

(3) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(4) Non-accredited test method

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Katherine Szozda oject Manager Nov 2022 11:38:53

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 18

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		TWA661			TWA661			TWA662		
Sampling Date		2022/09/24			2022/09/24			2022/09/24		
		13:15			13:15			14:45		
COC Number		N/A			N/A			N/A		
	UNITS	IG_BH01_GW035	RDL	QC Batch	IG_BH01_GW035 Lab-Dup	RDL	QC Batch	IG_BH05_GW005	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	25	1.0	8252623				190	1.0	8252623
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8252623				<1.0	1.0	8252623
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8252623				<1.0	1.0	8252623
Total Nitrogen (N)	mg/L	2.7	2.0	8253009				1.8	1.0	8253009
Inorganics						•				
Total Ammonia-N	mg/L	0.16	0.050	8258034				0.20	0.050	8258034
Fluoride (F-)	mg/L	0.33	0.10	8256544				0.27	0.10	8256544
Total Inorganic Carbon (C)	mg/L	5	1	8257869				36	1	8257869
Dissolved lodide	mg/L	<10	10	8276412				<10	10	8276412
Total Kjeldahl Nitrogen (TKN)	mg/L	2.7	2.0	8257373				1.8	1.0	8255555
Dissolved Organic Carbon	mg/L	3.1	0.40	8254331				59	0.40	8254331
Total Organic Carbon (TOC)	mg/L	3.4	0.40	8258051				65	0.40	8258051
Orthophosphate (P)	mg/L	<0.010	0.010	8258674				<0.010	0.010	8258674
рН	pН	7.23		8256546				7.27		8256546
Total Phosphorus	mg/L	<0.10 (1)	0.10	8257365				0.16	0.10	8255922
Reactive Silica (SiO2)	mg/L	19	0.25	8276849				31	0.25	8276861
Sulphide	mg/L	<0.020	0.020	8256184				0.69	0.020	8256184
Alkalinity (Total as CaCO3)	mg/L	25	1.0	8256545				190	1.0	8256545
Nitrite (N)	mg/L	<0.010	0.010	8255727	<0.010	0.010	8255727	<0.010	0.010	8255727
Chloride (Cl-)	mg/L	5300	50	8257256				6600	50	8257256
Nitrate (N)	mg/L	<0.10	0.10	8255727	<0.10	0.10	8255727	<0.10	0.10	8255727
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	8255727	<0.10	0.10	8255727	<0.10	0.10	8255727
Bromide (Br-)	mg/L	86	5.0	8257256				140	5.0	8257256
Sulphate (SO4)	mg/L	110	5.0	8257256				41	5.0	8257256
Metals		•			•					
Total Ruthenium (Ru)	ug/L	<2.0	2.0	8310547				<2.0	2.0	8310547
RDL = Reportable Detection Limit		•	•	•	-	-	•		•	
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Dup	licate									

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		TWA662			TWA663			TWA663		
Sampling Date		2022/09/24			2022/09/24			2022/09/24		
		14:45			14:45			14:45		
COC Number		N/A			N/A			N/A		
	UNITS	IG_BH05_GW005 Lab-Dup	RDL	QC Batch	IG_BH05_GW006	RDL	QC Batch	IG_BH05_GW006 Lab-Dup	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L				200	1.0	8252623			
Carb. Alkalinity (calc. as CaCO3)	mg/L				<1.0	1.0	8252623			
Hydrox. Alkalinity (calc. as CaCO3)	mg/L				<1.0	1.0	8252623			
Total Nitrogen (N)	mg/L				2.0	1.0	8253009			
Inorganics										
Total Ammonia-N	mg/L				0.21	0.050	8258034			
Fluoride (F-)	mg/L				0.25	0.10	8256544	0.24	0.10	8256544
Total Inorganic Carbon (C)	mg/L	36	1	8257869	35	1	8257869			
Dissolved Iodide	mg/L				<10	10	8276412			
Total Kjeldahl Nitrogen (TKN)	mg/L				2.0	1.0	8255555			
Dissolved Organic Carbon	mg/L				58	0.40	8254331			
Total Organic Carbon (TOC)	mg/L				65	0.40	8258051	65	0.40	8258051
Orthophosphate (P)	mg/L				0.010	0.010	8258674			
рН	pН				7.24		8256546	7.27		8256546
Total Phosphorus	mg/L				0.14	0.10	8255922			
Reactive Silica (SiO2)	mg/L				27	0.25	8276849			
Sulphide	mg/L				0.66	0.020	8256184			
Alkalinity (Total as CaCO3)	mg/L				200	1.0	8256545	190	1.0	8256545
Nitrite (N)	mg/L				<0.010	0.010	8255727			
Chloride (Cl-)	mg/L	6600	50	8257256	6400	50	8257256			
Nitrate (N)	mg/L				<0.10	0.10	8255727			
Nitrate + Nitrite (N)	mg/L				<0.10	0.10	8255727			
Bromide (Br-)	mg/L	140	5.0	8257256	140	5.0	8257256			
Sulphate (SO4)	mg/L	42	5.0	8257256	41	5.0	8257256			
Metals										
Total Ruthenium (Ru)	ug/L				<2.0	2.0	8310547			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Dup	licate									

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		TWA664		
Sampling Date		2022/09/24 08:30		
COC Number		N/A		
	UNITS	IG_BH05_GW007	RDL	QC Batch
Inorganics				
Fluoride (F-)	mg/L	<0.10	0.10	8256544
Dissolved lodide	mg/L	<0.10	0.10	8276412
Orthophosphate (P)	mg/L	<0.010	0.010	8258674
Nitrite (N)	mg/L	<0.010	0.010	8255727
Chloride (Cl-)	mg/L	13	1.0	8257256
Nitrate (N)	mg/L	<0.10	0.10	8255727
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	8255727
Bromide (Br-)	mg/L	<1.0	1.0	8257256
Sulphate (SO4)	mg/L	<1.0	1.0	8257256
RDL = Reportable Detection Limit		· · · · · ·		
QC Batch = Quality Control Batch				

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		TWA661		TWA662			TWA662		
Sampling Date		2022/09/24		2022/09/24			2022/09/24		
Sampling Date		13:15		14:45			14:45		
COC Number		N/A		N/A			N/A		
	UNITS	IG_BH01_GW035	RDL	IG_BH05_GW005	RDL	QC Batch	IG_BH05_GW005 Lab-Dup	RDL	QC Batch
Metals									
Dissolved Iron (Fe)	mg/L	2.0	0.02	4.9	0.02	8259282	4.9	0.02	8259282
Dissolved Sulphur (S)	mg/L	36	0.5	16	0.5	8259282	18	0.5	8259282
Dissolved Aluminum (Al)	ug/L	12	4.9	11	4.9	8259273			
Dissolved Arsenic (As)	ug/L	<1.0	1.0	<1.0	1.0	8259273			
Dissolved Barium (Ba)	ug/L	370	2.0	310	2.0	8259273			
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	<1.0	1.0	8259273			
Dissolved Boron (B)	ug/L	140	10	310	10	8259273			
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	<0.090	0.090	8259273			
Dissolved Calcium (Ca)	ug/L	2700000	2000	3200000	2000	8259273			
Dissolved Cesium (Cs)	ug/L	0.40	0.20	<0.20	0.20	8259273			
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	<5.0	5.0	8259273			
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	<0.50	0.50	8259273			
Dissolved Copper (Cu)	ug/L	<0.90	0.90	<0.90	0.90	8259273			
Dissolved Iron (Fe)	ug/L	2200	100	5500	100	8259273			
Dissolved Lead (Pb)	ug/L	<0.50	0.50	<0.50	0.50	8259273			
Dissolved Lithium (Li)	ug/L	44	5.0	59	5.0	8259273			
Dissolved Magnesium (Mg)	ug/L	2700	50	5700	50	8259273			
Dissolved Nickel (Ni)	ug/L	2.7	1.0	4.3	1.0	8259273			
Dissolved Potassium (K)	ug/L	19000	200	19000	200	8259273			
Dissolved Rubidium (Rb)	ug/L	55	0.20	28	0.20	8259273			
Dissolved Selenium (Se)	ug/L	<2.0	2.0	<2.0	2.0	8259273			
Dissolved Silicon (Si)	ug/L	3200	50	12000	50	8259273			
Dissolved Sodium (Na)	ug/L	420000	100	610000	500	8259273			
Dissolved Strontium (Sr)	ug/L	37000	1.0	39000	1.0	8259273			
Dissolved Thorium (Th)	ug/L	<2.0	2.0	<2.0	2.0	8259273			
Dissolved Uranium (U)	ug/L	3.4	0.10	0.39	0.10	8259273			
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	<1.0	1.0	8259273			
RDL = Reportable Detection I	imit								
QC Batch = Quality Control B	atch								
Lab D									

Lab-Dup = Laboratory Initiated Duplicate

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		TWA663			TWA664		
Sampling Date		2022/09/24 14:45			2022/09/24		
COC Number		N/A			08:30 N/A		
COC Number	LINUTC			OC Datab	-		00.0.1.1
	UNITS	IG_BH05_GW006	RDL	QC Batch	IG_BH05_GW007	RDL	QC Batch
Metals				-			
Dissolved Iron (Fe)	mg/L	5.5	0.02	8259282			
Total Iron (Fe)	mg/L				0.03	0.02	8265229
Dissolved Sulphur (S)	mg/L	19	0.5	8259282			
Total Sulphur (S)	mg/L				<0.5	0.5	8265229
Dissolved Aluminum (Al)	ug/L	11	4.9	8259273	<4.9	4.9	8257522
Dissolved Arsenic (As)	ug/L	<1.0	1.0	8259273	<1.0	1.0	8257522
Dissolved Barium (Ba)	ug/L	310	2.0	8259273	<2.0	2.0	8257522
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	8259273	<1.0	1.0	8257522
Dissolved Boron (B)	ug/L	330	10	8259273	<10	10	8257522
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	8259273	<0.090	0.090	8257522
Dissolved Calcium (Ca)	ug/L	3300000	2000	8259273	2600	200	8257522
Dissolved Cesium (Cs)	ug/L	<0.20	0.20	8259273	<0.20	0.20	8257522
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	8259273	<5.0	5.0	8257522
Dissolved Cobalt (Co)	ug/L	<0.50	0.50	8259273	<0.50	0.50	8257522
Dissolved Copper (Cu)	ug/L	<0.90	0.90	8259273	<0.90	0.90	8257522
Dissolved Iron (Fe)	ug/L	6100	100	8259273	<100	100	8257522
Dissolved Lead (Pb)	ug/L	<0.50	0.50	8259273	<0.50	0.50	8257522
Dissolved Lithium (Li)	ug/L	60	5.0	8259273	<5.0	5.0	8257522
Dissolved Magnesium (Mg)	ug/L	5700	50	8259273	<50	50	8257522
Dissolved Nickel (Ni)	ug/L	5.0	1.0	8259273	<1.0	1.0	8257522
Dissolved Potassium (K)	ug/L	19000	200	8259273	<200	200	8257522
Dissolved Rubidium (Rb)	ug/L	28	0.20	8259273	<0.20	0.20	8257522
Dissolved Selenium (Se)	ug/L	<2.0	2.0	8259273	<2.0	2.0	8257522
Dissolved Silicon (Si)	ug/L	12000	50	8259273	<50	50	8257522
Dissolved Sodium (Na)	ug/L	620000	500	8259273	350	100	8257522
Dissolved Strontium (Sr)	ug/L	39000	1.0	8259273	30	1.0	8257522
Dissolved Thorium (Th)	ug/L	<2.0	2.0	8259273	<2.0	2.0	8257522
Dissolved Uranium (U)	ug/L	0.42	0.10	8259273	<0.10	0.10	8257522
Dissolved Zirconium (Zr)	ug/L	<1.0	1.0	8259273	<1.0	1.0	8257522
RDL = Reportable Detection	Limit	-	•	•	•		-
QC Batch = Quality Control B	atch						

TEST SUMMARY

Bureau Veritas ID:	TWA661
Sample ID:	IG_BH01_GW035
Matrix:	Water

Collected:	2022/09/24
Shipped: Received:	2022/09/27
necciveu.	2022/05/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8256545	N/A	2022/10/01	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8252623	N/A	2022/10/03	Automated Statchk
Anions	IC	8257256	N/A	2022/09/30	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8254331	N/A	2022/09/29	Nimarta Singh
Fluoride	ISE	8256544	2022/09/29	2022/10/01	Kien Tran
Dissolved Metals Analysis by ICP	ICP	8259282	2022/10/01	2022/10/04	Thuy Linh Nguyen
Dissolved Metals by ICPMS	ICP/MS	8259273	N/A	2022/10/04	Arefa Dabhad
lodide, Thiosulphate, Thiocyanate	IC/EC	8276412	N/A	2022/10/06	Taylor Mullings
Total Extractable Elements by ICP-MS	ICP/MSMS	8310547	2022/10/21	2022/10/26	Zineb El Ouali
Silica (Reactive)	KONE	8276849	N/A	2022/10/11	Shanna McKort
Total Ammonia-N	LACH/NH4	8258034	N/A	2022/10/01	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	8255727	N/A	2022/09/30	Chandra Nandlal
рН	AT	8256546	2022/09/29	2022/10/01	Kien Tran
Orthophosphate	KONE	8258674	N/A	2022/10/04	Samuel Law
Sulphide	ISE/S	8256184	N/A	2022/09/30	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8257869	N/A	2022/09/30	Nimarta Singh
Total Kjeldahl Nitrogen in Water	SKAL	8257373	2022/09/30	2022/10/04	Massarat Jan
Total Nitrogen (calculated)	CALC	8253009	N/A	2022/10/04	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8258051	N/A	2022/09/30	Nimarta Singh
Total Phosphorus (Colourimetric)	SKAL/P	8257365	2022/09/30	2022/10/05	Sachi Patel

Bureau Veritas ID: Sample ID: Matrix: \	G_BH01_GW035					Shipped:	2022/09/24 2022/09/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Nitrate & Nitrite as Nitroger	n in Water	LACH	8255727	N/A	2022/09/30	Chandra N	landlal

Bureau Veritas ID: TWA662 Sample ID: IG_BH05_GW005 Matrix: Water

Collected: 2022/09/24 Shipped: Received: 2022/09/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8256545	N/A	2022/10/01	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8252623	N/A	2022/10/03	Automated Statchk
Anions	IC	8257256	N/A	2022/09/30	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8254331	N/A	2022/09/29	Nimarta Singh
Fluoride	ISE	8256544	2022/09/29	2022/10/01	Kien Tran
Dissolved Metals Analysis by ICP	ICP	8259282	2022/10/01	2022/10/04	Thuy Linh Nguyen
Dissolved Metals by ICPMS	ICP/MS	8259273	N/A	2022/10/04	Arefa Dabhad
Iodide, Thiosulphate, Thiocyanate	IC/EC	8276412	N/A	2022/10/06	Taylor Mullings
Total Extractable Elements by ICP-MS	ICP/MSMS	8310547	2022/10/21	2022/10/26	Zineb El Ouali
Silica (Reactive)	KONE	8276861	N/A	2022/10/11	Shanna McKort
Total Ammonia-N	LACH/NH4	8258034	N/A	2022/10/01	Amanpreet Sappal

Page 8 of 18

TEST SUMMARY

Bureau Veritas ID:	TWA662
Sample ID:	IG_BH05_GW005
Matrix:	Water

Collected:	2022/09/24
Shipped:	
Received:	2022/09/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrate & Nitrite as Nitrogen in Water	LACH	8255727	N/A	2022/09/30	Chandra Nandlal
рН	AT	8256546	2022/09/29	2022/10/01	Kien Tran
Orthophosphate	KONE	8258674	N/A	2022/10/04	Samuel Law
Sulphide	ISE/S	8256184	N/A	2022/09/30	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8257869	N/A	2022/09/30	Nimarta Singh
Total Kjeldahl Nitrogen in Water	SKAL	8255555	2022/09/29	2022/10/03	Massarat Jan
Total Nitrogen (calculated)	CALC	8253009	N/A	2022/10/03	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8258051	N/A	2022/09/30	Nimarta Singh
Total Phosphorus (Colourimetric)	SKAL/P	8255922	2022/09/29	2022/09/30	Shivani Shivani

Bureau Veritas ID: TWA662 Dup Sample ID: IG_BH05_GW005 Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions	IC	8257256	N/A	2022/09/30	Lusine Khachatryan
Dissolved Metals Analysis by ICP	ICP	8259282	2022/10/01	2022/10/04	Thuy Linh Nguyen
Total Inorganic Carbon (TIC)	TOCV/NDIR	8257869	N/A	2022/09/30	Nimarta Singh

Bureau Veritas ID: TWA663 Sample ID: IG_BH05_GW006 Matrix: Water

Collected: 2022/09/24

Collected: 2022/09/24

Received: 2022/09/27

Shipped:

Shipped: Received: 2022/09/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8256545	N/A	2022/10/01	Kien Tran
Carbonate, Bicarbonate and Hydroxide	CALC	8252623	N/A	2022/10/03	Automated Statchk
Anions	IC	8257256	N/A	2022/09/30	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8254331	N/A	2022/09/29	Nimarta Singh
Fluoride	ISE	8256544	2022/09/29	2022/10/01	Kien Tran
Dissolved Metals Analysis by ICP	ICP	8259282	2022/10/01	2022/10/04	Thuy Linh Nguyen
Dissolved Metals by ICPMS	ICP/MS	8259273	N/A	2022/10/04	Arefa Dabhad
Iodide, Thiosulphate, Thiocyanate	IC/EC	8276412	N/A	2022/10/06	Taylor Mullings
Total Extractable Elements by ICP-MS	ICP/MSMS	8310547	2022/10/21	2022/10/26	Zineb El Ouali
Silica (Reactive)	KONE	8276849	N/A	2022/10/11	Shanna McKort
Total Ammonia-N	LACH/NH4	8258034	N/A	2022/10/01	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	8255727	N/A	2022/09/30	Chandra Nandlal
рН	AT	8256546	2022/09/29	2022/10/01	Kien Tran
Orthophosphate	KONE	8258674	N/A	2022/10/04	Samuel Law
Sulphide	ISE/S	8256184	N/A	2022/09/30	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8257869	N/A	2022/09/30	Nimarta Singh
Total Kjeldahl Nitrogen in Water	SKAL	8255555	2022/09/29	2022/10/03	Massarat Jan
Total Nitrogen (calculated)	CALC	8253009	N/A	2022/10/03	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8258051	N/A	2022/09/30	Nimarta Singh
Total Phosphorus (Colourimetric)	SKAL/P	8255922	2022/09/29	2022/09/30	Shivani Shivani

Page 9 of 18

рΗ

Geofirma Engineering Ltd Client Project #: 20-203-1 Site Location: IGNACE, ON Your P.O. #: 202031-004

TEST SUMMARY

Bureau Veritas ID:	TWA663 Dup		
Sample ID:	IG BH05 GW006		
Matrix:	Water		

Collected: Shipped:	2022/09/24
Received:	2022/09/27

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst 2022/10/01 Alkalinity AT 8256545 N/A Kien Tran Fluoride ISE 8256544 2022/09/29 2022/10/01 Kien Tran AT 8256546 2022/09/29 2022/10/01 Kien Tran Total Organic Carbon (TOC) TOCV/NDIR 8258051 N/A 2022/09/30 Nimarta Singh

Bureau Veritas ID: TWA664

Sample ID: IG_BH05_GW007 Matrix: Water

Collected:	2022/09/24
Shipped:	
Received:	2022/09/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions	IC	8257256	N/A	2022/09/30	Lusine Khachatryan
Fluoride	ISE	8256544	2022/09/29	2022/10/01	Kien Tran
Dissolved Metals by ICPMS	ICP/MS	8257522	N/A	2022/09/30	Nan Raykha
Total Metals Analysis by ICP	ICP	8265229	2022/10/05	2022/10/05	Archana Patel
Iodide, Thiosulphate, Thiocyanate	IC/EC	8276412	N/A	2022/10/06	Taylor Mullings
Nitrate & Nitrite as Nitrogen in Water	LACH	8255727	N/A	2022/09/30	Chandra Nandlal
Orthophosphate	KONE	8258674	N/A	2022/10/04	Samuel Law

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Dealiage 1	1.2%
Раскаge 1	1.3 C

Revised Report (2022/11/17): Sample IDs revised. Report revised [2022/15/11]: Sample ids revised.

RESULTS OF ANALYSES OF WATER

Sample TWA661 [IG_BH01_GW035] Iodide, Thiosulphate, Thiocyanate: Detection limits raised due to matrix interference. Sample TWA662 [IG_BH05_GW005] Iodide, Thiosulphate, Thiocyanate: Detection limits raised due to matrix interference. Sample TWA663 [IG_BH05_GW006] Iodide, Thiosulphate, Thiocyanate: Detection limits raised due to matrix interference.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC		0.07				-		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
8254331	NS3	Matrix Spike	Dissolved Organic Carbon	2022/09/29		97	%	80 - 120
8254331	NS3	Spiked Blank	Dissolved Organic Carbon	2022/09/29	.0.40	97	%	80 - 120
8254331	NS3	Method Blank	Dissolved Organic Carbon	2022/09/29	< 0.40		mg/L	20
8254331	NS3	RPD	Dissolved Organic Carbon	2022/09/29	0.012	112	%	20
8255555	MJ1	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/09/30		112	%	80 - 120
8255555	MJ1	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/09/30		92	%	80 - 120
8255555	MJ1	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/09/30	0.40	92	%	80 - 120
8255555	MJ1	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/09/30	<0.10		mg/L	
8255555	MJ1	RPD	Total Kjeldahl Nitrogen (TKN)	2022/09/30	NC (1)		%	20
8255727	C_N	Matrix Spike [TWA661-01]	Nitrite (N)	2022/09/30		108	%	80 - 120
			Nitrate (N)	2022/09/30		101	%	80 - 120
8255727	C_N	Spiked Blank	Nitrite (N)	2022/09/30		104	%	80 - 120
			Nitrate (N)	2022/09/30		98	%	80 - 120
8255727	C_N	Method Blank	Nitrite (N)	2022/09/30	<0.010		mg/L	
			Nitrate (N)	2022/09/30	<0.10		mg/L	
8255727	C_N	RPD [TWA661-01]	Nitrite (N)	2022/09/30	NC		%	20
			Nitrate (N)	2022/09/30	NC		%	20
8255922	SSV	Matrix Spike	Total Phosphorus	2022/09/30		102	%	80 - 120
8255922	SSV	QC Standard	Total Phosphorus	2022/09/30		118	%	80 - 120
8255922	SSV	Spiked Blank	Total Phosphorus	2022/09/30		103	%	80 - 120
8255922	SSV	Method Blank	Total Phosphorus	2022/09/30	<0.020		mg/L	
8255922	SSV	RPD	Total Phosphorus	2022/09/30	5.1		%	20
8256184	TAK	Matrix Spike	Sulphide	2022/09/30		92	%	80 - 120
8256184	TAK	Spiked Blank	Sulphide	2022/09/30		92	%	80 - 120
8256184	TAK	Method Blank	Sulphide	2022/09/30	<0.020		mg/L	
8256184	TAK	RPD	Sulphide	2022/09/30	NC		%	20
8256544	KIT	Matrix Spike [TWA663-01]	Fluoride (F-)	2022/10/01		66 (2)	%	80 - 120
8256544	КІТ	Spiked Blank	Fluoride (F-)	2022/10/01		102	%	80 - 120
8256544	КІТ	Method Blank	Fluoride (F-)	2022/10/01	<0.10		mg/L	
8256544	КІТ	RPD [TWA663-01]	Fluoride (F-)	2022/10/01	1.5		%	20
8256545	КІТ	Spiked Blank	Alkalinity (Total as CaCO3)	2022/10/01		91	%	85 - 115
8256545	КІТ	Method Blank	Alkalinity (Total as CaCO3)	2022/10/01	<1.0		mg/L	
8256545	КIТ	RPD [TWA663-01]	Alkalinity (Total as CaCO3)	2022/10/01	6.5		%	20
8256546	KIT	Spiked Blank	рН	2022/10/01		102	%	98 - 103
8256546	KIT	RPD [TWA663-01]	рН	2022/10/01	0.43		%	N/A
8257256	LKH	Matrix Spike [TWA662-01]	Chloride (Cl-)	2022/09/30		NC	%	80 - 120
			Bromide (Br-)	2022/09/30		NC	%	80 - 120
			Sulphate (SO4)	2022/09/30		101	%	80 - 120
8257256	LKH	Spiked Blank	Chloride (Cl-)	2022/09/30		98	%	70 - 130
			Bromide (Br-)	2022/09/30		100	%	80 - 120
			Sulphate (SO4)	2022/09/30		101	%	80 - 120
8257256	LKH	Method Blank	Chloride (Cl-)	2022/09/30	<1.0		mg/L	
			Bromide (Br-)	2022/09/30	<1.0		mg/L	
			Sulphate (SO4)	2022/09/30	<1.0		mg/L	
8257256	LKH	RPD [TWA662-01]	Chloride (Cl-)	2022/09/30	0.049		%	20
		-	Bromide (Br-)	2022/09/30	0.39		%	20
			Sulphate (SO4)	2022/09/30	2.2		%	20
8257365	SPC	Matrix Spike	Total Phosphorus	2022/10/04		102	%	80 - 120

Page 12 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8257365	SPC	QC Standard	Total Phosphorus	2022/10/04		97	%	80 - 120
8257365	SPC	Spiked Blank	Total Phosphorus	2022/10/04		101	%	80 - 120
8257365	SPC	Method Blank	Total Phosphorus	2022/10/04	<0.020		mg/L	
8257365	SPC	RPD	Total Phosphorus	2022/10/04	0.90		%	20
8257373	MJ1	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/10/03		101	%	80 - 120
8257373	MJ1	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/10/03		97	%	80 - 120
8257373	MJ1	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/10/03		94	%	80 - 120
8257373	MJ1	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/10/03	<0.10		mg/L	
8257373	MJ1	RPD	Total Kjeldahl Nitrogen (TKN)	2022/10/03	5.1		%	20
8257522	N_R	Matrix Spike	Dissolved Aluminum (Al)	2022/09/30		103	%	80 - 120
			Dissolved Arsenic (As)	2022/09/30		103	%	80 - 120
			Dissolved Barium (Ba)	2022/09/30		104	%	80 - 120
			Dissolved Bismuth (Bi)	2022/09/30		98	%	80 - 120
			Dissolved Boron (B)	2022/09/30		95	%	80 - 120
			Dissolved Cadmium (Cd)	2022/09/30		105	%	80 - 120
			Dissolved Calcium (Ca)	2022/09/30		NC	%	80 - 120
			Dissolved Cesium (Cs)	2022/09/30		105	%	80 - 120
			Dissolved Chromium (Cr)	2022/09/30		102	%	80 - 120
			Dissolved Cobalt (Co)	2022/09/30		100	%	80 - 120
			Dissolved Copper (Cu)	2022/09/30		101	%	80 - 120
			Dissolved Iron (Fe)	2022/09/30		102	%	80 - 120
			Dissolved Lead (Pb)	2022/09/30		98	%	80 - 120
			Dissolved Lithium (Li)	2022/09/30		103	%	80 - 120
			Dissolved Magnesium (Mg)	2022/09/30		NC	%	80 - 120
			Dissolved Nickel (Ni)	2022/09/30		95	%	80 - 120
			Dissolved Potassium (K)	2022/09/30		105	%	80 - 120
			Dissolved Rubidium (Rb)	2022/09/30		103	%	80 - 120
			Dissolved Selenium (Se)	2022/09/30		99	%	80 - 120
			Dissolved Silicon (Si)	2022/09/30		101	%	80 - 120
			Dissolved Sodium (Na)	2022/09/30		102	%	80 - 120
			Dissolved Strontium (Sr)	2022/09/30		100	%	80 - 120
			Dissolved Thorium (Th)	2022/09/30		97	%	80 - 120
			Dissolved Uranium (U)	2022/09/30		97	%	80 - 120
			Dissolved Zirconium (Zr)	2022/09/30		107	%	80 - 120
8257522	N_R	Spiked Blank	Dissolved Aluminum (Al)	2022/09/30		100	%	80 - 120
	_		Dissolved Arsenic (As)	2022/09/30		102	%	80 - 120
			Dissolved Barium (Ba)	2022/09/30		101	%	80 - 120
			Dissolved Bismuth (Bi)	2022/09/30		96	%	80 - 120
			Dissolved Boron (B)	2022/09/30		94	%	80 - 120
			Dissolved Cadmium (Cd)	2022/09/30		102	%	80 - 120
			Dissolved Calcium (Ca)	2022/09/30		98	%	80 - 120
			Dissolved Cesium (Cs)	2022/09/30		102	%	80 - 120
			Dissolved Chromium (Cr)	2022/09/30		101	%	80 - 120
			Dissolved Cobalt (Co)	2022/09/30		100	%	80 - 120
			Dissolved Copper (Cu)	2022/09/30		98	%	80 - 120
			Dissolved Iron (Fe)	2022/09/30		102	%	80 - 120
			Dissolved Lead (Pb)	2022/09/30		97	%	80 - 120
			Dissolved Lithium (Li)	2022/09/30		102	%	80 - 120
			Dissolved Magnesium (Mg)	2022/09/30		102	%	80 - 120
			Dissolved Nickel (Ni)	2022/09/30		95	%	80 - 120
			Dissolved Potassium (K)	2022/09/30		103	%	80 - 120

Page 13 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Rubidium (Rb)	2022/09/30		101	%	80 - 120
			Dissolved Selenium (Se)	2022/09/30		99	%	80 - 120
			Dissolved Silicon (Si)	2022/09/30		100	%	80 - 120
			Dissolved Sodium (Na)	2022/09/30		100	%	80 - 120
			Dissolved Strontium (Sr)	2022/09/30		99	%	80 - 120
			Dissolved Thorium (Th)	2022/09/30		94	%	80 - 120
			Dissolved Uranium (U)	2022/09/30		94	%	80 - 120
			Dissolved Zirconium (Zr)	2022/09/30		102	%	80 - 120
8257522	N_R	Method Blank	Dissolved Aluminum (Al)	2022/09/30	<4.9	102	ug/L	00 120
0207022		method Blank	Dissolved Arsenic (As)	2022/09/30	<1.0		ug/L	
			Dissolved Parium (Ba)	2022/09/30	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/09/30	<1.0		ug/L	
			Dissolved Boron (B)	2022/09/30	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/09/30	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/09/30	<200		ug/L ug/L	
			Dissolved Cesium (Cs)	2022/09/30	<0.20		-	
			Dissolved Cesturn (Cs)				ug/L	
				2022/09/30	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/09/30	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/09/30	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/09/30	<100		ug/L	
			Dissolved Lead (Pb)	2022/09/30	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/09/30	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/09/30	<50		ug/L	
			Dissolved Nickel (Ni)	2022/09/30	<1.0		ug/L	
			Dissolved Potassium (K)	2022/09/30	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/09/30	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/09/30	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/09/30	<50		ug/L	
			Dissolved Sodium (Na)	2022/09/30	<100		ug/L	
			Dissolved Strontium (Sr)	2022/09/30	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/09/30	<2.0		ug/L	
			Dissolved Uranium (U)	2022/09/30	<0.10		ug/L	
			Dissolved Zirconium (Zr)	2022/09/30	<1.0		ug/L	
8257869	NS3	Matrix Spike [TWA662-01]	Total Inorganic Carbon (C)	2022/09/30		47 (2)	%	80 - 120
8257869	NS3	Spiked Blank	Total Inorganic Carbon (C)	2022/09/30		94	%	80 - 120
8257869	NS3	Method Blank	Total Inorganic Carbon (C)	2022/09/30	<1		mg/L	
8257869	NS3	RPD [TWA662-01]	Total Inorganic Carbon (C)	2022/09/30	0.28		%	20
8258034	ASP	Matrix Spike	Total Ammonia-N	2022/10/01		94	%	75 - 125
8258034	ASP	Spiked Blank	Total Ammonia-N	2022/10/01		98	%	80 - 120
8258034	ASP	Method Blank	Total Ammonia-N	2022/10/01	<0.050		mg/L	
8258034	ASP	RPD	Total Ammonia-N	2022/10/01	NC		%	20
8258051	NS3	Matrix Spike [TWA663-07]	Total Organic Carbon (TOC)	2022/09/30		NC	%	80 - 120
8258051	NS3	Spiked Blank	Total Organic Carbon (TOC)	2022/09/30		99	%	80 - 120
8258051	NS3	Method Blank	Total Organic Carbon (TOC)	2022/09/30	<0.40	55	∞ mg/L	00 - 120
				2022/09/30			-	20
8258051	NS3	RPD [TWA663-07]	Total Organic Carbon (TOC)		0.52	110	%	20
8258674	S1L	Matrix Spike	Orthophosphate (P)	2022/10/04		110	%	75 - 125
8258674	S1L	Spiked Blank	Orthophosphate (P)	2022/10/04	-0.010	101	%	80 - 120
8258674	S1L	Method Blank	Orthophosphate (P)	2022/10/04	<0.010		mg/L	
8258674	S1L	RPD	Orthophosphate (P)	2022/10/04	NC		%	25

Page 14 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8259273	ADA	Matrix Spike	Dissolved Aluminum (Al)	2022/10/03		101	%	80 - 120
			Dissolved Arsenic (As)	2022/10/03		101	%	80 - 120
			Dissolved Barium (Ba)	2022/10/03		101	%	80 - 120
			Dissolved Bismuth (Bi)	2022/10/03		98	%	80 - 120
			Dissolved Boron (B)	2022/10/03		93	%	80 - 120
			Dissolved Cadmium (Cd)	2022/10/03		99	%	80 - 120
			Dissolved Calcium (Ca)	2022/10/03		NC	%	80 - 120
			Dissolved Cesium (Cs)	2022/10/03		101	%	80 - 120
			Dissolved Chromium (Cr)	2022/10/03		93	%	80 - 120
			Dissolved Cobalt (Co)	2022/10/03		102	%	80 - 120
			Dissolved Copper (Cu)	2022/10/03		97	%	80 - 120
			Dissolved Iron (Fe)	2022/10/03		102	%	80 - 120
			Dissolved Lead (Pb)	2022/10/03		102	%	80 - 120
			Dissolved Lithium (Li)	2022/10/03		108	%	80 - 120
			Dissolved Magnesium (Mg)	2022/10/03		105	%	80 - 120
			Dissolved Nickel (Ni)	2022/10/03		95	%	80 - 120
			Dissolved Potassium (K)	2022/10/03		104	%	80 - 120
			Dissolved Rubidium (Rb)	2022/10/03		100	%	80 - 120
			Dissolved Selenium (Se)	2022/10/03		101	%	80 - 120
			Dissolved Silicon (Si)	2022/10/03		99	%	80 - 120
			Dissolved Sodium (Na)	2022/10/03		102	%	80 - 120
			Dissolved Strontium (Sr)	2022/10/03		95	%	80 - 120
			Dissolved Thorium (Th)	2022/10/03		97	%	80 - 120
			Dissolved Uranium (U)	2022/10/03		101	%	80 - 120
			Dissolved Zirconium (Zr)	2022/10/03		98	%	80 - 120
8259273	ADA	Spiked Blank	Dissolved Aluminum (Al)	2022/10/03		99	%	80 - 120
		•	Dissolved Arsenic (As)	2022/10/03		98	%	80 - 120
			Dissolved Barium (Ba)	2022/10/03		100	%	80 - 120
			Dissolved Bismuth (Bi)	2022/10/03		96	%	80 - 120
			Dissolved Boron (B)	2022/10/03		87	%	80 - 120
			Dissolved Cadmium (Cd)	2022/10/03		97	%	80 - 120
			Dissolved Calcium (Ca)	2022/10/03		99	%	80 - 120
			Dissolved Cesium (Cs)	2022/10/03		100	%	80 - 120
			Dissolved Chromium (Cr)	2022/10/03		89	%	80 - 120
			Dissolved Cobalt (Co)	2022/10/03		98	%	80 - 120
			Dissolved Copper (Cu)	2022/10/03		97	%	80 - 120
			Dissolved Iron (Fe)	2022/10/03		99	%	80 - 120
			Dissolved Lead (Pb)	2022/10/03		101	%	80 - 120
			Dissolved Lithium (Li)	2022/10/03		98	%	80 - 120
			Dissolved Magnesium (Mg)	2022/10/03		99	%	80 - 120
			Dissolved Nickel (Ni)	2022/10/03		92	%	80 - 120
			Dissolved Potassium (K)	2022/10/03		99	%	80 - 120
			Dissolved Rubidium (Rb)	2022/10/03		96	%	80 - 120
			Dissolved Selenium (Se)	2022/10/03		100	%	80 - 120
			Dissolved Silicon (Si)	2022/10/03		95	%	80 - 120
			Dissolved Sodium (Na)	2022/10/03		103	%	80 - 120
			Dissolved Strontium (Sr)	2022/10/03		92	%	80 - 120
			Dissolved Thorium (Th)	2022/10/03		93	%	80 - 120
			Dissolved Uranium (U)	2022/10/03		100	%	80 - 120
			Dissolved Zirconium (Zr)	2022/10/03		96	%	80 - 120
8259273	ADA	Method Blank	Dissolved Aluminum (Al)	2022/10/03	<4.9	-	ug/L	

Page 15 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Arsenic (As)	2022/10/03	<1.0	•	ug/L	
			Dissolved Barium (Ba)	2022/10/03	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/10/03	<1.0		ug/L	
			Dissolved Boron (B)	2022/10/03	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/10/03	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/10/03	<200		ug/L	
			Dissolved Cesium (Cs)	2022/10/03	<0.20		ug/L	
			Dissolved Chromium (Cr)	2022/10/03	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/10/03	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/10/03	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/10/03	<100		ug/L	
			Dissolved Lead (Pb)	2022/10/03	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/10/03	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/10/03	<50		ug/L	
			Dissolved Nickel (Ni)	2022/10/03	<1.0		ug/L	
			Dissolved Potassium (K)	2022/10/03	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/10/03	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/10/03	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/10/03	<50		ug/L	
			Dissolved Sodium (Na)	2022/10/03	<100		ug/L	
			Dissolved Strontium (Sr)	2022/10/03	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/10/03	<2.0		ug/L	
			Dissolved Uranium (U)	2022/10/03	<0.10		ug/L	
			Dissolved Zirconium (Zr)	2022/10/03	<1.0		ug/L	
8259273	ADA	RPD	Dissolved Lead (Pb)	2022/10/03	NC		%	20
8259282	TLG	Matrix Spike [TWA662-05]	Dissolved Iron (Fe)	2022/10/04		87	%	80 - 120
			Dissolved Sulphur (S)	2022/10/04		NC	%	80 - 120
8259282	TLG	Spiked Blank	Dissolved Iron (Fe)	2022/10/04		96	%	80 - 120
			Dissolved Sulphur (S)	2022/10/04		95	%	80 - 120
8259282	TLG	Method Blank	Dissolved Iron (Fe)	2022/10/04	<0.02		mg/L	
			Dissolved Sulphur (S)	2022/10/04	<0.5		mg/L	
8259282	TLG	RPD [TWA662-05]	Dissolved Iron (Fe)	2022/10/04	0.37		%	25
			Dissolved Sulphur (S)	2022/10/04	12		%	25
8265229	APT	Matrix Spike	Total Iron (Fe)	2022/10/05		103	%	80 - 120
			Total Sulphur (S)	2022/10/05		NC	%	80 - 120
8265229	APT	Spiked Blank	Total Iron (Fe)	2022/10/05		102	%	80 - 120
			Total Sulphur (S)	2022/10/05		99	%	80 - 120
8265229	APT	Method Blank	Total Iron (Fe)	2022/10/05	<0.02		mg/L	
			Total Sulphur (S)	2022/10/05	<0.5		mg/L	
8265229	APT	RPD	Total Iron (Fe)	2022/10/05	2.4		%	25
8276412	тми	Matrix Spike	Dissolved Iodide	2022/10/06		87	%	80 - 120
8276412	TMU	Spiked Blank	Dissolved Iodide	2022/10/06		102	%	80 - 120
8276412	TMU	Method Blank	Dissolved Iodide	2022/10/06	<0.10		mg/L	
8276412	TMU	RPD	Dissolved Iodide	2022/10/06	NC		%	20
8276849	éH2	Matrix Spike	Reactive Silica (SiO2)	2022/10/11		NC	%	80 - 120
8276849	éH2	Spiked Blank	Reactive Silica (SiO2)	2022/10/11		101	%	80 - 120
8276849	éH2	Method Blank	Reactive Silica (SiO2)	2022/10/11	<0.050		mg/L	
8276849	éH2	RPD	Reactive Silica (SiO2)	2022/10/11	0.53		%	20
8276861	éH2	Matrix Spike	Reactive Silica (SiO2)	2022/10/11		103	%	80 - 120
8276861	éH2	Spiked Blank	Reactive Silica (SiO2)	2022/10/11		104	%	80 - 120

Page 16 of 18

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8276861	éH2	Method Blank	Reactive Silica (SiO2)	2022/10/11	<0.050		mg/L	
8276861	éH2	RPD	Reactive Silica (SiO2)	2022/10/11	1.9		%	20
8310547	ZEO	Spiked Blank	Total Ruthenium (Ru)	2022/10/22		93	%	70 - 130
8310547	ZEO	Method Blank	Total Ruthenium (Ru)	2022/10/22	<2.0		ug/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Due to a high concentration of NOx, the sample required dilution. The detection limit was adjusted accordingly.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

agen -sh

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

ArD l

Jonathan Fauvel, B.Sc, Chimiste, Supervisor, Inorganics

Sandy Yuan, M.Sc., QP, Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Isotope Analyses for: Geofirma Engineering LTD

IT² FILE # 220901

2023-03-24

Approved by:

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1Z5 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	220901
Project Number:	20-203-1

#	Client ID	Sample #	Sampling		E ³ H	Result	± 1σ	δ ¹⁸ 0	Aver	Stdv	$\delta^2 H$	Aver	Stdv
			Date	Time			TU	H ₂ O	VSM	ow	H ₂ O	VSN	10W
1	IG_BH03_GW017	120785	2022-09-21	various	Х	1.4	0.7	х	-9.93	0.01	Х	-61.3	0.2
2	IG_BH03_GW018	120786	2022-09-21	various	Х	1.2	0.8	Х	-9.88	0.04	Х	-61.2	0.1
3	IG_BH01_GW035	120787	2022-09-24	various	Х	6.0	0.9	Х	-8.93	0.04	Х	-70.3	0.1
4	IG_BH05_GW005	120788	2022-09-26	various	Х	1.5	0.7	Х	-11.75	0.04	Х	-82.0	0.1
5	IG_BH05_GW006	120789	2022-09-26	various	Х	2.1	0.8	х	-11.85	0.03	Х	-82.2	0.1
6	IG_BH05_GW008	120790	2022-09-25	8:45	Х	< 0.8 0.7							

¹⁸O & ²H (CRDS)

Instrument Used: Cavity Ring Down Spectroscopy (CRDS) CRDS (Model L2130-i) (Picarro, California, USA). Standard Used: IT2-12C / IT2-13B / IT2-14B Calibrated with IAEA Standards (V-SMOW, SLAP, and GISP) Typical Standard deviation:

 $(^{18}O \pm 0.1\%) \quad (^{2}H \pm 1\%)$

E³H ANALYSES

Tritium is reported in Tritium Units.

1TU = 3.221 Picocurries/L per IAEA, 2000 Report.

1TU = 0.11919 Becquerels/L per IAEA, 2000 Report.

Approved by:

Orfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: <a>acartier@geofirma.com

ile Number:	22			
Project Number:	20			

<u>220901</u>
<u>20-203-1</u>

#	Client ID	Sample #	Sampling		⁸⁷ Sr/ ⁸⁶ Sr	Result	StdErr (abs)	StdDev (abs)	δ ³⁷ Cl	Result	Stdv
			Date	Time							
1	IG_BH03_GW017	120785	2022-09-21	various	Х	0.71822	5.912E-06	7.572E-05	Х	-0.25	0.11
2	IG_BH03_GW018	120786	2022-09-21	various	Х	0.71815	4.508E-06	5.612E-05	Х	-0.23	0.09
3	IG_BH01_GW035	120787	2022-09-24	various	Х	0.71545	7.025E-06	8.718E-05	Х	-0.26	0.08
4	IG_BH05_GW005	120788	2022-09-26	various	Х	0.71592	5.796E-06	8.073E-05	Х	-0.06	0.06
5	IG_BH05_GW006	120789	2022-09-26	various	Х	0.71581	5.264E-06	6.512E-05	Х	-0.03	0.10
6	IG_BH05_GW008	120790	2022-09-25	8:45							

⁷Sr/⁸⁶Sr ANALYSES

Instrument Used:

Thermal Ionization Mass Spectrometry (TIMS), TI-Box, spectromat, Germany Standard Used: NIST-987 **Typical Standard deviation:** ± 0.0001

³⁷CI ANALYSES

Instrument Used:

Isotope Ratio Mass Spectrometry (IRMS) - MAT 253, Thermo Scientific, Germany Coupled with an Agilent 6890 Gas Chromatograph (GC) Standard Used:

SMOC

Typical Standard deviation:

 $\pm 0.15\%$

Approved by:

Orfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	220901
Project Number:	20-203-1

#	Client ID	Sample #	Sampl	ing	$\delta^{13}C$	Result	Repeat	¹⁴ C		Re	sult	
			Date	Time	DIC		PDB	DIC	¹⁴ C yr BP	±	F14C	±
1	IG_BH03_GW017	120785	2022-09-21	various	Х	-24	-24.1	Х	6145	60	0.4653	0.0035
2	IG_BH03_GW018	120786	2022-09-21	various	Х	-23.6		Х	5805	58	0.4855	0.0035
3	IG_BH01_GW035	120787	2022-09-24	various	Х	-12.2		х	3036	53	0.6852	0.0046
4	IG_BH05_GW005	120788	2022-09-26	various	Х	-24.3		Х	469	57	0.9433	0.0067
5	IG_BH05_GW006	120789	2022-09-26	various	Х	-24.3	-23.8	Х	697	57	0.9169	0.0065
6	IG_BH05_GW008	120790	2022-09-25	8:45	Х	-11.2		х	7226	59	0.4068	0.0030

¹³C DIC Analyses

Instrument Used: Finnigan MAT, DeltaPlus XL IRMS, Germany. Standard Used:

IT²-27

IT²-34

NBS-18

NBS-19

Typical Standard deviation: ± 0.2 ‰

¹⁴C DIC Analyses

Instrument Used:

AMS (Accelerator Mass Spectrometry)

Standard Used:

OX1: 1.05 x e-10 OX2: 1.35 x e-10 C6: 1.5 x e-10

C7: 0.5 x e-10 **Typical Standard deviation:**

5 to 10% of Standard values listed above

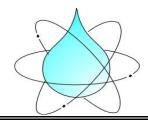
Reporting of Data

In this analysis report, we have followed the conventions recommended by Millard (2014).

Radiocarbon Analysis

Radiocarbon analyses are performed on a 3MV tandem accelerator mass spectrometer built by High Voltage Engineering (HVE). 12,13,14C+3 ions are measured at 2.5 MV terminal voltage with Ar stripping. The fraction modern carbon, F14C, is calculated according to Reimer et al. (2004) as the ratio of the sample 14C/12C ratio to the standard 14C/12C ratio (in our case Ox-II) measured in the same data block. Both 14C/12C ratios are background-corrected and the result is corrected for spectrometer and preparation fractionation using the AMS measured 13C/12C ratio and is normalized to δ13C (PDB). Radiocarbon ages are calculated as -8033ln(F14C) and reported in 14C yr BP (BP=AD 1950) as described by Stuiver and Polach (1977). The errors on 14C ages (1σ) are based on counting statistics and 14C/12C and 13C/12C variation between data blocks. We do not report δ13C as it is measured on the AMS and contains machine fractionation.

D14C (defined as per mil Depletion or Enrichment Relative to Standard Normalized for Isotope Fractionation) are calculated as $(F14C - 1) \cdot 1000$.


 $\Delta 14C$ (defined as age corrected D14C) are calculated as (F14C·e(1950-y)/8267) - 1) $\cdot 1000$, where y = year of measurement.

Approved by:

Orfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

608 Weber St. N – Unit 3 – Waterloo – Ontario – N2V 1K4 – Canada Tel: 519-886-5555 – Fax: 519-886-5575 – E-mail: info@it2isotopes.com – www.it2isotopes.com

Hydrogeochemistry Laboratory *Analytical Report - Clark group* University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

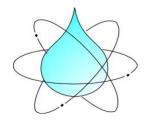
Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description			
Site	Ignace		
Туре	Water		
Container	Nalgene		
Volume	1L		

Analysis	
Analyte	¹²⁹
Method	¹²⁹ I extraction to AgI and AMS analysis
Facility	Hydrogeochemistry Laboratory, University of Ottawa
Report Approved by	Ja Clark, P.Geo.

Timeline						
Samples received	Analyses completed	Report date				
September 2022	¹²⁹ I	March 1, 2023				


Hydrogeochemistry Laboratory Analytical Report - Clark group

			¹²⁷ I Concentration	¹²⁷ I Concentration	Mass of	¹²⁹ I/ ¹²⁷ I Ratio Measured (x10 ⁻¹⁴) *		¹²⁹ I Concentration (x10 ⁶ atoms/g)		Original Ratio (<i>x10⁻⁰⁹</i>) **	
Sample	UofO #	Date Sampled	Sample Weight (g)	Measured (ppb)	lodide Carrier Added (mg)	Ratio	Standard Deviation	Concentration	Standard Deviation	OR	Standard Deviation
IG_BH03_GW017	UOH 4202	Sept. 21, 2022	200.82	467.80	2.16	2.95E+02	1.84E+01	1.57E-01	9.83E-03	7.07E-02	5.67E-03
IG_BH03_GW018	UOH 4203	Sept. 21, 2022	200.93	516.33	2.16	2.34E+02	1.59E+01	1.25E-01	8.49E-03	5.12E-02	4.31E-03
IG_BH01_GW035	UOH 4204	Sept. 24, 2022	210.58	209.59	2.16	2.26E+02	1.41E+01	1.12E-01	7.03E-03	1.13E-01	9.04E-03
IG_BH05_GW005	UOH 4205	Sept. 27, 2022	204.30	283.15	2.16	8.24E+01	5.16E+00	4.25E-02	2.66E-03	3.16E-02	2.53E-03
IG_BH05_GW006	UOH 4206	Sept. 27, 2022	201.48	304.46	2.16	9.98E+01	6.25E+00	5.23E-02	3.27E-03	3.62E-02	2.90E-03

Note: * ¹²⁹ I/¹²⁷ I Ratio Measured includes both sample and carrier added. **Note 2:** ** ¹²⁹ I/¹²⁷ I Ratio calculated before added the carrier.

AMS Measurements

The ¹²⁹I analysis are performed on a 3MV accelerator mass spectrometer (AMS) built by High Voltage Engineering (HVE). ¹²⁹I⁺² ions are measured at 2.5 MV terminal voltage Ar stripping. The errors represent 68.3% confidence limits, based on 1 measurement each. These measurements were normalized with respect to ISO-6II in-house reference material for which ¹²⁹I/¹²⁷I = $(5.71 \pm 0.01) \times 10^{-12}$, by calibration with the NIST 3230 I and II standard reference material. The AMS system background was monitored with our standard NaI blank material and found to be normal. No background corrections were applied to these data. A NaI blank measured on February 09, 2023 set of samples yielded a ¹²⁹I/¹²⁷I ratio of $(1.4 \pm 0.4) \times 10^{-14}$.

Hydrogeochemistry Laboratory Analytical Report - Clark group University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description				
Site	Ignace			
Туре	Water			
Container	Nalgene			
Volume	1 L			

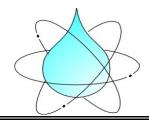
Analysis			
Analyte	³⁶ Cl in dissolved Cl		
Method	AMS		
Facility	Hydrogeochemistry Laboratory, University of Ottawa		
Report Approved by	Jacal Ian Clark, P.Geo.		

Timeline		
Samples received	Analyses completed	Report date
October 04, 2022 (5), 2022 Q3 December 20, 2022 (3), 2022 Q4	36Cl	April 27, 2023

Notes

Samples were collected in the field by Geofirma staff. Bottles were received sealed and in good condition.

Samples were extracted as Cl⁻ from solution on an anion exchange column, eluted and precipitated as AgCl target material. AMS analysis was undertaken on a 6 MV tandem accelerator mass spectrometer at PRIME Lab, Purdue.


Hydrogeochemistry Laboratory

Report prepared for:

Geofirma Engineering Ltd.

Analytical Report - Clark group

Sample	Lab ID	Comment	Cl (mg/L)	³⁶ CI/CI final (10 ⁻¹⁵)	±	³⁶ Cl atoms/L (10 ⁶)	±
IG_BH03_GW017	PRIME	prepared at uOttawa	21000	19.2	1.3	6834	464
IG_BH03_GW018	PRIME	prepared at uOttawa	21000	18.1	2.5	6440	881
IG_BH01_GW035	PRIME	prepared at uOttawa	5300	17.2	1.2	1543	108
IG_BH05_GW005	PRIME	prepared at uOttawa	6600	18.6	1.4	2079	155
IG_BH05_GW006	PRIME	prepared at uOttawa	6400	17.5	1.3	1902	142

Hydrogeochemistry Laboratory Analytical Report - Clark group University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description				
Site	Ignace			
Туре	Noble gas			
Container	Cu tubes			
Volume				
Report Approved by	Jack Ian Clark, P.Geo.			

Analysis	
Analyte	Noble gases
Method	Mass spectrometry
Facility	Noble gas laboratory, University of Utah

Timeline		
Samples received	Analyses completed	Report date
2022 Q3 and Q4	Ha Na Ar Kr Va	Rev 0: 2023-06-19
	He, Ne, Ar, Kr, Xe	Rev 1: 2024-01-08

Notes

Gas extraction from water follows the procedure outlined in Aeschbach-Hertig & Solomon 2013. Please see sheet tab titled "Notes" for further explanation of the noble gas analysis.

Hydrogeochemistry Laboratory

Analytical Report - Clark group

Report prepared for:

Geofirma Engineering Ltd.

Quarter	Sample ID	Mass g	H	He3 He4		e4	x/Ra	HeT	otal
			cc/g	±	cc/g	±		cc/g	±
2022 Q3	IG_BH03_GW017	10.7	5.39E-11	5.39E-13	3.05E-04	3.05E-06	0.128	3.05E-04	3.05E-06
2022 Q3	IG_BH03_GW018	10.2	4.87E-12	4.87E-14	2.83E-04	2.83E-06	0.012	2.83E-04	2.83E-06
2022 Q3	IG_BH01_GW035	11.1	2.80E-11	2.80E-13	3.00E-04	3.00E-06	0.068	3.00E-04	3.00E-06
2022 Q3	IG_BH05_GW005	13.0	4.01E-11	4.01E-13	2.54E-04	2.54E-06	0.114	2.54E-04	2.54E-06
2022 Q3	IG_BH05_GW006	11.5	4.26E-11	4.26E-13	2.88E-04	2.88E-06	0.107	2.88E-04	2.88E-06
2022 Q4	IG_BH01_GW028	10.1	1.67E-11	1.67E-13	3.33E-04	3.33E-06	0.036	3.33E-04	3.33E-06
2022 Q4	IG_BH01_GW036	9.8	2.39E-11	2.39E-13	3.29E-04	3.29E-06	0.053	3.29E-04	3.29E-06
2022 Q4	IG_BH05_GW011	9.9	2.26E-12	2.26E-14	1.36E-04	1.36E-06	0.012	1.36E-04	1.36E-06
2022 Q4	IG_BH05_GW012	11.1	4.87E-11	4.87E-13	2.99E-04	2.99E-06	0.118	2.99E-04	2.99E-06

Quarter	Sample ID	Mass g	Ne20		Ne	Ne22		NeTotal	
			cc/g	<u>±</u>	cc/g	±	cc/g	\pm	
2022 Q3	IG_BH03_GW017	10.7	6.56E-08	1.97E-09	7.14E-09	2.14E-10	7.27E-08	2.18E-09	9.19
2022 Q3	IG_BH03_GW018	10.2	7.84E-08	2.35E-09	7.79E-09	2.34E-10	8.62E-08	2.59E-09	10.07
2022 Q3	IG_BH01_GW035	11.1	6.57E-07	1.97E-08	6.59E-08	1.98E-09	7.22E-07	2.17E-08	9.96
2022 Q3	IG_BH05_GW005	13.0	3.69E-07	1.11E-08	3.93E-08	1.18E-09	4.08E-07	1.22E-08	9.39
2022 Q3	IG_BH05_GW006	11.5	4.62E-07	1.39E-08	5.02E-08	1.51E-09	5.13E-07	1.54E-08	9.22
2022 Q4	IG_BH01_GW028	10.1	3.53E-08	1.06E-09	3.55E-09	1.06E-10	3.89E-08	1.17E-09	9.96
2022 Q4	IG_BH01_GW036	9.8	5.50E-08	1.65E-09	5.85E-09	1.75E-10	6.09E-08	1.83E-09	9.41
2022 Q4	IG_BH05_GW011	9.9	7.86E-08	2.36E-09	8.01E-09	2.40E-10	8.66E-08	2.60E-09	9.80
2022 Q4	IG_BH05_GW012	11.1	1.48E-07	4.43E-09	1.53E-08	4.60E-10	1.63E-07	4.89E-09	9.63

Quarter	Sample ID	Mass g	Ar36		Ar	Ar40		ArTotal	
			cc/g	<u>±</u>	cc/g	±	cc/g	\pm	
2022 Q3	IG_BH03_GW017	10.7	1.43E-07	4.29E-09	2.22E-03	6.66E-05	2.22E-03	6.66E-05	6.45E-05
2022 Q3	IG_BH03_GW018	10.2	1.54E-07	4.62E-09	7.39E-04	2.22E-05	7.39E-04	2.22E-05	2.09E-04
2022 Q3	IG_BH01_GW035	11.1	1.38E-06	4.15E-08	7.73E-04	2.32E-05	7.75E-04	2.32E-05	1.79E-03
2022 Q3	IG_BH05_GW005	13.0	1.11E-06	3.32E-08	1.35E-03	4.06E-05	1.36E-03	4.07E-05	8.18E-04
2022 Q3	IG_BH05_GW006	11.5	1.06E-06	3.18E-08	1.36E-03	4.08E-05	1.36E-03	4.08E-05	7.79E-04
2022 Q4	IG_BH01_GW028	10.1	5.13E-07	1.54E-08	6.43E-04	1.93E-05	6.43E-04	1.93E-05	7.99E-04
2022 Q4	IG_BH01_GW036	9.8	4.90E-07	1.47E-08	1.22E-03	3.67E-05	1.22E-03	3.67E-05	4.01E-04
2022 Q4	IG_BH05_GW011	9.9	5.49E-07	1.65E-08	3.86E-04	1.16E-05	3.87E-04	1.16E-05	1.42E-03
2022 Q4	IG_BH05_GW012	11.1	5.81E-07	1.74E-08	1.25E-03	3.75E-05	1.25E-03	3.75E-05	4.65E-04

Hydrogeochemistry Laboratory

Analytical Report - Clark group

Report prepared for: Geofirma Engineering Ltd.

Quarter	Sample ID	Mass g	KrT	otal	XeT	otal
			cc/g	<u>±</u>	cc/g	±
2022 Q3	IG_BH03_GW017	10.7	1.94E-08	9.71E-10	3.46E-09	1.73E-10
2022 Q3	IG_BH03_GW018	10.2	1.25E-08	6.24E-10	2.59E-09	1.30E-10
2022 Q3	IG_BH01_GW035	11.1	6.41E-08	3.20E-09	8.21E-09	4.10E-10
2022 Q3	IG_BH05_GW005	13.0	4.56E-08	2.28E-09	7.87E-09	3.94E-10
2022 Q3	IG_BH05_GW006	11.5	5.11E-08	2.56E-09	7.88E-09	3.94E-10
2022 Q4	IG_BH01_GW028	10.1	4.65E-08	2.32E-09	8.35E-09	4.18E-10
2022 Q4	IG_BH01_GW036	9.8	3.19E-08	1.59E-09	5.27E-09	2.63E-10
2022 Q4	IG_BH05_GW011	9.9	3.66E-08	1.83E-09	6.02E-09	3.01E-10
2022 Q4	IG_BH05_GW012	11.1	5.51E-08	2.76E-09	8.35E-09	4.18E-10

- cc/g cc of noble gas at STP per gram of sample solution
 - ± analytical uncertainty, as cc/g
- xRa 3He/4He ratio in sample normalized to the ratio in Air (1.38E-6)

Noble Gas Analysis

Gas extraction from water follows the procedure outlined in *Aeschbach-Hertig & Solomon 2013*. This involves gas extraction from copper tube water samples under vacuum by water vapour sweep into a stainless steel gas flask. The extracted gases are let into a sample preparation line and cryogenically separated. For light noble gases (He and Ne), standards and samples are introduced into an ultra-high vacuum preparation system where bulk (N₂, O₂) and trace gases (CO₂, Ar) are removed using liquid N₂ charcoal traps and two SAES getters, followed by analysis on a Thermo Scientific Helix SFT Noble Gas Mass Spectrometer. Internal standards using precise aliquots from a tank of clean dry atmospheric air are run each morning and during analysis to measure instrument drift and sensitivity. Internal standards of air equilibrated water (AEW) are also run as internal checks on the water extraction procedure and analyses. Following purification, He is separated from Ne using a He cooled cryo trap that cycles down to 5K, before releasing He at 28K and Ne at 70K. He and Ne are introduced separately into the Helix SFT operating under static vacuum. Each analysis undergoes a mass peak center, followed by separate integrations on each mass peak. These integrations generate a linear regression used to calculate peak intensity at time zero (when the sample was released into the mass spectrometer).For Ar, Kr and Xe, gases, residual water vapour was removed cryogenically prior to gettering of reactive gases and cryogenic separation of Kr and Xe from Ar. Abundance analysis was done by quadrupole mass spectrometry at the University of Utah Noble Gas Lab.

References:

Aeschbach-Hertig W., Solomon D.K. (2013) Noble Gas Thermometry in Groundwater Hydrology. In: Burnard P. (eds) The Noble Gases as

2022 Q4 (December)

Your P.O. #: 202031-000 Your Project #: 20-203-1 Site Location: IGNACE Your C.O.C. #: n/a

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/12/21 Report #: R7440291 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2AA404

Received: 2022/12/07, 14:10

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Anions	1	N/A	2022/12/13	CAM SOP-00435	SM 23 4110 B m
Fluoride	1	2022/12/10	2022/12/12	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	1	2022/12/10	2022/12/13	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	1	N/A	2022/12/14	CAM SOP-00447	EPA 6020B m
lodide, Thiosulphate, Thiocyanate (1)	1	N/A	2022/12/20	CAL SOP-00057	Dionex #034035 R09 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2022/12/13	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Orthophosphate	1	N/A	2022/12/13	CAM SOP-00461	SM 23 4500-P E m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Page 1 of 10

Your P.O. #: 202031-000 Your Project #: 20-203-1 Site Location: IGNACE Your C.O.C. #: n/a

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/12/21 Report #: R7440291 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2AA404 Received: 2022/12/07, 14:10

21 Dec 2022 19:56:22

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633 _____

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 10 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		UNI123			UNI123		
Sampling Date		2022/12/04 12:00			2022/12/04 12:00		
COC Number		n/a			n/a		
	UNITS	IG_BH05_GW009	RDL	QC Batch	IG_BH05_GW009 Lab-Dup	RDL	QC Batch
Inorganics							
Fluoride (F-)	mg/L	<0.10	0.10	8396736			
Dissolved Iodide	mg/L	<0.10	0.10	8417750	<0.10	0.10	8417750
Orthophosphate (P)	mg/L	<0.010	0.010	8395869			
Nitrite (N)	mg/L	<0.010	0.010	8395819			
Dissolved Chloride (Cl-)	mg/L	<1.0	1.0	8395861			
Nitrate (N)	mg/L	<0.10	0.10	8395819			
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	8395819			
Dissolved Bromide (Br-)	mg/L	<1.0	1.0	8395861			
Dissolved Sulphate (SO4)	mg/L	<1.0	1.0	8395861			
RDL = Reportable Detection QC Batch = Quality Control B							

Lab-Dup = Laboratory Initiated Duplicate

Bureau Veritas ID UNI123 UNI123 2022/12/04 2022/12/04 Sampling Date 12:00 12:00 COC Number n/a n/a IG_BH05_GW009 RDL QC Batch UNITS IG BH05 GW009 RDL QC Batch Lab-Dup Metals Dissolved Iron (Fe) 8396512 0.02 8396512 mg/L 0.04 0.02 < 0.02 Dissolved Sulphur (S) 0.5 8396512 mg/L <0.5 0.5 8396512 <0.5 Dissolved Aluminum (Al) ug/L <4.9 4.9 8398373 Dissolved Arsenic (As) ug/L <1.0 1.0 8398373 Dissolved Barium (Ba) ug/L <2.0 2.0 8398373 Dissolved Bismuth (Bi) ug/L <1.0 1.0 8398373 Dissolved Boron (B) ug/L <10 10 8398373 Dissolved Cadmium (Cd) ug/L < 0.090 0.090 8398373 Dissolved Calcium (Ca) ug/L 1000 200 8398373 Dissolved Cesium (Cs) ug/L <0.20 0.20 8398373 Dissolved Chromium (Cr) ug/L <5.0 5.0 8398373 Dissolved Cobalt (Co) ug/L <0.50 0.50 8398373 Dissolved Copper (Cu) < 0.90 8398373 ug/L 0.90 Dissolved Lead (Pb) ug/L <0.50 0.50 8398373 Dissolved Lithium (Li) ug/L <5.0 5.0 8398373 Dissolved Magnesium (Mg) ug/L 53 50 8398373 Dissolved Nickel (Ni) ug/L <1.0 1.0 8398373 Dissolved Potassium (K) <200 8398373 ug/L 200 Dissolved Rubidium (Rb) <0.20 ug/L 0.20 8398373 Dissolved Selenium (Se) <2.0 ug/L 2.0 8398373 Dissolved Silicon (Si) ug/L <50 50 8398373 Dissolved Sodium (Na) 250 ug/L 100 8398373 Dissolved Strontium (Sr) ug/L 10 1.0 8398373 Dissolved Thorium (Th) ug/L <2.0 2.0 8398373 Dissolved Uranium (U) ug/L < 0.10 0.10 8398373 Dissolved Zirconium (Zr) ug/L <1.0 1.0 8398373 RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

TEST SUMMARY

Bureau Veritas ID:	UNI123
Sample ID:	IG_BH05_GW009
Matrix:	Water

Collected: 2022/12/04 Shipped: Received: 2022/12/07

Collected: 2022/12/04

Received: 2022/12/07

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anions	IC	8395861	N/A	2022/12/13	Lusine Khachatryan
Fluoride	ISE	8396736	2022/12/10	2022/12/12	Kien Tran
Dissolved Metals Analysis by ICP	ICP	8396512	2022/12/10	2022/12/13	Thuy Linh Nguyen
Dissolved Metals by ICPMS	ICP/MS	8398373	N/A	2022/12/14	Nan Raykha
Iodide, Thiosulphate, Thiocyanate	IC/EC	8417750	N/A	2022/12/20	Kanwardeep Brar
Nitrate & Nitrite as Nitrogen in Water	LACH	8395819	N/A	2022/12/13	Chandra Nandlal
Orthophosphate	KONE	8395869	N/A	2022/12/13	Alina Dobreanu

Bureau Veritas ID:	UNI123 Dup
Sample ID:	IG_BH05_GW009
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals Analysis by ICP	ICP	8396512	2022/12/10	2022/12/13	Thuy Linh Nguyen
Iodide, Thiosulphate, Thiocyanate	IC/EC	8417750	N/A	2022/12/20	Kanwardeep Brar

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	-2.0°C	7
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8395819	C_N	Matrix Spike	Nitrite (N)	2022/12/13		93	%	80 - 120
			Nitrate (N)	2022/12/13		103	%	80 - 120
8395819	C_N	Spiked Blank	Nitrite (N)	2022/12/13		107	%	80 - 120
			Nitrate (N)	2022/12/13		99	%	80 - 120
8395819	C_N	Method Blank	Nitrite (N)	2022/12/13	<0.010		mg/L	
			Nitrate (N)	2022/12/13	<0.10		mg/L	
8395819	C_N	RPD	Nitrite (N)	2022/12/13	NC		%	20
			Nitrate (N)	2022/12/13	1.4		%	20
8395861	LKH	Matrix Spike	Dissolved Chloride (Cl-)	2022/12/13		100	%	80 - 120
			Dissolved Bromide (Br-)	2022/12/13		101	%	80 - 120
			Dissolved Sulphate (SO4)	2022/12/13		101	%	80 - 120
8395861	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/12/13		100	%	70 - 130
			Dissolved Bromide (Br-)	2022/12/13		102	%	80 - 120
			Dissolved Sulphate (SO4)	2022/12/13		102	%	80 - 120
8395861	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/12/13	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/12/13	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/12/13	<1.0		mg/L	
8395861	LKH	RPD	Dissolved Chloride (Cl-)	2022/12/13	0.25		%	20
			Dissolved Bromide (Br-)	2022/12/13	NC		%	20
			Dissolved Sulphate (SO4)	2022/12/13	2.1		%	20
8395869	ADB	Matrix Spike	Orthophosphate (P)	2022/12/13		92	%	75 - 125
8395869	ADB	Spiked Blank	Orthophosphate (P)	2022/12/13		99	%	80 - 120
8395869	ADB	Method Blank	Orthophosphate (P)	2022/12/13	<0.010		mg/L	
8395869	ADB	RPD	Orthophosphate (P)	2022/12/13	NC		%	20
8396512	TLG	Matrix Spike [UNI123-02]	Dissolved Iron (Fe)	2022/12/13		101	%	80 - 120
			Dissolved Sulphur (S)	2022/12/13		97	%	80 - 120
8396512	TLG	Spiked Blank	Dissolved Iron (Fe)	2022/12/13		102	%	80 - 120
			Dissolved Sulphur (S)	2022/12/13		102	%	80 - 120
8396512	TLG	Method Blank	Dissolved Iron (Fe)	2022/12/13	<0.02		mg/L	
			Dissolved Sulphur (S)	2022/12/13	<0.5		mg/L	
8396512	TLG	RPD [UNI123-02]	Dissolved Iron (Fe)	2022/12/13	NC		%	25
			Dissolved Sulphur (S)	2022/12/13	NC		%	25
8396736	KIT	Matrix Spike	Fluoride (F-)	2022/12/12		97	%	80 - 120
8396736	KIT	Spiked Blank	Fluoride (F-)	2022/12/12		102	%	80 - 120
8396736	KIT	Method Blank	Fluoride (F-)	2022/12/12	<0.10		mg/L	
8396736	KIT	RPD	Fluoride (F-)	2022/12/12	5.2		%	20
8398373	N_R	Matrix Spike	Dissolved Aluminum (Al)	2022/12/14		98	%	80 - 120
			Dissolved Arsenic (As)	2022/12/14		104	%	80 - 120
			Dissolved Barium (Ba)	2022/12/14		100	%	80 - 120
			Dissolved Bismuth (Bi)	2022/12/14		100	%	80 - 120
			Dissolved Boron (B)	2022/12/14		104	%	80 - 120
			Dissolved Cadmium (Cd)	2022/12/14		99	%	80 - 120
			Dissolved Calcium (Ca)	2022/12/14		97	%	80 - 120
			Dissolved Cesium (Cs)	2022/12/14		100	%	80 - 120
			Dissolved Chromium (Cr)	2022/12/14		100	%	80 - 120
			Dissolved Cobalt (Co)	2022/12/14		101	%	80 - 120
			Dissolved Copper (Cu)	2022/12/14		101	%	80 - 120
			Dissolved Lead (Pb)	2022/12/14		100	%	80 - 120
			Dissolved Lithium (Li)	2022/12/14		102	%	80 - 120
			Dissolved Magnesium (Mg)	2022/12/14		96	%	80 - 120

Page 7 of 10

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		¬ - · /F -	Dissolved Nickel (Ni)	2022/12/14		99	%	80 - 120
			Dissolved Potassium (K)	2022/12/14		101	%	80 - 120
			Dissolved Rubidium (Rb)	2022/12/14		100	%	80 - 120
			Dissolved Selenium (Se)	2022/12/14		103	%	80 - 120
			Dissolved Silicon (Si)	2022/12/14		100	%	80 - 120
			Dissolved Sodium (Na)	2022/12/14		98	%	80 - 120
			Dissolved Strontium (Sr)	2022/12/14		99	%	80 - 120
			Dissolved Thorium (Th)	2022/12/14		99	%	80 - 120
			Dissolved Uranium (U)	2022/12/14		100	%	80 - 120
			Dissolved Zirconium (Zr)	2022/12/14		102	%	80 - 120
8398373	N_R	Spiked Blank	Dissolved Aluminum (Al)	2022/12/14		97	%	80 - 120
0000070		opiked Blank	Dissolved Arsenic (As)	2022/12/14		102	%	80 - 120
			Dissolved Barium (Ba)	2022/12/14		102	%	80 - 120
			Dissolved Bismuth (Bi)	2022/12/14		98	%	80 - 120
			Dissolved Boron (B)	2022/12/14		103	%	80 - 120
			Dissolved Cadmium (Cd)	2022/12/14		98	%	80 - 120
			Dissolved Calcium (Ca)	2022/12/14		98	%	80 - 120
			Dissolved Cesium (Cs)	2022/12/14		102	%	80 - 120
			Dissolved Chromium (Cr)	2022/12/14		98	%	80 - 120
			Dissolved Cobalt (Co)	2022/12/14		100	%	80 - 120
			Dissolved Copper (Cu)	2022/12/14		100	%	80 - 120
			Dissolved Lead (Pb)	2022/12/14		98	%	80 - 120
			Dissolved Lead (PD) Dissolved Lithium (Li)	2022/12/14		98 101	%	80 - 120 80 - 120
						95		80 - 120 80 - 120
			Dissolved Magnesium (Mg)	2022/12/14			%	
			Dissolved Nickel (Ni)	2022/12/14		99 102	%	80 - 120
			Dissolved Potassium (K)	2022/12/14		102	%	80 - 120
			Dissolved Rubidium (Rb)	2022/12/14		100	%	80 - 120
			Dissolved Selenium (Se)	2022/12/14		102	%	80 - 120
			Dissolved Silicon (Si)	2022/12/14		97	%	80 - 120
			Dissolved Sodium (Na)	2022/12/14		95	%	80 - 120
			Dissolved Strontium (Sr)	2022/12/14		98	%	80 - 120
			Dissolved Thorium (Th)	2022/12/14		97	%	80 - 120
			Dissolved Uranium (U)	2022/12/14		98	%	80 - 120
			Dissolved Zirconium (Zr)	2022/12/14		102	%	80 - 120
8398373	N_R	Method Blank	Dissolved Aluminum (Al)	2022/12/14	<4.9		ug/L	
			Dissolved Arsenic (As)	2022/12/14	<1.0		ug/L	
			Dissolved Barium (Ba)	2022/12/14	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/12/14	<1.0		ug/L	
			Dissolved Boron (B)	2022/12/14	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/12/14	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/12/14	<200		ug/L	
			Dissolved Cesium (Cs)	2022/12/14	<0.20		ug/L	
			Dissolved Chromium (Cr)	2022/12/14	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/12/14	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/12/14	<0.90		ug/L	
			Dissolved Lead (Pb)	2022/12/14	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/12/14	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/12/14	<50		ug/L	
			Dissolved Nickel (Ni)	2022/12/14	<1.0		ug/L	
			Dissolved Potassium (K)	2022/12/14	<200		ug/L	

Page 8 of 10

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC						-		
Batch	Init	QC Type	Parameter (21)	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Rubidium (Rb)	2022/12/14	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/12/14	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/12/14	<50		ug/L	
			Dissolved Sodium (Na)	2022/12/14	<100		ug/L	
			Dissolved Strontium (Sr)	2022/12/14	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/12/14	<2.0		ug/L	
			Dissolved Uranium (U)	2022/12/14	<0.10		ug/L	
			Dissolved Zirconium (Zr)	2022/12/14	<1.0		ug/L	
398373	N_R	RPD	Dissolved Aluminum (Al)	2022/12/14	NC		%	20
			Dissolved Arsenic (As)	2022/12/14	NC		%	20
			Dissolved Barium (Ba)	2022/12/14	0.25		%	20
			Dissolved Bismuth (Bi)	2022/12/14	NC		%	20
			Dissolved Boron (B)	2022/12/14	NC		%	20
			Dissolved Cadmium (Cd)	2022/12/14	NC		%	20
			Dissolved Calcium (Ca)	2022/12/14	3.1		%	20
			Dissolved Chromium (Cr)	2022/12/14	1.2		%	20
			Dissolved Cobalt (Co)	2022/12/14	NC		%	20
			Dissolved Copper (Cu)	2022/12/14	NC		%	20
			Dissolved Lead (Pb)	2022/12/14	NC		%	20
			Dissolved Lithium (Li)	2022/12/14	NC		%	20
			Dissolved Magnesium (Mg)	2022/12/14	0.46		%	20
			Dissolved Nickel (Ni)	2022/12/14	5.6		%	20
			Dissolved Potassium (K)	2022/12/14	3.0		%	20
			Dissolved Selenium (Se)	2022/12/14	NC		%	20
			Dissolved Silicon (Si)	2022/12/14	3.6		%	20
			Dissolved Sodium (Na)	2022/12/14	0.91		%	20
			Dissolved Strontium (Sr)	2022/12/14	0.66		%	20
			Dissolved Uranium (U)	2022/12/14	1.7		%	20
			Dissolved Zirconium (Zr)	2022/12/14	NC		%	20
8417750	KDB	Matrix Spike	Dissolved Iodide	2022/12/20		95	%	80 - 120
417750	KDB	Spiked Blank	Dissolved Iodide	2022/12/20		101	%	80 - 120
3417750	KDB	Method Blank	Dissolved Iodide	2022/12/20	<0.10		mg/L	
3417750	KDB	RPD [UNI123-01]	Dissolved Iodide	2022/12/20	NC		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE Your C.O.C. #: n/a

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2022/12/29 Report #: R7447218 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2AI573

Received: 2022/12/13, 14:19

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2022/12/20	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2022/12/20	CAM SOP-00102	APHA 4500-CO2 D
Anions	1	N/A	2022/12/19	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (2)	1	N/A	2022/12/17	CAM SOP-00446	SM 23 5310 B m
Fluoride	1	2022/12/19	2022/12/20	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	1	2022/12/17	2022/12/19	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	1	N/A	2022/12/20	CAM SOP-00447	EPA 6020B m
lodide, Thiosulphate, Thiocyanate (1)	1	N/A	2022/12/20	CAL SOP-00057	Dionex #034035 R09 m
Silica (Reactive) (1)	1	N/A	2022/12/23	AB SOP-00011	EPA370.1 R1978 m
Total Ammonia-N	1	N/A	2022/12/17	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (3)	1	N/A	2022/12/20	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	1	2022/12/19	2022/12/20	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	1	N/A	2022/12/19	CAM SOP-00461	SM 23 4500-P E m
Sulphide	1	N/A	2022/12/20	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	1	N/A	2022/12/19	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	1	2022/12/16	2022/12/20	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	1	N/A	2022/12/20	Auto Calc.	
Total Organic Carbon (TOC) (4)	1	N/A	2022/12/17	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	1	2022/12/16	2022/12/19	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or

Page 1 of 11

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE Your C.O.C. #: n/a

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> **Report Date: 2022/12/29** Report #: R7447218 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2AI573

Received: 2022/12/13, 14:19

implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE , Calgary, AB, T2E 6P8

(2) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(3) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(4) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Bureau Veritas 29 Dec 2022 15:10:23

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 11

	UPE695		
	2022/12/10 13:30		
	n/a		
UNITS	IG_BH01_GW036	RDL	QC Batch
mg/L	6.2	1.0	8405850
mg/L	<1.0	1.0	8405850
mg/L	<1.0	1.0	8405850
mg/L	8.2	5.0	8406663
•			
mg/L	0.23	0.050	8409593
mg/L	0.67	0.10	8411282
mg/L	<1	1	8409471
mg/L	<10 (1)	10	8417750
mg/L	8.2	5.0	8408969
mg/L	3.7	0.40	8408507
mg/L	2.3	0.40	8408741
mg/L	<0.010	0.010	8410517
рН	7.65		8411277
mg/L	0.14	0.10	8408543
mg/L	83	0.55	8423382
mg/L	<0.020	0.020	8411837
mg/L	6.2	1.0	8411281
mg/L	<0.010	0.010	8409553
mg/L	19000	100	8408770
mg/L	<0.10	0.10	8409553
mg/L	<0.10	0.10	8409553
mg/L	290 (2)	100	8408770
	200 (2)	100	0400770
mg/L	390 (2)	100	8408770
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022/12/10 13:30 n/a UNITS IG_BH01_GW036 mg/L Mg/L <1.0	2022/12/10 13:30 2022/12/10 13:30 n/a n/a UNITS IG_BH01_GW036 RDL mg/L 6.2 1.0 mg/L <1.0

RESULTS OF ANALYSES OF WATER

QC Batch = Quality Control Batch

(1) Detection limits raised due to matrix interference.

(2) Due to high concentrations of the target analyte (Cl), sample required

dilution. Detection limits were adjusted accordingly.

Bureau Veritas ID		UPE695	UPE695		
Sampling Date		2022/12/10	2022/12/10		
		13:30	13:30		
COC Number		n/a	n/a		
	UNITS	IG_BH01_GW036	IG_BH01_GW036 Lab-Dup	RDL	QC Batch
Metals					
Dissolved Iron (Fe)	mg/L	0.10	0.08	0.02	8410519
Dissolved Sulphur (S)	mg/L	140	140	0.5	8410519
Dissolved Aluminum (Al)	ug/L	<49	<49	49	8410119
Dissolved Arsenic (As)	ug/L	<10	<10	10	8410119
Dissolved Barium (Ba)	ug/L	250	240	20	8410119
Dissolved Bismuth (Bi)	ug/L	<10	<10	10	8410119
Dissolved Boron (B)	ug/L	470	480	100	8410119
Dissolved Cadmium (Cd)	ug/L	<0.90	<0.90	0.90	8410119
Dissolved Calcium (Ca)	ug/L	900000	9400000	10000	8410119
Dissolved Cesium (Cs)	ug/L	<2.0	<2.0	2.0	8410119
Dissolved Chromium (Cr)	ug/L	<50	<50	50	8410119
Dissolved Cobalt (Co)	ug/L	<5.0	<5.0	5.0	8410119
Dissolved Copper (Cu)	ug/L	<9.0	<9.0	9.0	8410119
Dissolved Iron (Fe)	ug/L	<1000	<1000	1000	8410119
Dissolved Lead (Pb)	ug/L	<5.0	<5.0	5.0	8410119
Dissolved Lithium (Li)	ug/L	67	65	50	8410119
Dissolved Magnesium (Mg)	ug/L	4300	4300	500	8410119
Dissolved Nickel (Ni)	ug/L	<10	<10	10	8410119
Dissolved Potassium (K)	ug/L	13000	13000	2000	8410119
Dissolved Rubidium (Rb)	ug/L	31	32	2.0	8410119
Dissolved Selenium (Se)	ug/L	<20	<20	20	8410119
Dissolved Silicon (Si)	ug/L	3200	3300	500	8410119
Dissolved Sodium (Na)	ug/L	1300000	1300000	1000	8410119
Dissolved Strontium (Sr)	ug/L	120000	120000	10	8410119
Dissolved Thorium (Th)	ug/L	<20	<20	20	8410119
Dissolved Uranium (U)	ug/L	<1.0	<1.0	1.0	8410119
Dissolved Zirconium (Zr)	ug/L	<10	<10	10	8410119
RDL = Reportable Detection L QC Batch = Quality Control B Lab-Dup = Laboratory Initiate	atch	ate			

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

TEST SUMMARY

Bureau Veritas ID:	UPE695
Sample ID:	IG_BH01_GW036
Matrix:	Water

Collected: 2022/12/10 Shipped: Received: 2022/12/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8411281	N/A	2022/12/20	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8405850	N/A	2022/12/20	Automated Statchk
Anions	IC	8408770	N/A	2022/12/19	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8408507	N/A	2022/12/17	Gyulshen Idriz
Fluoride	ISE	8411282	2022/12/19	2022/12/20	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8410519	2022/12/17	2022/12/19	Thuy Linh Nguyen
Dissolved Metals by ICPMS	ICP/MS	8410119	N/A	2022/12/20	Nan Raykha
Iodide, Thiosulphate, Thiocyanate	IC/EC	8417750	N/A	2022/12/20	Kanwardeep Brar
Silica (Reactive)	KONE	8423382	N/A	2022/12/23	Ana Katrina Cariaga
Total Ammonia-N	LACH/NH4	8409593	N/A	2022/12/17	Amanpreet Sappal
Nitrate & Nitrite as Nitrogen in Water	LACH	8409553	N/A	2022/12/20	Chandra Nandlal
рН	AT	8411277	2022/12/19	2022/12/20	Surinder Rai
Orthophosphate	KONE	8410517	N/A	2022/12/19	Alina Dobreanu
Sulphide	ISE/S	8411837	N/A	2022/12/20	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8409471	N/A	2022/12/19	Gyulshen Idriz
Total Kjeldahl Nitrogen in Water	SKAL	8408969	2022/12/16	2022/12/20	Rajni Tyagi
Total Nitrogen (calculated)	CALC	8406663	N/A	2022/12/20	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8408741	N/A	2022/12/17	Gyulshen Idriz
Total Phosphorus (Colourimetric)	SKAL/P	8408543	2022/12/16	2022/12/19	Sachi Patel

Bureau Veritas ID: Sample ID: Matrix:	IG_BH01_GW036					Collected: Shipped: Received:	2022/12/10 2022/12/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Metals Analysis	by ICP	ICP	8410519	2022/12/17	2022/12/19	Thuy Linh	Nguyen
Dissolved Metals by ICPN	IS	ICP/MS	8410119	N/A	2022/12/20	Nan Raykh	a

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	1.0°C	
accord	ingly.		tals Analysis:Due to the sample matrix, the sample required dilution. Detection limits were adjusted esults have been confirmed by reanalysis.
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8408507	GID	Matrix Spike	Dissolved Organic Carbon	2022/12/17		95	%	80 - 120
8408507	GID	Spiked Blank	Dissolved Organic Carbon	2022/12/16		98	%	80 - 120
8408507	GID	Method Blank	Dissolved Organic Carbon	2022/12/16	<0.40		mg/L	
8408507	GID	RPD	Dissolved Organic Carbon	2022/12/16	0.51		%	20
8408543	SPC	Matrix Spike	Total Phosphorus	2022/12/19		109	%	80 - 120
8408543	SPC	QC Standard	Total Phosphorus	2022/12/19		110	%	80 - 120
8408543	SPC	Spiked Blank	Total Phosphorus	2022/12/19		102	%	80 - 120
8408543	SPC	Method Blank	Total Phosphorus	2022/12/19	<0.020		mg/L	
8408543	SPC	RPD	Total Phosphorus	2022/12/19	5.5		%	20
8408741	GID	Matrix Spike	Total Organic Carbon (TOC)	2022/12/17		95	%	80 - 120
8408741	GID	Spiked Blank	Total Organic Carbon (TOC)	2022/12/17		97	%	80 - 120
8408741	GID	Method Blank	Total Organic Carbon (TOC)	2022/12/17	<0.40		mg/L	
8408741	GID	RPD	Total Organic Carbon (TOC)	2022/12/17	0.39		%	20
8408770	LKH	Matrix Spike	Dissolved Chloride (Cl-)	2022/12/19		100	%	80 - 120
			Dissolved Bromide (Br-)	2022/12/19		100	%	80 - 120
			Dissolved Sulphate (SO4)	2022/12/19		101	%	80 - 120
8408770	LKH	Spiked Blank	Dissolved Chloride (Cl-)	2022/12/19		100	%	70 - 130
			Dissolved Bromide (Br-)	2022/12/19		102	%	80 - 120
			Dissolved Sulphate (SO4)	2022/12/19		101	%	80 - 120
8408770	LKH	Method Blank	Dissolved Chloride (Cl-)	2022/12/19	<1.0		mg/L	
			Dissolved Bromide (Br-)	2022/12/19	<1.0		mg/L	
			Dissolved Sulphate (SO4)	2022/12/19	<1.0		mg/L	
8408770	LKH	RPD	Dissolved Chloride (Cl-)	2022/12/19	1.0		%	20
			Dissolved Bromide (Br-)	2022/12/19	NC		%	20
			Dissolved Sulphate (SO4)	2022/12/19	0.15		%	20
8408969	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/12/20		109	%	80 - 120
8408969	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/12/20		94	%	80 - 120
8408969	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/12/20		95	%	80 - 120
8408969	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/12/20	<0.10		mg/L	
8408969	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2022/12/20	4.4		%	20
8409471	GID	Matrix Spike	Total Inorganic Carbon (C)	2022/12/19		88	%	80 - 120
8409471	GID	Spiked Blank	Total Inorganic Carbon (C)	2022/12/19		91	%	80 - 120
8409471	GID	Method Blank	Total Inorganic Carbon (C)	2022/12/19	<1		mg/L	
8409471	GID	RPD	Total Inorganic Carbon (C)	2022/12/19	NC		%	20
8409553	CN	Matrix Spike	Nitrite (N)	2022/12/20		105	%	80 - 120
	-	·	Nitrate (N)	2022/12/20		NC	%	80 - 120
8409553	CΝ	Spiked Blank	Nitrite (N)	2022/12/20		106	%	80 - 120
	-	·	Nitrate (N)	2022/12/20		101	%	80 - 120
8409553	CΝ	Method Blank	Nitrite (N)	2022/12/20	<0.010		mg/L	
	-		Nitrate (N)	2022/12/20	<0.10		mg/L	
8409553	C_N	RPD	Nitrite (N)	2022/12/20	7.7		%	20
		-	Nitrate (N)	2022/12/20	2.1		%	20
8409593	ASP	Matrix Spike	Total Ammonia-N	2022/12/17		99	%	75 - 125
8409593	ASP	Spiked Blank	Total Ammonia-N	2022/12/17		99	%	80 - 120
8409593	ASP	Method Blank	Total Ammonia-N	2022/12/17	<0.050		mg/L	
8409593 8409593	ASP	RPD	Total Ammonia-N	2022/12/17	6.6		111g/L %	20
8410119	N R	Matrix Spike [UPE695-05]	Dissolved Aluminum (Al)	2022/12/17	0.0	104	%	20 80 - 120
0410113	N_N	Mathy Spike [UFL035-05]	Dissolved Arsenic (As)	2022/12/20		104	%	80 - 120
			Dissolved Arsenic (As) Dissolved Barium (Ba)					
			()	2022/12/20		101	%	80 - 120
			Dissolved Bismuth (Bi)	2022/12/20		90	%	80 - 12

Page 7 of 11

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC		0.07				6		0.011
Batch	Init	QC Type	Parameter (2)	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Boron (B)	2022/12/20		105	%	80 - 120
			Dissolved Cadmium (Cd)	2022/12/20		100	%	80 - 120
			Dissolved Calcium (Ca)	2022/12/20		NC	%	80 - 120
			Dissolved Cesium (Cs)	2022/12/20		101	%	80 - 120
			Dissolved Chromium (Cr)	2022/12/20		101	%	80 - 120
			Dissolved Cobalt (Co)	2022/12/20		99	%	80 - 120
			Dissolved Copper (Cu)	2022/12/20		99	%	80 - 120
			Dissolved Iron (Fe)	2022/12/20		102	%	80 - 120
			Dissolved Lead (Pb)	2022/12/20		93	%	80 - 120
			Dissolved Lithium (Li)	2022/12/20		103	%	80 - 120
			Dissolved Magnesium (Mg)	2022/12/20		102	%	80 - 120
			Dissolved Nickel (Ni)	2022/12/20		97	%	80 - 120
			Dissolved Potassium (K)	2022/12/20		105	%	80 - 120
			Dissolved Rubidium (Rb)	2022/12/20		101	%	80 - 120
			Dissolved Selenium (Se)	2022/12/20		102	%	80 - 120
			Dissolved Silicon (Si)	2022/12/20		103	%	80 - 120
			Dissolved Sodium (Na)	2022/12/20		NC	%	80 - 120
			Dissolved Strontium (Sr)	2022/12/20		NC	%	80 - 120
			Dissolved Thorium (Th)	2022/12/20		99	%	80 - 120
			Dissolved Uranium (U)	2022/12/20		101	%	80 - 120
			Dissolved Zirconium (Zr)	2022/12/20		110	%	80 - 120
8410119	N_R	Spiked Blank	Dissolved Aluminum (Al)	2022/12/19		99	%	80 - 120
			Dissolved Arsenic (As)	2022/12/19		99	%	80 - 120
			Dissolved Barium (Ba)	2022/12/19		99	%	80 - 120
			Dissolved Bismuth (Bi)	2022/12/19		97	%	80 - 120
			Dissolved Boron (B)	2022/12/19		104	%	80 - 120
			Dissolved Cadmium (Cd)	2022/12/19		98	%	80 - 120
			Dissolved Calcium (Ca)	2022/12/19		103	%	80 - 120
			Dissolved Cesium (Cs)	2022/12/19		102	%	80 - 120
			Dissolved Chromium (Cr)	2022/12/19		101	%	80 - 120
			Dissolved Cobalt (Co)	2022/12/19		99	%	80 - 120
			Dissolved Copper (Cu)	2022/12/19		103	%	80 - 120
			Dissolved Iron (Fe)	2022/12/19		98	%	80 - 120
			Dissolved Lead (Pb)	2022/12/19		99	%	80 - 120
			Dissolved Lithium (Li)	2022/12/19		108	%	80 - 120
			Dissolved Magnesium (Mg)	2022/12/19		97	%	80 - 120
			Dissolved Nickel (Ni)	2022/12/19		96	%	80 - 120
			Dissolved Potassium (K)	2022/12/19		102	%	80 - 120
			Dissolved Rubidium (Rb)	2022/12/19		96	%	80 - 120
			Dissolved Selenium (Se)	2022/12/19		101	%	80 - 120
			Dissolved Silicon (Si)	2022/12/19		101	%	80 - 120
			Dissolved Sodium (Na)	2022/12/19		98	%	80 - 120
			Dissolved Strontium (Sr)	2022/12/19		97	%	80 - 120
			Dissolved Thorium (Th)	2022/12/19		96	%	80 - 120
			Dissolved Uranium (U)	2022/12/19		96	%	80 - 120
			Dissolved Zirconium (Zr)	2022/12/19		102	%	80 - 120
8410119	NR	Method Blank	Dissolved Aluminum (Al)	2022/12/19	<4.9	102	ug/L	
		etirea biarik	Dissolved Arsenic (As)	2022/12/19	<1.0		ug/L	
			Dissolved Barium (Ba)	2022/12/19	<2.0		ug/L	
			Dissolved Bismuth (Bi)					
			Dissolved distributi (BI)	2022/12/19	<1.0		ug/L	

Page 8 of 11

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	Init		Darameter	Data Analyzad	Value	Bacavary	UNITS	OC Limite
Batch	Init	QC Type	Parameter Dissolved Boron (B)	Date Analyzed 2022/12/19	Value <10	Recovery	ug/L	QC Limits
			Dissolved Cadmium (Cd)	2022/12/19	<0.090 <200		ug/L	
			Dissolved Calcium (Ca) Dissolved Cesium (Cs)	2022/12/19 2022/12/19	<200		ug/L	
							ug/L	
			Dissolved Chromium (Cr)	2022/12/19	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/12/19	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/12/19	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/12/19	<100		ug/L	
			Dissolved Lead (Pb)	2022/12/19	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/12/19	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/12/19	<50		ug/L	
			Dissolved Nickel (Ni)	2022/12/19	<1.0		ug/L	
			Dissolved Potassium (K)	2022/12/19	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/12/19	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/12/19	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/12/19	<50		ug/L	
			Dissolved Sodium (Na)	2022/12/19	<100		ug/L	
			Dissolved Strontium (Sr)	2022/12/19	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/12/19	<2.0		ug/L	
			Dissolved Uranium (U)	2022/12/19	<0.10		ug/L	
		(Dissolved Zirconium (Zr)	2022/12/19	<1.0		ug/L	
8410119	N_R	RPD [UPE695-05]	Dissolved Aluminum (Al)	2022/12/20	NC		%	20
			Dissolved Arsenic (As)	2022/12/20	NC		%	20
			Dissolved Barium (Ba)	2022/12/20	2.8		%	20
			Dissolved Bismuth (Bi)	2022/12/20	NC		%	20
			Dissolved Boron (B)	2022/12/20	1.7		%	20
			Dissolved Cadmium (Cd)	2022/12/20	NC		%	20
			Dissolved Calcium (Ca)	2022/12/20	4.2		%	20
			Dissolved Cesium (Cs)	2022/12/20	NC		%	20
			Dissolved Chromium (Cr)	2022/12/20	NC		%	20
			Dissolved Cobalt (Co)	2022/12/20	NC		%	20
			Dissolved Copper (Cu)	2022/12/20	NC		%	20
			Dissolved Iron (Fe)	2022/12/20	NC		%	20
			Dissolved Lead (Pb)	2022/12/20	NC		%	20
			Dissolved Lithium (Li)	2022/12/20	3.3		%	20
			Dissolved Magnesium (Mg)	2022/12/20	1.3		%	20
			Dissolved Nickel (Ni)	2022/12/20	NC		%	20
			Dissolved Potassium (K)	2022/12/20	0.018		%	20
			Dissolved Rubidium (Rb)	2022/12/20	2.6		%	20
			Dissolved Selenium (Se)	2022/12/20	NC		%	20
			Dissolved Silicon (Si)	2022/12/20	2.5		%	20
			Dissolved Sodium (Na)	2022/12/20	0.072		%	20
			Dissolved Strontium (Sr)	2022/12/20	0.74		%	20
			Dissolved Thorium (Th)	2022/12/20	NC		%	20
			Dissolved Uranium (U)	2022/12/20	NC		%	20
			Dissolved Zirconium (Zr)	2022/12/20	NC		%	20
3410517	ADB	Matrix Spike	Orthophosphate (P)	2022/12/19		103	%	75 - 125
8410517	ADB	Spiked Blank	Orthophosphate (P)	2022/12/19		102	%	80 - 120
8410517	ADB	Method Blank	Orthophosphate (P)	2022/12/19	<0.010		mg/L	
8410517	ADB	RPD	Orthophosphate (P)	2022/12/19	NC		%	20

Page 9 of 11

04/00

Geofirma Engineering Ltd Client Project #: 20-203-1 Site Location: IGNACE Your P.O. #: 202031-004 Sampler Initials: A.C

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8410519	TLG	Matrix Spike [UPE695-05]	Dissolved Iron (Fe)	2022/12/19		96	%	80 - 120
			Dissolved Sulphur (S)	2022/12/19		NC	%	80 - 120
8410519	TLG	Spiked Blank	Dissolved Iron (Fe)	2022/12/19		102	%	80 - 120
			Dissolved Sulphur (S)	2022/12/19		102	%	80 - 120
8410519	TLG	Method Blank	Dissolved Iron (Fe)	2022/12/19	<0.02		mg/L	
			Dissolved Sulphur (S)	2022/12/19	<0.5		mg/L	
8410519	TLG	RPD [UPE695-05]	Dissolved Iron (Fe)	2022/12/19	18		%	25
			Dissolved Sulphur (S)	2022/12/19	0.28		%	25
8411277	SAU	Spiked Blank	pН	2022/12/20		102	%	98 - 103
8411277	SAU	RPD	pН	2022/12/20	0.56		%	N/A
8411281	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2022/12/20		95	%	85 - 115
8411281	SAU	Method Blank	Alkalinity (Total as CaCO3)	2022/12/20	<1.0		mg/L	
8411281	SAU	RPD	Alkalinity (Total as CaCO3)	2022/12/20	0.0065		%	20
8411282	SAU	Matrix Spike	Fluoride (F-)	2022/12/20		57 (1)	%	80 - 120
8411282	SAU	Spiked Blank	Fluoride (F-)	2022/12/20		103	%	80 - 120
8411282	SAU	Method Blank	Fluoride (F-)	2022/12/20	<0.10		mg/L	
8411282	SAU	RPD	Fluoride (F-)	2022/12/20	0.95		%	20
8411837	ТАК	Matrix Spike	Sulphide	2022/12/20		85	%	80 - 120
8411837	ТАК	Spiked Blank	Sulphide	2022/12/20		99	%	80 - 120
8411837	ТАК	Method Blank	Sulphide	2022/12/20	<0.020		mg/L	
8411837	ТАК	RPD	Sulphide	2022/12/20	NC		%	20
8417750	KDB	Matrix Spike	Dissolved lodide	2022/12/20		95	%	80 - 120
8417750	KDB	Spiked Blank	Dissolved lodide	2022/12/20		101	%	80 - 120
8417750	KDB	Method Blank	Dissolved lodide	2022/12/20	<0.10		mg/L	
8417750	KDB	RPD	Dissolved lodide	2022/12/20	NC		%	20
8423382	éJ3	Matrix Spike	Reactive Silica (SiO2)	2022/12/23		99	%	80 - 120
8423382	éJ3	Spiked Blank	Reactive Silica (SiO2)	2022/12/23		105	%	80 - 120
8423382	éJ3	Method Blank	Reactive Silica (SiO2)	2022/12/23	<0.050		mg/L	
8423382	éJ3	RPD	Reactive Silica (SiO2)	2022/12/23	2.5		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

austin Camere

Cristina Carriere, Senior Scientific Specialist

Engym

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Bureau Veritas Canada - Mississauga

Attn : Subcontract Coordinator

6740 Campobello Road Mississauga, ON L5N 2L8, Canada

Phone: 905-817-5798 Fax:

29-December-2022

Date Rec. :	20 December 2022
LR Report:	CA40211-DEC22
Reference:	Job#: C2AI573/20-203-1

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Sample ID	Sample Date & Time	Temperature Upon Receipt °C	Ruthenium (total) mg/L
1: Analysis Start Date			23-Dec-22
2: Analysis Start Time			01:52
3: Analysis Completed Date			29-Dec-22
4: Analysis Completed Time			11:08
5: RL			0.0001
6: QC - Blank			< 0.0001
7: QC - STD % Recovery			104%
8: QC - DUP % RPD			ND
9: IG_BH01_GW036	10-Dec-22 13:30	8.0	0.00011

RL - SGS Reporting Limit ND - Not Detected

1 Stern

Kimberley Didsbury Project Specialist, Environment, Health & Safety

0003175182

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE, ON Your C.O.C. #: n/a

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2023/01/16 Report #: R7471944 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2AJ973

Received: 2022/12/15, 14:13

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2022/12/20	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	2	N/A	2022/12/20	CAM SOP-00102	APHA 4500-CO2 D
Anions	2	N/A	2022/12/20	CAM SOP-00435	SM 23 4110 B m
Dissolved Organic Carbon (DOC) (3)	2	N/A	2022/12/17	CAM SOP-00446	SM 23 5310 B m
Fluoride	2	2022/12/19	2022/12/20	CAM SOP-00449	SM 23 4500-F C m
Dissolved Metals Analysis by ICP	2	2022/12/19	2022/12/21	CAM SOP-00408	EPA 6010D m
Dissolved Metals by ICPMS	2	N/A	2022/12/21	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICP	2	2022/12/19	2022/12/20	CAM SOP-00408	EPA 6010D m
lodide, Thiosulphate, Thiocyanate (1)	2	N/A	2022/12/23	CAL SOP-00057	Dionex #034035 R09 m
Total Extractable Elements by ICP-MS (2, 4)	2	2023/01/09	2023/01/11	STL SOP-00071	MA.200–Mét. 1.2 R5 m
Silica (Reactive) (1)	2	N/A	2022/12/23	AB SOP-00011	EPA370.1 R1978 m
Total Ammonia-N	2	N/A	2022/12/21	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (5)	2	N/A	2022/12/20	CAM SOP-00440	SM 23 4500-NO3I/NO2B
pН	2	2022/12/19	2022/12/20	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	2	N/A	2022/12/21	CAM SOP-00461	SM 23 4500-P E m
Sulphide	2	N/A	2022/12/20	CAM SOP-00455	SM 23 4500-S G m
Total Inorganic Carbon (TIC)	2	N/A	2022/12/19	CAM SOP-00433	SM 23 5310 m
Total Kjeldahl Nitrogen in Water	2	2022/12/19	2022/12/20	CAM SOP-00938	OMOE E3516 m
Total Nitrogen (calculated)	2	N/A	2022/12/21	Auto Calc.	
Total Organic Carbon (TOC) (6)	2	N/A	2022/12/20	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	2	2022/12/19	2022/12/21	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Page 1 of 12

Your P.O. #: 202031-004 Your Project #: 20-203-1 Site Location: IGNACE, ON Your C.O.C. #: n/a

Attention: Amy Cartier

Geofirma Engineering Ltd 1 Raymond St Suite 200 Ottawa, ON CANADA K1R 1A2

> Report Date: 2023/01/16 Report #: R7471944 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2AJ973 Received: 2022/12/15, 14:13

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary (19th), 4000 19th Street NE, Calgary, AB, T2E 6P8

(2) This test was performed by Bureau Veritas Montreal., 889 Montée de Liesse , Ville St-Laurent, QC, H4T 1P5

(3) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(4) Non-accredited test method

(5) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

(6) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Katherine Szozda

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 12

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		UPN197			UPN197			UPN198		
Sampling Date		2022/12/13			2022/12/13			2022/12/13		
COC Number		n/a			n/a			n/a		
	UNITS	IG_BH05_GW011	RDL	QC Batch	IG_BH05_GW011 Lab-Dup	RDL	QC Batch	IG_BH05_GW012	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	150	1.0	8408710				150	1.0	8408710
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8408710				<1.0	1.0	8408710
Hydrox. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	8408710				<1.0	1.0	8408710
Total Nitrogen (N)	mg/L	2.2	1.0	8408712				3.0	1.0	8408712
Inorganics										
Total Ammonia-N	mg/L	0.17	0.050	8412399				0.12	0.050	8412399
Fluoride (F-)	mg/L	0.21	0.10	8411282	0.21	0.10	8411282	0.22	0.10	8411282
Total Inorganic Carbon (C)	mg/L	23	1	8409471				23	1	8409471
Dissolved lodide	mg/L	<10 (1)	10	8425306				<10 (1)	10	8425306
Total Kjeldahl Nitrogen (TKN)	mg/L	2.2	1.0	8412044				3.0	1.0	8412044
Dissolved Organic Carbon	mg/L	66	0.40	8408507				65	0.40	8408507
Total Organic Carbon (TOC)	mg/L	76	0.40	8412355				76	0.40	8412355
Orthophosphate (P)	mg/L	0.011	0.010	8412697	<0.010	0.010	8412697	<0.010	0.010	8412697
рН	pН	6.95		8411277	6.99		8411277	6.98		8411277
Total Phosphorus	mg/L	0.18	0.020	8412134				0.10	0.020	8412134
Reactive Silica (SiO2)	mg/L	7.5	0.25	8423382				19	0.25	8423382
Sulphide	mg/L	<0.020	0.020	8408944				<0.020	0.020	8408944
Alkalinity (Total as CaCO3)	mg/L	150	1.0	8411281	150	1.0	8411281	150	1.0	8411281
Nitrite (N)	mg/L	<0.010	0.010	8411287	<0.010	0.010	8411287	<0.010	0.010	8411287
Chloride (Cl-)	mg/L	7000	50	8413262				7000	50	8413262
Nitrate (N)	mg/L	<0.10	0.10	8411287	<0.10	0.10	8411287	<0.10	0.10	8411287
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	8411287	<0.10	0.10	8411287	<0.10	0.10	8411287
Bromide (Br-)	mg/L	140 (2)	50	8413262				140 (2)	50	8413262
Sulphate (SO4)	mg/L	55 (2)	50	8413262				59 (2)	50	8413262
Metals						-	-		•	
Total Ruthenium (Ru)	ug/L	<2.0	2.0	8447651				<2.0	2.0	8447651
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Dup	licato									

Lab-Dup = Laboratory Initiated Duplicate

(1) Detection limits raised due to matrix interference.

(2) Due to high concentrations of the target analyte (Cl), sample required dilution. Detection limits were adjusted accordingly.

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		UPN197	UPN198			UPN198		
Sampling Date		2022/12/13	2022/12/13			2022/12/13		
COC Number		n/a	n/a			n/a		
	UNITS	IG_BH05_GW011	IG_BH05_GW012	RDL	QC Batch	IG_BH05_GW012 Lab-Dup	RDL	QC Batch
Metals								
Dissolved Iron (Fe)	mg/L	13	13	0.02	8411243	13	0.02	8411243
Total Iron (Fe)	mg/L	190	230	0.02	8412070			
Dissolved Sulphur (S)	mg/L	17	17	0.5	8411243	17	0.5	8411243
Total Sulphur (S)	mg/L	16	16	0.5	8412070			
Dissolved Aluminum (Al)	ug/L	<25	<25	25	8411256			
Dissolved Arsenic (As)	ug/L	<5.0	<5.0	5.0	8411256			
Dissolved Barium (Ba)	ug/L	330	320	10	8411256			
Dissolved Bismuth (Bi)	ug/L	<5.0	<5.0	5.0	8411256			
Dissolved Boron (B)	ug/L	420	420	50	8411256			
Dissolved Cadmium (Cd)	ug/L	<0.45	<0.45	0.45	8411256			
Dissolved Calcium (Ca)	ug/L	3400000	3400000	2000	8411256			
Dissolved Cesium (Cs)	ug/L	<1.0	<1.0	1.0	8411256			
Dissolved Chromium (Cr)	ug/L	<25	<25	25	8411256			
Dissolved Cobalt (Co)	ug/L	<2.5	<2.5	2.5	8411256			
Dissolved Copper (Cu)	ug/L	<4.5	<4.5	4.5	8411256			
Dissolved Iron (Fe)	ug/L	14000	14000	500	8411256			
Dissolved Lead (Pb)	ug/L	<2.5	<2.5	2.5	8411256			
Dissolved Lithium (Li)	ug/L	73	73	25	8411256			
Dissolved Magnesium (Mg)	ug/L	11000	11000	250	8411256			
Dissolved Nickel (Ni)	ug/L	<5.0	<5.0	5.0	8411256			
Dissolved Potassium (K)	ug/L	16000	15000	1000	8411256			
Dissolved Rubidium (Rb)	ug/L	22	22	1.0	8411256			
Dissolved Selenium (Se)	ug/L	<10	<10	10	8411256			
Dissolved Silicon (Si)	ug/L	9900	9900	250	8411256			
Dissolved Sodium (Na)	ug/L	680000	660000	500	8411256			
Dissolved Strontium (Sr)	ug/L	40000	42000	5.0	8411256			
Dissolved Thorium (Th)	ug/L	<10	<10	10	8411256			
Dissolved Uranium (U)	ug/L	<0.50	<0.50	0.50	8411256			
Dissolved Zirconium (Zr)	ug/L	<5.0	<5.0	5.0	8411256			
RDL = Reportable Detection I OC Batch = Quality Control B								

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

Bureau Veritas ID:	UPN197
Sample ID:	IG_BH05_GW011
Matrix:	Water

Collected: 2022/12/13 Shipped: Received: 2022/12/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8411281	N/A	2022/12/20	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8408710	N/A	2022/12/20	Automated Statchk
Anions	IC	8413262	N/A	2022/12/20	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8408507	N/A	2022/12/17	Gyulshen Idriz
Fluoride	ISE	8411282	2022/12/19	2022/12/20	Surinder Rai
Dissolved Metals Analysis by ICP	ICP	8411243	2022/12/19	2022/12/21	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	8411256	N/A	2022/12/21	Rupinder Gill
Total Metals Analysis by ICP	ICP	8412070	2022/12/19	2022/12/20	Suban Kanapathippllai
Iodide, Thiosulphate, Thiocyanate	IC/EC	8425306	N/A	2022/12/23	Kanwardeep Brar
Total Extractable Elements by ICP-MS	ICP/MSMS	8447651	2023/01/09	2023/01/11	Sinthuja Thambiayah
Silica (Reactive)	KONE	8423382	N/A	2022/12/23	Ana Katrina Cariaga
Total Ammonia-N	LACH/NH4	8412399	N/A	2022/12/21	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8411287	N/A	2022/12/20	Chandra Nandlal
рН	AT	8411277	2022/12/19	2022/12/20	Surinder Rai
Orthophosphate	KONE	8412697	N/A	2022/12/21	Samuel Law
Sulphide	ISE/S	8408944	N/A	2022/12/20	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8409471	N/A	2022/12/19	Gyulshen Idriz
Total Kjeldahl Nitrogen in Water	SKAL	8412044	2022/12/19	2022/12/20	Jency Sara Johnson
Total Nitrogen (calculated)	CALC	8408712	N/A	2022/12/21	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8412355	N/A	2022/12/20	Gyulshen Idriz
Total Phosphorus (Colourimetric)	SKAL/P	8412134	2022/12/19	2022/12/21	Sachi Patel

Bureau Veritas ID: UPN197 Dup Sample ID: IG_BH05_GW011 Matrix: Water

Collected:	2022/12/13
Shipped:	
Received:	2022/12/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8411281	N/A	2022/12/20	Surinder Rai
Fluoride	ISE	8411282	2022/12/19	2022/12/20	Surinder Rai
Nitrate & Nitrite as Nitrogen in Water	LACH	8411287	N/A	2022/12/20	Chandra Nandlal
рН	AT	8411277	2022/12/19	2022/12/20	Surinder Rai
Orthophosphate	KONE	8412697	N/A	2022/12/21	Samuel Law

Bureau Veritas ID: UPN198 Sample ID: IG_BH05_GW012 Matrix: Water

Collected: 2022/12/13 Shipped: **Received:** 2022/12/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8411281	N/A	2022/12/20	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	8408710	N/A	2022/12/20	Automated Statchk
Anions	IC	8413262	N/A	2022/12/20	Lusine Khachatryan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8408507	N/A	2022/12/17	Gyulshen Idriz
Fluoride	ISE	8411282	2022/12/19	2022/12/20	Surinder Rai

Page 5 of 12

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

TEST SUMMARY

Matrix: Water Received: 2022	12/15
Sample ID: IG BH05 GW012 Shipped:	
Bureau Veritas ID: UPN198 Collected: 2022,	12/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals Analysis by ICP	ICP	8411243	2022/12/19	2022/12/21	Suban Kanapathippllai
Dissolved Metals by ICPMS	ICP/MS	8411256	N/A	2022/12/21	Rupinder Gill
Total Metals Analysis by ICP	ICP	8412070	2022/12/19	2022/12/20	Suban Kanapathippllai
Iodide, Thiosulphate, Thiocyanate	IC/EC	8425306	N/A	2022/12/23	Kanwardeep Brar
Total Extractable Elements by ICP-MS	ICP/MSMS	8447651	2023/01/09	2023/01/11	Sinthuja Thambiayah
Silica (Reactive)	KONE	8423382	N/A	2022/12/23	Ana Katrina Cariaga
Total Ammonia-N	LACH/NH4	8412399	N/A	2022/12/21	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	8411287	N/A	2022/12/20	Chandra Nandlal
рН	AT	8411277	2022/12/19	2022/12/20	Surinder Rai
Orthophosphate	KONE	8412697	N/A	2022/12/21	Samuel Law
Sulphide	ISE/S	8408944	N/A	2022/12/20	Taslima Aktar
Total Inorganic Carbon (TIC)	TOCV/NDIR	8409471	N/A	2022/12/19	Gyulshen Idriz
Total Kjeldahl Nitrogen in Water	SKAL	8412044	2022/12/19	2022/12/20	Jency Sara Johnson
Total Nitrogen (calculated)	CALC	8408712	N/A	2022/12/21	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	8412355	N/A	2022/12/20	Gyulshen Idriz
Total Phosphorus (Colourimetric)	SKAL/P	8412134	2022/12/19	2022/12/21	Sachi Patel

	UPN198 Dup IG_BH05_GW012 Water					Collected: Shipped: Received:	, ,
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Metals Analysis	s by ICP	ICP	8411243	2022/12/19	2022/12/21	Suban Kan	apathippllai

Page 6 of 12 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt
Package 1 3.0°C
Revised Report (2023/01/16): Sample IDs revised
Sample UPN197 [IG_BH05_GW011] : Total Phosphorus < ortho-Phosphate: Both values fall within the method uncertainty for duplicates and are likely equivalent.
Metal analysis: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.
Sample UPN198 [IG_BH05_GW012] : Metal analysis:Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly. RESULTS OF ANALYSES OF WATER
Sample UPN197 [IG_BH05_GW011] Iodide, Thiosulphate, Thiocyanate: Detection limits raised due to matrix interference.
Sample UPN198 [IG_BH05_GW012] lodide, Thiosulphate, Thiocyanate: Detection limits raised due to matrix interference.
Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8408507	GID	Matrix Spike	Dissolved Organic Carbon	2022/12/17		95	%	80 - 120
8408507	GID	Spiked Blank	Dissolved Organic Carbon	2022/12/16		98	%	80 - 120
8408507	GID	Method Blank	Dissolved Organic Carbon	2022/12/16	<0.40		mg/L	
8408507	GID	RPD	Dissolved Organic Carbon	2022/12/16	0.51		%	20
8408944	TAK	Matrix Spike	Sulphide	2022/12/20		85	%	80 - 120
8408944	TAK	Spiked Blank	Sulphide	2022/12/20		99	%	80 - 120
8408944	TAK	Method Blank	Sulphide	2022/12/20	<0.020		mg/L	
8408944	TAK	RPD	Sulphide	2022/12/20	NC		%	20
8409471	GID	Matrix Spike	Total Inorganic Carbon (C)	2022/12/19		88	%	80 - 120
8409471	GID	Spiked Blank	Total Inorganic Carbon (C)	2022/12/19		91	%	80 - 120
8409471	GID	Method Blank	Total Inorganic Carbon (C)	2022/12/19	<1		mg/L	
8409471	GID	RPD	Total Inorganic Carbon (C)	2022/12/19	NC		%	20
8411243	SUK	Matrix Spike [UPN198-05]	Dissolved Iron (Fe)	2022/12/21		NC	%	80 - 120
			Dissolved Sulphur (S)	2022/12/21		NC	%	80 - 120
8411243	SUK	Spiked Blank	Dissolved Iron (Fe)	2022/12/21		101	%	80 - 120
			Dissolved Sulphur (S)	2022/12/21		101	%	80 - 120
8411243	SUK	Method Blank	Dissolved Iron (Fe)	2022/12/21	<0.02		mg/L	
			Dissolved Sulphur (S)	2022/12/21	<0.5		mg/L	
8411243	SUK	RPD [UPN198-05]	Dissolved Iron (Fe)	2022/12/21	0.60		%	25
			Dissolved Sulphur (S)	2022/12/21	0.59		%	25
8411256	RG4	Matrix Spike	Dissolved Aluminum (Al)	2022/12/21		116	%	80 - 120
		•	Dissolved Arsenic (As)	2022/12/21		102	%	80 - 120
			Dissolved Barium (Ba)	2022/12/21		104	%	80 - 120
			Dissolved Bismuth (Bi)	2022/12/21		92	%	80 - 120
			Dissolved Boron (B)	2022/12/21		96	%	80 - 120
			Dissolved Cadmium (Cd)	2022/12/21		102	%	80 - 120
			Dissolved Calcium (Ca)	2022/12/21		NC	%	80 - 120
			Dissolved Cesium (Cs)	2022/12/21		100	%	80 - 120
			Dissolved Chromium (Cr)	2022/12/21		104	%	80 - 120
			Dissolved Cobalt (Co)	2022/12/21		98	%	80 - 120
			Dissolved Copper (Cu)	2022/12/21		109	%	80 - 120
			Dissolved Iron (Fe)	2022/12/21		104	%	80 - 120
			Dissolved Lead (Pb)	2022/12/21		95	%	80 - 120
			Dissolved Lithium (Li)	2022/12/21		105	%	80 - 120
			Dissolved Magnesium (Mg)	2022/12/21		NC	%	80 - 120
			Dissolved Nickel (Ni)	2022/12/21		94	%	80 - 120
			Dissolved Potassium (K)	2022/12/21		109	%	80 - 120
			Dissolved Rubidium (Rb)	2022/12/21		97	%	80 - 120
			Dissolved Selenium (Se)	2022/12/21		101	%	80 - 120
			Dissolved Silicon (Si)	2022/12/21		115	%	80 - 120
			Dissolved Sodium (Na)	2022/12/21		2790 (1)	%	80 - 120
			Dissolved Strontium (Sr)	2022/12/21		NC	%	80 - 120
			Dissolved Thorium (Th)	2022/12/21		94	%	80 - 120
			Dissolved Uranium (U)	2022/12/21		97	%	80 - 120
			Dissolved Zirconium (Zr)	2022/12/21		112	%	80 - 120
8411256	RG4	Spiked Blank	Dissolved Aluminum (Al)	2022/12/21		103	%	80 - 120
00			Dissolved Arsenic (As)	2022/12/21		100	%	80 - 120
			Dissolved Barium (Ba)	2022/12/21		99	%	80 - 120
			Dissolved Bismuth (Bi)	2022/12/21		99	%	80 - 120

Page 8 of 12

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		20.700	Dissolved Boron (B)	2022/12/21		98	%	80 - 120
			Dissolved Cadmium (Cd)	2022/12/21		99	%	80 - 120
			Dissolved Calcium (Ca)	2022/12/21		101	%	80 - 120
			Dissolved Cesium (Cs)	2022/12/21		97	%	80 - 120
			Dissolved Chromium (Cr)	2022/12/21		101	%	80 - 120
			Dissolved Cobalt (Co)	2022/12/21		100	%	80 - 120
			Dissolved Copper (Cu)	2022/12/21		100	%	80 - 120
			Dissolved Iron (Fe)	2022/12/21		101	%	80 - 120
			Dissolved Lead (Pb)	2022/12/21		101	%	80 - 120
			Dissolved Lithium (Li)	2022/12/21		102	%	80 - 120
			Dissolved Magnesium (Mg)	2022/12/21		105	%	80 - 120
			Dissolved Nickel (Ni)	2022/12/21		97	%	80 - 120
			Dissolved Potassium (K)	2022/12/21		101	%	80 - 120
			Dissolved Rubidium (Rb)	2022/12/21		97	%	80 - 120
			Dissolved Selenium (Se)	2022/12/21		103	%	80 - 120 80 - 120
			Dissolved Selentum (Se)	2022/12/21		103	%	80 - 120 80 - 120
			Dissolved Solium (Si)	2022/12/21		102	%	80 - 120 80 - 120
			Dissolved Strontium (Sr)	2022/12/21		96	%	80 - 120
			Dissolved Thorium (Th)	2022/12/21		96	%	80 - 120 80 - 120
			Dissolved Uranium (U)	2022/12/21		101 100	%	80 - 120 80 - 120
411256	RG4	Method Blank	Dissolved Zirconium (Zr) Dissolved Aluminum (Al)	2022/12/21 2022/12/21	<4.9	100	%	80 - 120
411250	NG4	Method Blank					ug/L	
			Dissolved Arsenic (As)	2022/12/21	<1.0		ug/L	
			Dissolved Barium (Ba)	2022/12/21	<2.0		ug/L	
			Dissolved Bismuth (Bi)	2022/12/21	<1.0		ug/L	
			Dissolved Boron (B)	2022/12/21	<10		ug/L	
			Dissolved Cadmium (Cd)	2022/12/21	<0.090		ug/L	
			Dissolved Calcium (Ca)	2022/12/21	<200		ug/L	
			Dissolved Cesium (Cs)	2022/12/21	<0.20		ug/L	
			Dissolved Chromium (Cr)	2022/12/21	<5.0		ug/L	
			Dissolved Cobalt (Co)	2022/12/21	<0.50		ug/L	
			Dissolved Copper (Cu)	2022/12/21	<0.90		ug/L	
			Dissolved Iron (Fe)	2022/12/21	<100		ug/L	
			Dissolved Lead (Pb)	2022/12/21	<0.50		ug/L	
			Dissolved Lithium (Li)	2022/12/21	<5.0		ug/L	
			Dissolved Magnesium (Mg)	2022/12/21	<50		ug/L	
			Dissolved Nickel (Ni)	2022/12/21	<1.0		ug/L	
			Dissolved Potassium (K)	2022/12/21	<200		ug/L	
			Dissolved Rubidium (Rb)	2022/12/21	<0.20		ug/L	
			Dissolved Selenium (Se)	2022/12/21	<2.0		ug/L	
			Dissolved Silicon (Si)	2022/12/21	<50		ug/L	
			Dissolved Sodium (Na)	2022/12/21	<100		ug/L	
			Dissolved Strontium (Sr)	2022/12/21	<1.0		ug/L	
			Dissolved Thorium (Th)	2022/12/21	<2.0		ug/L	
			Dissolved Uranium (U)	2022/12/21	<0.10		ug/L	
	_		Dissolved Zirconium (Zr)	2022/12/21	<1.0		ug/L	
411256	RG4	RPD	Dissolved Lead (Pb)	2022/12/21	NC		%	20
411277	SAU	Spiked Blank	рН	2022/12/20		102	%	98 - 103
411277	SAU	RPD [UPN197-01]	рН	2022/12/20	0.56		%	N/A
3411281	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2022/12/20		95	%	85 - 115

Page 9 of 12

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
8411281	SAU	Method Blank	Alkalinity (Total as CaCO3)	2022/12/20	<1.0		mg/L	
8411281	SAU	RPD [UPN197-01]	Alkalinity (Total as CaCO3)	2022/12/20	0.0065		%	20
8411282	SAU	Matrix Spike [UPN197-01]	Fluoride (F-)	2022/12/20		57 (1)	%	80 - 120
8411282	SAU	Spiked Blank	Fluoride (F-)	2022/12/20		103	%	80 - 120
8411282	SAU	Method Blank	Fluoride (F-)	2022/12/20	<0.10		mg/L	
8411282	SAU	RPD [UPN197-01]	Fluoride (F-)	2022/12/20	0.95		%	20
8411287	C_N	Matrix Spike [UPN197-01]	Nitrite (N)	2022/12/20		99	%	80 - 120
			Nitrate (N)	2022/12/20		97	%	80 - 120
8411287	C_N	Spiked Blank	Nitrite (N)	2022/12/20		106	%	80 - 120
			Nitrate (N)	2022/12/20		101	%	80 - 120
8411287	C_N	Method Blank	Nitrite (N)	2022/12/20	<0.010		mg/L	
			Nitrate (N)	2022/12/20	<0.10		mg/L	
8411287	C_N	RPD [UPN197-01]	Nitrite (N)	2022/12/20	NC		%	20
			Nitrate (N)	2022/12/20	NC		%	20
8412044	IJΗ	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2022/12/20		100	%	80 - 120
8412044	IJΗ	QC Standard	Total Kjeldahl Nitrogen (TKN)	2022/12/20		97	%	80 - 120
8412044	IJΗ	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2022/12/20		105	%	80 - 120
8412044	IJΗ	Method Blank	Total Kjeldahl Nitrogen (TKN)	2022/12/20	<0.10		mg/L	
8412044	IJΗ	RPD	Total Kjeldahl Nitrogen (TKN)	2022/12/20	NC (2)		%	20
8412070	SUK	Matrix Spike	Total Iron (Fe)	2022/12/20	.,	98	%	80 - 120
		·	Total Sulphur (S)	2022/12/20		NC	%	80 - 120
8412070	SUK	Spiked Blank	Total Iron (Fe)	2022/12/20		101	%	80 - 120
		•	Total Sulphur (S)	2022/12/20		94	%	80 - 120
8412070	SUK	Method Blank	Total Iron (Fe)	2022/12/20	<0.02		mg/L	
			Total Sulphur (S)	2022/12/20	<0.5		mg/L	
8412134	SPC	Matrix Spike	Total Phosphorus	2022/12/21		101	%	80 - 120
8412134	SPC	QC Standard	Total Phosphorus	2022/12/21		99	%	80 - 120
8412134	SPC	Spiked Blank	Total Phosphorus	2022/12/21		99	%	80 - 120
8412134	SPC	Method Blank	Total Phosphorus	2022/12/21	<0.020		mg/L	
8412134	SPC	RPD	Total Phosphorus	2022/12/21	0.12		%	20
8412355	GID	Matrix Spike	Total Organic Carbon (TOC)	2022/12/20		97	%	80 - 120
8412355	GID	Spiked Blank	Total Organic Carbon (TOC)	2022/12/20		99	%	80 - 120
8412355	GID	Method Blank	Total Organic Carbon (TOC)	2022/12/20	<0.40		mg/L	
8412355	GID	RPD	Total Organic Carbon (TOC)	2022/12/20	0.87		%	20
8412399	SSV	Matrix Spike	Total Ammonia-N	2022/12/21		107	%	75 - 125
8412399	SSV	Spiked Blank	Total Ammonia-N	2022/12/21		101	%	80 - 120
8412399	SSV	Method Blank	Total Ammonia-N	2022/12/21	<0.050		mg/L	
8412399	SSV	RPD	Total Ammonia-N	2022/12/21	4.8		%	20
8412697	S1L	Matrix Spike [UPN197-01]	Orthophosphate (P)	2022/12/21		95	%	75 - 125
8412697	S1L	Spiked Blank	Orthophosphate (P)	2022/12/21		100	%	80 - 120
8412697	S1L	Method Blank	Orthophosphate (P)	2022/12/21	<0.010		mg/L	
8412697	S1L	RPD [UPN197-01]	Orthophosphate (P)	2022/12/21	14		%	20
8413262	LKH	Matrix Spike	Chloride (Cl-)	2022/12/20		107	%	80 - 120
			Bromide (Br-)	2022/12/20		102	%	80 - 120
			Sulphate (SO4)	2022/12/20		103	%	80 - 120
8413262	LKH	Spiked Blank	Chloride (Cl-)	2022/12/20		100	%	70 - 130
			Bromide (Br-)	2022/12/20		102	%	80 - 120

Page 10 of 12

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

04/00

Geofirma Engineering Ltd Client Project #: 20-203-1 Site Location: IGNACE, ON Your P.O. #: 202031-004 Sampler Initials: AC

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Sulphate (SO4)	2022/12/20		102	%	80 - 120
8413262	LKH	Method Blank	Chloride (Cl-)	2022/12/20	<1.0		mg/L	
			Bromide (Br-)	2022/12/20	<1.0		mg/L	
			Sulphate (SO4)	2022/12/20	<1.0		mg/L	
8413262	LKH	RPD	Chloride (Cl-)	2022/12/20	1.2		%	20
			Bromide (Br-)	2022/12/20	NC		%	20
8423382	éJ3	Matrix Spike	Reactive Silica (SiO2)	2022/12/23		99	%	80 - 120
8423382	éJ3	Spiked Blank	Reactive Silica (SiO2)	2022/12/23		105	%	80 - 120
8423382	éJ3	Method Blank	Reactive Silica (SiO2)	2022/12/23	<0.050		mg/L	
8423382	éJ3	RPD	Reactive Silica (SiO2)	2022/12/23	2.5		%	20
8425306	KDB	Matrix Spike	Dissolved Iodide	2022/12/23		98	%	80 - 120
8425306	KDB	Spiked Blank	Dissolved Iodide	2022/12/23		107	%	80 - 120
8425306	KDB	Method Blank	Dissolved Iodide	2022/12/23	<0.10		mg/L	
8447651	ST5	Spiked Blank	Total Ruthenium (Ru)	2023/01/11		113	%	70 - 130
8447651	ST5	Method Blank	Total Ruthenium (Ru)	2023/01/11	<2.0		ug/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) Due to a high concentration of NOx, the sample required dilution. The detection limit was adjusted accordingly.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

aistin Camere

Cristina Carriere, Senior Scientific Specialist

hat D. l

Jonathan Fauvel, B.Sc, Chimiste, Supervisor, Inorganics

Sandy Yuan, M.Sc., QP, Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Isotope Analyses for: Geofirma Engineering LTD

IT² FILE # 221105

2023-03-15

Approved by:

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1Z5 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: acartier@geofirma.com

File Number:	<u>221105</u>
Project Number:	<u>20-203-1</u>
COC ID#	<u>GFIM_IT2_007</u>

#	Client ID	Sample #	Sampling		E ³ H	Result	± 1σ	δ ¹⁸ Ο	Aver	Stdv	$\delta^2 H$	Aver	Stdv
			Date	Time		TU		H ₂ O	VSN	/IOW	H ₂ O	VSN	MOM
1	IG_BH05_GW010	126102	2022-12-09	11:30	Х	< 0.8	0.8						
2	IG_BH05_GW011	126103	2022-12-12/13	various	Х	2.3	0.8	Х	-11.20	0.03	Х	-79.7	0.1
3	IG_BH05_GW012	126104	2022-12-12/13	various	Х	2.3	0.9	х	-11.27	0.02	Х	-79.8	0.1
4	IG_BH01_GW036	126105	2022-12-09	10:45-17:00	Х	< 0.8	0.8	х	-12.04	0.02	Х	-78.3	0.1

E³H ANALYSES

Tritium is reported in Tritium Units.

1TU = 3.221 Picocurries/L per IAEA, 2000 Report.

1TU = 0.11919 Becquerels/L per IAEA, 2000 Report.

¹⁸O & ²H (CRDS)

 Instrument Used: Cavity Ring Down Spectroscopy (CRDS)

 CRDS (Model L2130-i) (Picarro, California, USA).

 Standard Used:

 IT2-12C / IT2-13B / IT2-14B Calibrated with IAEA Standards (V-SMOW, SLAP, and GISP)

 Typical Standard deviation:

 (¹⁸O ±0.1‰)
 (²H ± 1‰)

Approved by: Orfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: <a>acartier@geofirma.com

File Number:	221105
Project Number:	20-203-1
COC ID#	<u>GFIM_IT2_007</u>

#	Client ID	Sample #	Sampling		⁸⁷ Sr/ ⁸⁶ Sr	Result	StdErr (abs)	StdDev (abs)	δ ³⁷ Cl	Result	Stdv
			Date	Time						SM	0C
1	IG_BH05_GW010	126102	2022-12-09	11:30							
2	IG_BH05_GW011	126103	2022-12-12/13	various	Х	0.71563	4.836E-06	6.212E-05	Х	-0.85	0.08
3	IG_BH05_GW012	126104	2022-12-12/13	various	Х	0.71523	4.349E-06	5.449E-05	Х	-0.66	0.09
4	IG_BH01_GW036	126105	2022-12-09	10:45-17:00	Х	0.71529	6.855E-06	9.299E-05	Х	-0.65	0.12

⁷Sr/⁸⁶Sr ANALYSES

Instrument Used:

Thermal Ionization Mass Spectrometry (TIMS), TI-Box, spectromat, Germany **Standard Used:** NIST-987 Typical Standard deviation: ± 0.0001

³⁷CI ANALYSES

Instrument Used:

Isotope Ratio Mass Spectrometry (IRMS) - MAT 253, Thermo Scientific, Germany Coupled with an Agilent 6890 Gas Chromatograph (GC) Standard Used: SMOC **Typical Standard deviation:**

 $\pm 0.15\%$

Approved by:

Irfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Client: Geofirma Engineering LTD Address: 1 RAYMOND ST. SUITE 200 Ottawa, ON. K1R 1A2 Tel.: (613)402-1701/ (514)-730-0961 Attn.: Chris Morgan/Amy Cartier E-mail: cmorgan@geofirma.com E-mail: <a>acartier@geofirma.com

File Number:	<u>221105</u>
Project Number:	<u>20-203-1</u>
COC ID#	<u>GFIM_IT2_007</u>

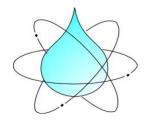
#	Client ID	Sample #	Sampling		$\delta^{13} C$	Result	Repeat	¹⁴ C		ion of dern	Radioca	rbon age
			Date	Time	DIC	PDB		DIC	Pmc	±	BP	±
1	IG_BH05_GW010	126102	2022-12-09	11:30	Х	-10.9	-10.5	Х	40.45	0.17	7271	34
2	IG_BH05_GW011	126103	2022-12-12/13	various	Х	-23.5		х	91.81	0.23	686	20
3	IG_BH05_GW012	126104	2022-12-12/13	various	Х	-23.6		Х	90.50	0.23	802	20
4	IG_BH01_GW036	126105	2022-12-09	10:45-17:00	Х	-14.0		х	48.39	0.25	5831	42

¹³C DIC Analyses

Instrument Used:

Finnigan MAT, Delta^{Plus} XL IRMS, Germany. Standard Used: IT²-27 IT²-34 NBS-18 NBS-19 **Typical Standard deviation:** ± 0.2 ‰

¹⁴C DIC Analyses


Results are presented in units of percent modern carbon (Pmc) and the uncalibrated radiocarbon age beofre present (BP). The results relate only the sample material submitted and the portion analyzed. All results have been corrected for isotopic fractionation

with an δ^{13} C value measured on the prepared carbon by the accelerator. The pMC reported requires no further correciton for fractionation.

Approved by:

Irfan S-Stash

Orfan Shouakar-Stash, PhD Director Isotope Tracer Technologies Inc. 608 Weber St. North Unit 3&4, Waterloo, ON, N2V 1K4 Tel: 519-886-5555 | Fax: 519-886-5575 Email: orfan@it2isotopes.com Website: www.it2isotopes.com

Hydrogeochemistry Laboratory Analytical Report - Clark group University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description						
Site	Ignace					
Туре	Water					
Container	Nalgene					
Volume	1 L					

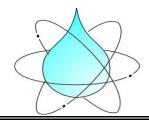
Analysis						
Analyte	³⁶ Cl in dissolved Cl					
Method	AMS					
Facility	Hydrogeochemistry Laboratory, University of Ottawa					
Report Approved by	Jacal Ian Clark, P.Geo.					

Timeline									
Samples received	Analyses completed	Report date							
October 04, 2022 (5), 2022 Q3 December 20, 2022 (3), 2022 Q4	36Cl	April 27, 2023							

Notes

Samples were collected in the field by Geofirma staff. Bottles were received sealed and in good condition.

Samples were extracted as Cl⁻ from solution on an anion exchange column, eluted and precipitated as AgCl target material. AMS analysis was undertaken on a 6 MV tandem accelerator mass spectrometer at PRIME Lab, Purdue.


Hydrogeochemistry Laboratory

Report prepared for:

Geofirma Engineering Ltd.

Analytical Report - Clark group

Sample	Lab ID	Comment	Cl (mg/L)	³⁶ CI/CI final (10 ⁻¹⁵)	±	³⁶ Cl atoms/L (10 ⁶)	±
IG_BH01_GW036	PRIME	prepared at uOttawa	19000	16.9	1.2	5445	392
IG_BH05_GW011	PRIME	prepared at uOttawa	7000	15.6	1.2	1849	147
IG_BH05_GW012	PRIME	prepared at uOttawa	7000	15.31	1.2	1818	141

Hydrogeochemistry Laboratory *Analytical Report - Clark group* University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

Analytical report for:

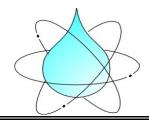
Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description				
Site	Ignace			
Туре	Water			
Container	Nalgene			
Volume	1L			

Analysis					
Analyte	¹²⁹				
Method	¹²⁹ I extraction to AgI and AMS analysis				
Facility	Hydrogeochemistry Laboratory, University of Ottawa				
Report Approved by	Jack Ian Clark, P.Geo.				

Timeline						
Samples received	Analyses completed	Report date				
December 2022	¹²⁹ l	July 18, 2023				

Hydrogeochemistry Laboratory Analytical Report - Clark group


			¹²⁷ I Mass of		¹²⁹ l/ ¹²⁷ l Rati (x10		¹²⁹ l Conce (x10 ⁶ at		Origina (x10 ⁻	
Sample	Date Sampled	Sample Weight (g)	Measured (ppb)	Iodide Carrier Added (mg)	Ratio	Standard Deviation	Concentration	Standard Deviation	OR	Standard Deviation
IG_BH01_GW036	09/12/2022	201.00	1254	1.74	6.85E+01	3.15E+00	3.22E-02	1.48E-03	3.26E-02	1.50E-03
IG_BH05_GW011	14/12/2022	200.17	732	1.66	6.70E+01	2.68E+00	2.87E-02	1.15E-03	4.98E-02	1.99E-03
IG_BH05_GW012	14/12/2022	201.53	744	1.66	7.03E+01	2.46E+00	3.00E-02	1.05E-03	5.11E-02	1.79E-03

Note: * ¹²⁹ I/¹²⁷ I Ratio Measured includes both sample and carrier added.

Note 2: ** ¹²⁹ I/¹²⁷ I Ratio calculated before added the carrier.

AMS Measurements

Samples were run on a 6MV Tandetron electrostatic AMS at the Helmholtz-Zentrum Dresden-Rossendorf facility. Raw machine ratios were background corrected by a blank machine count rate of 0.06 cps.

Hydrogeochemistry Laboratory Analytical Report - Clark group University of Ottawa 25 Templeton Street Ottawa, ON K1N 6N5

Analytical report for:

Geofirma Engineering Ltd. 1 Raymond Street #200 Ottawa, ON K1R 1A2

Sample description					
Site	Ignace				
Туре	loble gas				
Container	Cu tubes				
Volume					
Report Approved by	Jack Ian Clark, P.Geo.				

Analysis				
Analyte	Noble gases			
Method	Mass spectrometry			
Facility	Noble gas laboratory, University of Utah			

Timeline						
Samples received	Analyses completed	Report date				
2022 Q3 and Q4	Ha Na Ar Kr Va	Rev 0: 2023-06-19				
2022 Q3 and Q4	He, Ne, Ar, Kr, Xe	Rev 1: 2024-01-08				

Notes

Gas extraction from water follows the procedure outlined in Aeschbach-Hertig & Solomon 2013. Please see sheet tab titled "Notes" for further explanation of the noble gas analysis.

Hydrogeochemistry Laboratory

Analytical Report - Clark group

Report prepared for:

Geofirma Engineering Ltd.

Quarter	Sample ID	Mass g	H	He3		e4	x/Ra	HeT	otal
			cc/g	±	cc/g	±		cc/g	±
2022 Q3	IG_BH03_GW017	10.7	5.39E-11	5.39E-13	3.05E-04	3.05E-06	0.128	3.05E-04	3.05E-06
2022 Q3	IG_BH03_GW018	10.2	4.87E-12	4.87E-14	2.83E-04	2.83E-06	0.012	2.83E-04	2.83E-06
2022 Q3	IG_BH01_GW035	11.1	2.80E-11	2.80E-13	3.00E-04	3.00E-06	0.068	3.00E-04	3.00E-06
2022 Q3	IG_BH05_GW005	13.0	4.01E-11	4.01E-13	2.54E-04	2.54E-06	0.114	2.54E-04	2.54E-06
2022 Q3	IG_BH05_GW006	11.5	4.26E-11	4.26E-13	2.88E-04	2.88E-06	0.107	2.88E-04	2.88E-06
2022 Q4	IG_BH01_GW028	10.1	1.67E-11	1.67E-13	3.33E-04	3.33E-06	0.036	3.33E-04	3.33E-06
2022 Q4	IG_BH01_GW036	9.8	2.39E-11	2.39E-13	3.29E-04	3.29E-06	0.053	3.29E-04	3.29E-06
2022 Q4	IG_BH05_GW011	9.9	2.26E-12	2.26E-14	1.36E-04	1.36E-06	0.012	1.36E-04	1.36E-06
2022 Q4	IG_BH05_GW012	11.1	4.87E-11	4.87E-13	2.99E-04	2.99E-06	0.118	2.99E-04	2.99E-06

Quarter	Sample ID	Mass g	Ne20		Ne	22	NeT	otal	20Ne/22Ne
			cc/g	<u>±</u>	cc/g	<u>±</u>	cc/g	<u>+</u>	
2022 Q3	IG_BH03_GW017	10.7	6.56E-08	1.97E-09	7.14E-09	2.14E-10	7.27E-08	2.18E-09	9.19
2022 Q3	IG_BH03_GW018	10.2	7.84E-08	2.35E-09	7.79E-09	2.34E-10	8.62E-08	2.59E-09	10.07
2022 Q3	IG_BH01_GW035	11.1	6.57E-07	1.97E-08	6.59E-08	1.98E-09	7.22E-07	2.17E-08	9.96
2022 Q3	IG_BH05_GW005	13.0	3.69E-07	1.11E-08	3.93E-08	1.18E-09	4.08E-07	1.22E-08	9.39
2022 Q3	IG_BH05_GW006	11.5	4.62E-07	1.39E-08	5.02E-08	1.51E-09	5.13E-07	1.54E-08	9.22
2022 Q4	IG_BH01_GW028	10.1	3.53E-08	1.06E-09	3.55E-09	1.06E-10	3.89E-08	1.17E-09	9.96
2022 Q4	IG_BH01_GW036	9.8	5.50E-08	1.65E-09	5.85E-09	1.75E-10	6.09E-08	1.83E-09	9.41
2022 Q4	IG_BH05_GW011	9.9	7.86E-08	2.36E-09	8.01E-09	2.40E-10	8.66E-08	2.60E-09	9.80
2022 Q4	IG_BH05_GW012	11.1	1.48E-07	4.43E-09	1.53E-08	4.60E-10	1.63E-07	4.89E-09	9.63

Quarter	Sample ID	Mass g	Ar36		Ar	40	ArT	otal	36Ar/40Ar
			cc/g	<u>±</u>	cc/g	±	cc/g	\pm	
2022 Q3	IG_BH03_GW017	10.7	1.43E-07	4.29E-09	2.22E-03	6.66E-05	2.22E-03	6.66E-05	6.45E-05
2022 Q3	IG_BH03_GW018	10.2	1.54E-07	4.62E-09	7.39E-04	2.22E-05	7.39E-04	2.22E-05	2.09E-04
2022 Q3	IG_BH01_GW035	11.1	1.38E-06	4.15E-08	7.73E-04	2.32E-05	7.75E-04	2.32E-05	1.79E-03
2022 Q3	IG_BH05_GW005	13.0	1.11E-06	3.32E-08	1.35E-03	4.06E-05	1.36E-03	4.07E-05	8.18E-04
2022 Q3	IG_BH05_GW006	11.5	1.06E-06	3.18E-08	1.36E-03	4.08E-05	1.36E-03	4.08E-05	7.79E-04
2022 Q4	IG_BH01_GW028	10.1	5.13E-07	1.54E-08	6.43E-04	1.93E-05	6.43E-04	1.93E-05	7.99E-04
2022 Q4	IG_BH01_GW036	9.8	4.90E-07	1.47E-08	1.22E-03	3.67E-05	1.22E-03	3.67E-05	4.01E-04
2022 Q4	IG_BH05_GW011	9.9	5.49E-07	1.65E-08	3.86E-04	1.16E-05	3.87E-04	1.16E-05	1.42E-03
2022 Q4	IG_BH05_GW012	11.1	5.81E-07	1.74E-08	1.25E-03	3.75E-05	1.25E-03	3.75E-05	4.65E-04

Hydrogeochemistry Laboratory

Analytical Report - Clark group

Report prepared for: Geofirma Engineering Ltd.

Quarter	Sample ID	Mass g	g KrTotal		XeT	otal
			cc/g	<u>±</u>	cc/g	±
2022 Q3	IG_BH03_GW017	10.7	1.94E-08	9.71E-10	3.46E-09	1.73E-10
2022 Q3	IG_BH03_GW018	10.2	1.25E-08	6.24E-10	2.59E-09	1.30E-10
2022 Q3	IG_BH01_GW035	11.1	6.41E-08	3.20E-09	8.21E-09	4.10E-10
2022 Q3	IG_BH05_GW005	13.0	4.56E-08	2.28E-09	7.87E-09	3.94E-10
2022 Q3	IG_BH05_GW006	11.5	5.11E-08	2.56E-09	7.88E-09	3.94E-10
2022 Q4	IG_BH01_GW028	10.1	4.65E-08	2.32E-09	8.35E-09	4.18E-10
2022 Q4	IG_BH01_GW036	9.8	3.19E-08	1.59E-09	5.27E-09	2.63E-10
2022 Q4	IG_BH05_GW011	9.9	3.66E-08	1.83E-09	6.02E-09	3.01E-10
2022 Q4	IG_BH05_GW012	11.1	5.51E-08	2.76E-09	8.35E-09	4.18E-10

- cc/g cc of noble gas at STP per gram of sample solution
 - ± analytical uncertainty, as cc/g
- xRa 3He/4He ratio in sample normalized to the ratio in Air (1.38E-6)

Noble Gas Analysis

Gas extraction from water follows the procedure outlined in *Aeschbach-Hertig & Solomon 2013*. This involves gas extraction from copper tube water samples under vacuum by water vapour sweep into a stainless steel gas flask. The extracted gases are let into a sample preparation line and cryogenically separated. For light noble gases (He and Ne), standards and samples are introduced into an ultra-high vacuum preparation system where bulk (N₂, O₂) and trace gases (CO₂, Ar) are removed using liquid N₂ charcoal traps and two SAES getters, followed by analysis on a Thermo Scientific Helix SFT Noble Gas Mass Spectrometer. Internal standards using precise aliquots from a tank of clean dry atmospheric air are run each morning and during analysis to measure instrument drift and sensitivity. Internal standards of air equilibrated water (AEW) are also run as internal checks on the water extraction procedure and analyses. Following purification, He is separated from Ne using a He cooled cryo trap that cycles down to 5K, before releasing He at 28K and Ne at 70K. He and Ne are introduced separately into the Helix SFT operating under static vacuum. Each analysis undergoes a mass peak center, followed by separate integrations on each mass peak. These integrations generate a linear regression used to calculate peak intensity at time zero (when the sample was released into the mass spectrometer).For Ar, Kr and Xe, gases, residual water vapour was removed cryogenically prior to gettering of reactive gases and cryogenic separation of Kr and Xe from Ar. Abundance analysis was done by quadrupole mass spectrometry at the University of Utah Noble Gas Lab.

References:

Aeschbach-Hertig W., Solomon D.K. (2013) Noble Gas Thermometry in Groundwater Hydrology. In: Burnard P. (eds) The Noble Gases as

2022 Annual Report

Fluid Pressure Monitoring and Groundwater Sampling in Ignace Boreholes

Appendix F

Data Quality Confirmation Workbooks

2022 Q1 (March) Data Quality Workbook (DQC)

Borehole ID:	BH01, BH03, BH05	Comments:
Date:	18 Mar - 26 Mar 2022	
Completed by:	AMSC, MdK	
Sampling Interval(s):	IG_BH01_INT_T_004; IG_BH03_INT_T_002; IG_BH05_INT_T_007	

	Decontamination					Decontam	ination Procedu	ire		
Equipment	Date/Time	Decontamination Required (Y/N)	Location	PPE	Loose Contamination Removed	Detergent Wash (record type of detergent used)	Dionized Water Rinse	Air Dried (Minimize Dust)	Rinsate Sample Collected (Y/N)	Comments
Electronic Water Level Tape	2022-03-18 9:15	Y	BH03	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-03-19 11:15	Y	BH03	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-03-20 8:00	Y	BH01	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-03-20 8:00	Y	BH01	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-03-20 11:20	Y	BH03	Y	Y	Alconox	Y	Y	Ν	
Bladder Pump	2022-03-20 11:20	Y	BH03	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-03-21 8:25	Y	BH05	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-03-21 8:10	Y	BH05	Y	Y	Alconox	Y	Y	Ν	
Bladder Pump	2022-03-21 11:30	Y	BH05	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-03-22 10:15	Y	BH03	Y	Y	Alconox	Y	Y	Ν	
7 x Westbay sample bottles	2022-03-22 10:15	Y	BH03	Y	Y	Alconox	Y	Y	Y	Collected rinsate sample: IG_BH03_GW014
Electronic Water Level Tape	2022-03-24 8:50	Y	BH01	Y	Y	Alconox	Y	Y	Ν	
Bladder Pump	2022-03-24 8:50	Y	BH01	Y	Y	Alconox	Y	Y	Ν	
7 x Westbay sample bottles	2022-03-25 8:30	Y	BH05	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-03-25 8:30	Y	BH05	Y	Y	Alconox	Y	Y	Ν	
7 x Westbay sample bottles	2022-03-26 12:00	Y	BH01	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-03-26 12:00	Y	BH01	Y	Y	Alconox	Y	Y	N	
MOSDAX sampler probe EMS 5230	2022-03-26 12:00	Y	BH01	Y	Y	Alconox	Y	Y	Ν	

Completed by:	AMSC, MdK	Verified by:	SNS
Date:	18 Mar - 26 Mar 2022	Date:	02-Apr-22

					Ca	libration Check		Calibra	tion Performed		_	
Date	Time	Personnel	Equipment Type	Serial Number	Check Method & Standard(s) Used	Equipment Reading(s)	Calibration Required (Y/N)	Calibration Method & Standard(s) Used	Equipment Reading(s)	Calibration Completed (Y/N)	Comments	
19-Mar-22	12:40	AMSC	Westbay MOSDAX	EMS5230	Water pressure check vs manual water level	Manual WL (m Head): 7.31m; Westbay (m Head): 8.44m	Ν	-	-			
20-Mar-22	11:45	MdK	Fluorometer	801434				2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.004ppb, 9.984ppb, 99.39ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	
20-Mar-22	11:45	MdK	HoribaU52	UG3N4PTO	-		-	Lab-provided auto calibration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00pH, 4.50mS/cm, 0.0NTU	Y		
21-Mar-22	6:45	MdK	Fluorometer	801434		-		2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.003ppb, 10.02ppb, 99.95ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	
21-Mar-22	6:45	MdK	HoribaU52	UG3N4PTO	Lab provided solutions; 4.00, 7.00, 10.00	4.02, 7.01, 10.00	N	Lab-provided auto calibration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00pH, 4.49mS/cm, 0.0NTU	Y		
22-Mar-22	7:00	MdK	Fluorometer	801434				2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.003ppb, 10.03ppb, 99.45ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	
22-Mar-22	7:15	MdK	HoribaU52	UG3N4PTO	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 6.99, 10.01		Lab-provided auto calibration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00pH, 4.50mS/cm, 0.0NTU	Y		
22-Mar-22	7:30	AMSC	DR900	181720001030	520nm: Blank: 0.00 5 Std 1: 0.558 ± 0.05 5 Std 2: 1.141 ± 0.10 5 Std 3: 1.741 ± 0.15	0.000, 0.594, 1.187, 1.788	Ν	-			Cal checked using DR900 absorbance check	
22-10121-22	7.30	AMSC	DK900	181720001030	610nm: Blank: 0.00 Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	0.000, 0.605, 1.194, 1.799	N	-			kit (SN.2763900).	
23-Mar-22	7:00	MdK	Fluorometer	801434				2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.001ppb, 9.954ppb, 99.10ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	
23-Mar-22	7:15	MdK	HoribaU52	UG3N4PTO	Lab provided solutions; 4.00, 7.00, 10.00	3.99, 6.98, 9.97	N	Lab-provided auto calibration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00pH, 4.51mS/cm, 0.1NTU	Y		
24-Mar-22	7:00	MdK	Fluorometer	801434				2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 9.989ppb, 101.9ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	
24-Mar-22	7:15	AMSC	HoribaU52	UG3N4PTO				Lab-provided auto calibration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99pH, 4.49mS/cm, 0.0NTU	Y	Attempted pH cal check with buffer solutions but would not stabilize. Issue is likely with solutions and not the probe, the solutions have debris in them. Will replace for next quarter event.	
25-Mar-22	8:50	AMSC	Fluorometer	801434				2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 10.02ppb, 98.54ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	
25-Mar-22	8:55	AMSC	HoribaU52	UG3N4PTO	-			Lab-provided auto calibration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99pH, 4.54mS/cm, 0.0NTU	Y		
					520nm: Blank: 0.00 5 5 5 5 5 5 5 5 5 5 5 5 5	0.000, 0.577, 1.179, 1.769	N	-			Cal checked using DR900 absorbance check	
25-Mar-22	8:55	AMSC	DR900	181720001030	610nm: Blank: 0.00 Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	0.000, 0.598, 1.193, 1.789	N	-	-		kit (SN.2763900).	
26-Mar-22	10:30	AMSC	Fluorometer	801434				2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	-0.010ppb, 9.975ppb, 102.1ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	
26-Mar-22	10:30	AMSC	HoribaU52	UG3N4PTO				Lab-provided auto calibration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99pH, 4.51mS/cm, 0.0NTU	Y		
26-Mar-22	14:30	AMSC	DR900	181720001030	520nm: Blank: 0.00 Std 1: 0.558 ± 0.05 Std 2: 1.141 ± 0.10 Std 2: 1.141 ± 0.15 Std 3: 1.741 ± 0.15 610m: Blank: 0.00 Std 2: 1.133 ± 0.10	0.000, 0.594,1.196, 1.797	Ν				Cal checked using DR900 absorbance check	
20-141d1=22	14.50	AWGO	21,300	101720001030	e 610nm: Blank: 0.00 Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	0.000, 0.605, 1.185, 1.794	Ν	-			kit (SN.2763900).	
27-Mar-22	8:00	AMSC	Fluorometer	801434	-			2 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	-0.005ppb, 9.988ppb, 101.9ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0684) Exp. Jan 2023	

Completed by:	AMSC, MdK	Verified by:	SNS	
Date:	18 Mar - 26 Mar 2022	Date:	02-Apr-22	

Normal Normal<	Elev. Top of W Refere	Datum: Ground Level Probe Type: MOSDAX Pain 99.06 kPa Pain 98.71 kPa Pain 98.71 kPa Height of Westbay Casing: 430.88 m Serial No: EMSS230 Temp. 12.6 °C Temp. 55.1 °C °C Level, GS: 430.88 m Westbay Casing: 2000psi Time 8.08 mBTOC MP38 Water Level 33.30 mBTOC Specific Weight 9.807 Reference Elevation: 430.562 mASL Sampler Valve Position: Closed MP38 Water Level 31.56 mBTOC MP38 Water Level 33.30 mBTOC Specific Weight 9.807 Borehole angle: 90° Sampler Valve Position: Closed NBTOC Pain 98.89										°C kN/m3 m/s2					
br br<			r		1		-					n			1	1	-
2888.8 n/a 889.6 n/a 889.9099.0613.44 n/a 867.623877.0111.48-457.9241.083804.4 n/a 783.30 n/a 785.7391.40012.67 n/a 783.24791.1213.03-373.56417.544763.3779.05 n/a 7840.77 n/a 788.73914.0012.67 n/a 783.24791.1213.03-373.56414.25Introl being purged for sampling6703.1702.00 n/a 788.07 n/a 788.73914.0011.69 n/a 768.55684.3718.53-272.33 $n/41.25$ Introl being purged for sampling6649.8649.62 n/a 6681.572 n/a 681.572 n/a 6681.58684.3718.53-272.33 $n/41.25$ Re-checked to confirm values. Likely influenced by purging n/a 628.7 n/a 669.62 n/a 669.62 n/a 669.6269.6419.16-210.66411.08Re-checked to confirm values. Likely influenced by purging n/a 652.43 n/a 652.43 n/a 652.42650.65619.15-190.55411.08Re-checked to confirm values. Likely influenced by purging n/a 652.43 n/a 652.43 n/a 652.43 n/a 650.45619.51-190.55410.65Re-checked to confirm values. Likely influenced by purging n/a 574.4574.44574.26 n/a 574.45670.55	Port No.		From Cable	Depth "Dp"			Outside Casing	Outside Casing (P2)					Outside Port (m) H=(P2-	Outside Port	measurement port		Comments
38044804.14 n/a 7833.09 n/a 7857.379.14:0012.67 n/a 7833.24791.1213.03	1				n/a	9558.78	n/a	9626.15		13.47	n/a	9558.27	971.48				
4 769.3 769.0 n_{A} 7480.77 n_{A} 7481.15 9.20.00 12.19 n_{A} 7480.51 752.75 16.31	2				n/a		n/a			13.44	n/a		877.01				
3 703.8 702.9 n/a 6815.7 n/a 6823.7 n/a 6823.8 660.4 6	3																
5 703.1 702.9 n/a 6815.72 n/a 6815.05 9643.73 185.3 -27.23 411.04 Interval 004 c 643.8 649.62 n/a 6280.79 n/a 6280.79 9.370 10.85 n/a 6289.86 630.46 19.16 -21.06 411.40 Re-tacked to confirm values. Verified by MMC 7 628.4 742.4 7542.6 n/a 6695.2 9.370 10.85 n/a 6289.86 630.46 19.16 -21.06 411.40 Re-tacked to confirm values. Recover from sampling in December. a 574.4 574.26 n/a 5538.62 9.550 0.22 n/a 5524.28 554.66 19.98 -143.07 410.68 Re-tacked to confirm values. Recover from sampling in December. a 574.4 574.26 n/a 5538.62 9.550 0.92 n/a 5538.62 19.51 $1.91.5$ 140.93 140.98 140.70 140.84 140.76 140.92 140.24 140.24 140.24 140.24 140.24 <t< td=""><td>4</td><td>769.3</td><td></td><td>769.06</td><td>n/a</td><td>7480.77</td><td>n/a</td><td>7481.15</td><td>9:20:00</td><td>12.19</td><td>n/a</td><td>7480.51</td><td>752.75</td><td>16.31</td><td>-338.50</td><td>414.25</td><td></td></t<>	4	769.3		769.06	n/a	7480.77	n/a	7481.15	9:20:00	12.19	n/a	7480.51	752.75	16.31	-338.50	414.25	
h h	5	703.1		702.90	n/a	6815.72	n/a	6810.50	9:26:00	11.69	n/a	6815.95	684.37	18.53	-272.33		interval 004
b28.4 b28.4 b74.4 b28.4.5 b74.4 b28.4.5 b74.4 b74.4 b28.4.5 b74.4 b74.4 b28.4.5 b74.4	6	649.8		649.62	n/a	6280.79	n/a	6281.79	9:37:00	10.85	n/a	6289.86	630.46	19.16	-219.06		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	628.4		628.23	n/a	6065.21	n/a	6064.43	9:46:00	10.48	n/a	6064.85	608.29	19.94	-197.67	410.62	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	574.4		574.26	n/a	5524.08	n/a	5538.62	9:51:00	10.22	n/a	5524.28	554.68	19.58	-143.70	410.98	
11 493.0 492.89 n/a 4707.78 n/a 4754.92 10:02:00 9.26 n/a 4707.72 18.12 -62.33 412.44 12 432.1 n/a 4097.26 n/a 416.09 10:07:00 8.79 n/a 4097.84 412.58 19.43 -1.45 411.13 13 409.2 n/a 382.07 n/a 3932.47 10:10:00 8.79 n/a 34097.84 412.58 19.43 -1.45 411.13 14 325.5 409.22 n/a 3892.07 n/a 3932.47 10:10:00 8.79 n/a 380.59 30.90 18.32 21.34 41.12 14 325.6 37.5 n/a 3031.39 n/a 3031.19 305.85 19.68 10.50 410.8 15 307.3 7 307.5 n/a 2848.45 n/a 292.14 10:20:00 7.39 n/a 2848.25 287.8 19.37 10.30 411.03 16 231.7 n/a 2087.34 n/a 2087.25 212.4 <td< td=""><td>9</td><td>540.2</td><td></td><td></td><td>n/a</td><td></td><td>n/a</td><td></td><td></td><td>9.91</td><td>n/a</td><td></td><td></td><td></td><td></td><td>411.05</td><td></td></td<>	9	540.2			n/a		n/a			9.91	n/a					411.05	
12 432.1 n/a 4097.90 n/a 4145.09 10.07.00 8.79 n/a 4097.84 412.58 19.43 -1.45 411.13 13 4003.3 4092.2 n/a 3869.07 n/a 3932.47 10.10.00 8.47 n/a 3869.59 390.90 18.32 21.34 412.24 14 325.6 325.54 n/a 3031.39 n/a 3098.44 10.17.00 7.64 n/a 3031.19 305.86 19.68 105.02 410.8 15 307.3 307.5 n/a 2282.44 10.2000 7.39 n/a 2848.25 287.88 19.37 123.31 411.20 16 231.2 231.17 n/a 2287.38 10.25.00 6.89 n/a 2087.25 212.24 18.93 199.40 411.63 17 199.2 199.17 n/a 1287.38 10.25.00 6.89 n/a 2087.25 212.24 18.93 199.40 411.63 18 149.0 148.48 n/a 1285.00 6.48 n/a 176	10																
13 409.3 409.2 n/a 3869.07 n/a 3932.47 10:10:00 8.47 n/a 3869.59 390.90 18.32 21.34 412.24 14 325.6 325.54 n/a 3031.39 n/a 3098.44 10:17:00 7.64 n/a 3031.19 305.86 105.02 410.88 15 307.3 307.25 n/a 228.44 n/a 229.21 10:20:00 7.39 n/a 2848.25 287.86 19.37 123.31 411.20 16 231.2 231.17 n/a 2067.34 n/a 2180.28 10:25:00 6.89 n/a 2087.25 212.24 18.93 19.940 411.63 17 199.2 199.17 n/a 1767.33 n/a 1887.38 10:25:00 6.48 n/a 1767.50 182.37 16.80 231.39 413.76 18 149.0 148.98 n/a 1265.74 n/a 1882.10 1265.30 130.85 18.13 281.58 142.43 19 128.5 128.48 n/a 1	11																
14 325.6 325.54 n/a 3031.39 n/a 3098.44 10:17:00 7.64 n/a 3031.19 305.86 19.68 105.02 410.88 15 307.3 307.25 n/a 2848.45 n/a 2922.14 10:2000 7.39 n/a 2848.25 287.88 19.37 123.31 411.20 16 231.2 231.17 n/a 2087.34 n/a 2180.28 10.25:00 6.89 n/a 2087.25 212.24 18.93 199.40 411.63 17 199.2 199.17 n/a 2167.28 10.25:00 6.48 n/a 1767.50 182.37 16.80 231.39 413.6 18 149.0 148.98 n/a 1265.74 n/a 182.30 6.04 n/a 1265.30 130.85 18.13 281.58 412.43 19 128.5 128.48 n/a 1061.59 n/a 1032.00 5.76 n/a 1061.70 130.85 18.13 281.58 412.43 19 128.5 128.48 n/a 1061.5																	
15 307.3 307.25 n/a 2848.45 n/a 2922.14 10:200 7.39 n/a 2848.25 287.88 19.37 123.31 411.20 16 233.2 231.17 n/a 2087.34 n/a 2102.500 6.89 n/a 2087.25 212.24 18.93 199.40 411.63 17 199.2 199.17 n/a 1767.23 n/a 1282.00 6.48 n/a 1767.50 182.37 16.00 231.39 413.76 18 149.0 148.48 n/a 1265.30 10.65.30 10.385 181.33 281.43 287.48 18.13 281.43 287.48 18.13 283.48 1767.50 182.37 16.00 231.39 413.76 18 149.0 148.48 n/a 1061.59 n/a 1061.50 130.85 181.33 281.43 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44 281.44	-																
16 231.2 7 n/a 2087.34 n/a 2180.28 10.25:00 6.89 n/a 2087.25 212.24 18.93 199.40 411.63 17 199.2 199.17 n/a 1767.23 n/a 1887.38 10.25:00 6.48 n/a 1767.50 182.37 16.80 231.39 413.76 18 149.0 148.98 n/a 1265.74 n/a 1382.13 10.32:00 6.04 n/a 1265.30 130.85 18.13 281.58 412.43 19 128.5 128.48 n/a 1061.59 n/a 10.34:00 5.76 n/a 1061.70 198.8 18.60 302.08 411.63																	
1 199.2 199.1 n/a 1767.23 n/a 1887.38 10.28.00 6.48 n/a 1767.50 182.37 16.80 231.39 413.76 18 149.0 148.98 n/a 1265.74 n/a 1382.13 10.32:00 6.04 n/a 1265.30 130.85 18.13 281.58 412.43 19 128.5 128.48 n/a 1061.59 n/a 1061.70 109.88 18.60 302.08 411.96																	
18 149.0 148.98 n/a 1265.74 n/a 1382.13 10.32:00 6.04 n/a 1265.30 130.85 18.13 281.58 412.43 19 128.5 128.48 n/a 1061.59 n/a 107.48 1001.70 109.88 18.00 302.08 411.96					1.		1.										
	18								10:32:00					18.13		412.43	
20 69.1 69.09 n/a 468.81 n/a 634.42 10:39:00 5.49 n/a 468.92 54.61 14.48 361.47 416.08	19	128.5			n/a	1061.59	n/a	1176.48			n/a	1061.70	109.88				
	20	69.1		69.09	n/a	468.81	n/a	634.42	10:39:00	5.49	n/a	468.92	54.61	14.48	361.47	416.08	

Completed by:	AMSC	Verified by:	CAM	
Date:	05-May-22	Date:	06-May-22	

Well ID IG_BH03			Pre Pofile		Post Pofile		Weather:	2	°C
Datum: Ground Su	face	Probe Type: MOSDAX	P _{atm} 98.16	kPa	P _{atm} 97.86	kPa		sunny	/
Elev. G.S.: 441.403	m	Serial No.: EMS5230	Temp. 3.85	°C	Temp. 5.51	°C			
Height of Westbay above G.S.: 1.299	m AGS	Probe Range: 2000psi	Time 12:35	19-Mar-22	Time 16:08	19-Mar-22			-
Elev. Top of Westbay Casing: 442.702	m	Westbay Casing Type: MP38	MP38 Water Level 66.58	mBTOC	MP38 Water Level 65.88	mBTOC	Specific Weight	9.807	kN/m3
Reference Elevation: 441.403	mASL	Sampler Valve Position: Closed					Gravitational Acceleratic	9.8065	m/s2
Borehole angle: 70°							Patm	98.01	

						Fluid	Pressure Read	dings				Pressure Head	Piezo Level	Z: Elev of pressure		
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (mBGS)	Inside Casing (P1) (psi)	Inside Casing (P1) (kPa)	Outside Casing (P2) (psi)	Outside Casing (P2) (kPa)	Time (H:M:S)	Probe Temp. (°C)	Inside Casing (P1) (psi)	Inside Casing (P1) (kPa)	Outside Port (m) H=(P2- Patm)/w	Outside Port (m) Dz = Dp-H	measurement port (mASL)	Freshwater Head (mASL)	Comments
1	966.8		888.57	n/a	8469.59	n/a	8638.46	13:24:00	12.95	n/a	8470.09	870.85	17.72	-447.17	423.69	
2	943.9		868.28	n/a	8264.62	n/a	8265.79	13:35:00	13.01	n/a	8264.67	832.85	35.43	-426.88	405.98	Interval being pumped by NWMO for sampling. Re-landed to verify interval pressure (8265.19kPa)
3	924.0		850.53	n/a	8085.72	n/a	8230.11	13:40:00	12.93	n/a	8085.77	829.21	21.32	-409.13	420.09	
4	882.8		813.57	n/a	7711.07	n/a	7932.42	13:45:00	12.66	n/a	7711.02	798.86	14.71	-372.17	426.69	
5	859.9		792.89	n/a	7501.32	n/a	7702.15	13:51:00	12.38	n/a	7501.38	775.38	17.51	-351.49	423.89	
6	794.3		733.26	n/a	6896.06	n/a	7129.15	13:59:00	11.92	n/a	6896.10	716.95		-291.86	425.09	
7	752.8		695.28	n/a	6510.94	n/a	6728.33	14:04:00	11.57	n/a	6511.06	676.08		-253.88	422.20	
8	676.0		624.50	n/a	5793.25	n/a	6044.18	14:17:00	10.65	n/a	5793.76	606.32		-183.10	423.22	
9	637.8		589.28	n/a	5436.92	n/a	5692.03	14:23:00	10.38	n/a	5436.46			-147.88	422.53	
10	015.4		566.78	n/a	5208.53	n/a	5451.57	14:26:00	10.18	n/a	5208.67	545.89		-125.38		Verified by MdK
11	567.7		524.65	n/a	4781.26	n/a	5044.58	14:32:00	9.83	n/a	4781.41			-83.25		
12	-		502.91	n/a	4561.90	n/a	4848.13	14:35:00	9.59	n/a	4562.04			-61.51	422.85	
13			467.93	n/a	4207.22	n/a	4510.68	14:40:00	9.28	n/a	4207.30			-26.53		
14			430.90	n/a	3831.90	n/a	4180.13	14:44:00	8.88	n/a	3832.06		2	10.50		
15			389.63	n/a	3415.19	n/a	3777.32	14:49:00	8.48	n/a	3415.36			51.77		
16	370.3		342.83	n/a	2941.75	n/a	3318.85	14:54:00	8.04	n/a	2941.55	328.42	14.41	98.57	427.00	
17	321.0		297.42	n/a	2482.88	n/a	2872.87	15:41:00	6.65	n/a	2482.09	282.95	14.47	143.98	426.93	Unable to get proper reading, issue with shoe, brought probe to surface to inspect and replace then continued profile
18			232.90	n/a	1831.67	n/a	2246.24	13:47:00	6.72	n/a	1831.58	219.05		208.50	427.55	
19	228.1		211.75	n/a	1617.92	n/a	2044.48	15:50:00	6.60	n/a	1618.02	198.48		229.65	428.13	
20	165.7		154.03	n/a	1036.98	n/a	1484.85	15:55:00	6.16	n/a	1036.79	141.41	12.62	287.37	428.79	
21	73.0		68.16	n/a	180.90	n/a	681.85	16:01:00	5.66	n/a	181.23	59.53	8.63	373.24	432.78	
]	1					1				

Completed by: AMSC Verified by: CAM

																6
		IG_BH05							Pofile		-	Post Pofile		Weather:		°C
		Ground Surfac			Probe Type:					kPa	Patm		kPa		sunny & windy	<u> </u>
	Elev. G.S.:		m		Serial No.:			Temp.		°C	Temp. 5.64 °C					
Height of West			m AGS		Probe Range:				me 8:30 21-Mar-22 Time 11:40 21-Mar-22							
Elev. Top of W			m		tbay Casing Type:		M	IP38 Water Level	29.38	mBTOC	MP38 Water Level	30.06	mBTOC		9.807	kN/m3
	ence Elevation:		mASL	Sampl	er Valve Position:	Closed								Gravitational Acceleratic		m/s2
B	orehole angle:	700												Patm	98.95	
L														1		
Notes:																
						Fluid	d Pressure Read	lings				Pressure Head	Piezo Level	Z: Elev of pressure		
1		Port Position	True Port	Inside Casing	Inside Casing	Outside Casing	Outside		Probe Temp.	Inside Casing	Inside Casing (P1)	Outside Port	Outside Port	measurement port	Freshwater	Comments
1	Port Position	From Cable	Depth "Dp"	(P1) (psi)	(P1) (kPa)	(P2) (psi)	Casing (P2)	Time (H:M:S)	(°C)	(P1) (psi)	(kPa)	(m) H=(P2-	(m) Dz = Dp-H	(mASL)	Head (mASL)	comments
Port No.	From Log (m)	(m)	(m)	(r 1) (h2i)		(F2) (P3i)	(kPa)			(LT) (h2)		Patm)/w		. ,		
1	991.2		923.15	n/a	9000.99	n/a	9068.26	9:15:00	12.88	n/a	9000.17	914.58	8.57		423.72	
2	974.3		907.47	n/a	8845.16	n/a	8899.54	9:20:00	13.22	n/a	8845.11	897.38	10.09	-475.18	422.20	
3	928.6		865.06	n/a	8422.66	n/a	8516.10	9:25:00	13.12	n/a	8422.76	858.28	6.78	-432.77	425.51	
4	865.5		806.50	n/a	7839.89	n/a	7936.99	9:33:00	12.54	n/a	7839.62	799.23	7.27	-374.21	425.02	
5	857.2		798.79	n/a	7762.73	n/a	7789.62	9:37:00	12.42	n/a	7762.84	784.20	14.59	-366.50	417.70	
			746.43													Re-checked values to confirm. Likely influenced by INT007
6	800.8			n/a	7241.90	n/a	7232.98	9:46:00	11.79	n/a	7241.64	727.44	18.99	-314.14		being purged
7	788.0		734.54	n/a	7122.43	n/a	7122.18	9:53:00	11.63	n/a	7122.49	716.15	18.39	-302.25		Interval being purged
8	736.2		686.45	n/a	6643.18	n/a	6683.67	9:59:00	11.36	n/a	6642.93	671.43	15.02	-254.16		Verified by MdK
9	679.8		634.09	n/a	6122.41	n/a	6160.37	10:05:00	10.89	n/a	6122.56	618.07	16.02	-201.80	416.27	
10	635.0		592.48	n/a	5709.65	n/a	5776.51	10:10:00	10.46	n/a	5709.41	578.93	13.55	-160.19	418.74	
11	627.3		585.33	n/a	5638.43	n/a	5675.67	10:14:00	10.21	n/a	5638.56	568.65	16.68	-153.04	415.61	
12		1	548.51	n/a	5272.91	n/a	5334.83	10:18:00	9.90	n/a	5272.95	533.89	14.62	-116.22	417.67	
13			505.99	n/a	4851.25	n/a	4926.12	10:23:00	9.55	n/a	4851.01	492.22	13.77	-73.70	418.52	
14			454.95	n/a	4344.38	n/a	4405.82	10:28:00	9.07	n/a	4344.39	439.16	15.79	-22.66	416.50	
15			399.56	n/a	3795.51	n/a	3823.35	10:33:00	8.56	n/a	3795.75	379.77	19.79		412.50	
16			348.37	n/a	3288.49	n/a	3326.60	10:48:00	7.50	n/a	3288.49	329.12	19.25	83.92	413.04	
17			305.20	n/a	2860.46	n/a	2917.50	10:54:00	7.27	n/a	2860.63	287.40	17.80	127.09	414.49	
18			292.42	n/a	2733.59	n/a	2786.19	10:57:00	7.19	n/a	2733.77	274.01	18.41	139.87	413.88	
19			246.98	n/a	2283.39	n/a	2341.04	11:01:00	6.84	n/a	2283.48	228.62	18.36	185.31	413.93	
20			211.41	n/a	1931.51	n/a	1991.10	11:05:00	6.52	n/a	1931.45	192.94	18.47	220.88	413.82	
21			168.82	n/a	1509.41	n/a	1568.49	11:14:00	6.04	n/a	1509.51	149.85	18.97	263.47	413.32	
22			145.94	n/a	1283.22	n/a	1366.28	11:17:00	5.88	n/a	1283.32	129.23	16.71	286.35	415.58	
23			93.69	n/a	765.22	n/a	856.72	11:27:00	5.44	n/a	765.32	77.27	16.42	338.60	415.87	
24	90.9		85.09	n/a	680.37	n/a	786.62	11:30:00	5.40	n/a	680.48	70.12	14.97	347.20	417.32	
25	70.5		66.00	n/a	492.00	n/a	604.75	11:33:00	5.37	n/a	491.89	51.58	14.42	366.29	417.87	

Completed by:	AMSC	Verified by:	CAM	
Date:	05-May-22	Date:	06-May-22	

Well ID:	IG_BH01	Multiparameter Probe:	Horiba U52 (SN. UG3N4PTO)	Other Notes/Comments
Date(s):	24 Mar - 27 Mar 2022	Fluorometer:	AquaFluor (SN.801434)	
Operator(s):	AMSC, MdK	Colorimeter:	DR900 (SN. 181720001030)	

	7					Multipa	rameter Pro	obe			F	luorometer	Hydrometer		Co	olorimetric		Alka	linity	p∈	
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sample Collected (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH01_IN T_T_004	12	2022-03-24 10:18	Y	6.48	3.58	16.1	235	1.65	22.7	10.0	Y	13.52	1.017				-			N	Parameters collected during purging using bladder pump placed at 85 mBTOC
IG_BH01_IN T_T_004	30	2022-03-24 12:05	Y	8.51	6.87	19.0	101	0.00	9.3	11.8	Y	11.37	1.018							N	Parameters collected during purging using bladder pump placed at 85 mBTOC
IG_BH01_IN T_T_004	38	2022-03-24 12:45	Y	8.72	6.50	19.4	73	0.00	5.7	12.0	Y	12.54								Ν	Parameters collected during purging using bladder pump placed at 85 mBTOC
IG_BH01_IN T_T_004	52	2022-03-24 14:20	Y	8.80	7.36	19.2	73	0.00	4.4	11.9	Y	11.33	1.015				-			N	Parameters collected during purging using bladder pump placed at 85 mBTOC
IG_BH01_IN T_T_004	62	2022-03-24 15:45	Y	8.76	7.40	19.1	103	0.00	6.3	11.8	Y	12.36	1.015							Ν	Parameters collected during purging using bladder pump placed at 85 mBTOC
IG_BH01_IN T_T_004		2022-03-26 14:45	Y	5.87	5.50	21.3	231	0.00	59.7	13.3	Y	5.665	1.017	Y	0.162	1.18	0.03	0	11	Y	Parameters and field analyses collected from Run#1 during sampling.
IG_BH01_IN T_T_004		2022-03-26 15:00	Y	6.25	5.44	21.7	148	0.00	44.5	13.5										Y	Parameters collected from sample water in measuring cup after 15 mins.
IG_BH01_IN T_T_004		2022-03-26 15:15	Y	6.95	6.36	21.4	43	0.00	27.6	13.3							Y	Parameters collected from sample water in measuring cup after 30 mins.			
IG_BH01_IN T_T_004		2022-03-26 15:35	Υ	7.15	6.81	21.6	15	0.00	14.9	13.3							Y	Parameters collected from sample water in measuring cup after 50 mins.			
IG_BH01_IN T_T_004		2022-03-27 14:15									Y	8.554								Y	Collected during sampling from Run #6

Completed by:	AMSC	Verified by:	SNS
Date:	27-Mar-22	Date:	02-Apr-22

Well ID: MP38 Water Level Before Sampl	ina:			31		IG_BH0 26)/31	1 .11 (Mar	27)			Start T Startin		ure	13:15 98.38 (Mar 26) / 98.82 (Mar 27) kPa		Other N	lotes/Comments:	IG_BH01_GW0	1 32 - Primary Sample
MP38 Water Level After Samplin	0					,	.77 (Mar	,				ampling Time		14:30	,					
Probe Serial #/Range	9.			01		185230/2		2.)				Ambient Pressu	ro	98.66 (Mar 26) / 99.42 (Mar 27) kPo					
ç										κγα	Lunuing	Ambient Fressu		90.00 (Mai 20)/ 99.42 (Mai 27) кга					
Date:					26-2	?7 - Mar -	-2022													
				Funct	ion Tes	ts/Prep	aration							Sampling Sequence						
Sampling Run Start Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post- sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
13:55	IG_BH01_INT _T_004	1	x	x	x	x	x	x	x	7637.74	N/A	N/A	x	150	N/A	x	N/A	7625.40	14:40	Sample collected from inside MP38 casing, at 782mBHA. Run #1 used to collect field parameters and analytical measurements, Ru, SiO2, ammonia and nutreints.
15:15	IG_BH01_INT _T_004	2	x	x	x	x	x	x	x	7611.02	N/A	N/A	x	80	N/A	x	N/A	7609.26	15:48	Sample collected from inside MP38 casing, at 782mBHA. Run #2 used to collect noble gas samples.
16:23	IG_BH01_INT _T_004	3	x	x	x	x	x	x	x	7617.04	N/A	N/A	x	150	N/A	x	N/A	7605.22		Sample collected from inside MP38 casing, at 782mBHA. Run #3 used to collect archive and 18O/2H/3H samples
10:56	IG_BH01_INT _T_004	4	x	x	x	x	x	x	x	7640.51	N/A	N/A	x	160	N/A	x	N/A	7628.49	11:30	Sample collected from inside MP38 casing, at 782mBHA. Run #4 used to collect 14C, 13C, DOC and gen chem samples
12:20	IG_BH01_INT _T_004	5	x	x	x	x	x	x	x	7624.90	N/A	N/A	x	165	N/A	x	N/A	7612.98		Sample collected from inside MP38 casing, at 782mBHA. Run #5 used to collect archive 129I/36Cl, sulphide and metals samples
13:41	IG_BH01_INT _T_004	6	x	x	x	x	x	x	x	7613.74	N/A	N/A	x	150	N/A	x	N/A	7602.62	14:15	Sample collected from inside MP38 casing, at 782mBHA. Run #6 used to collect 87Sr/86Sr, 37Cl samples and fluorescein measurement

Note: Record field parameter measurements on 20-203-01: Field Parameter Measurement/Testing - Field Data Sheet

Completed by:	MdK/AMSC	Verified by:	SNS
Date:	27-Mar-22	Date:	02-Apr-22

Well ID: Date(s): Operator(s):			_ ar - 2	BH03 3 Mar 2022 C, MdK		Multiparame Fluorometer Colorimeter			ŀ	iba U52 (SN AquaFluor (S 1900 (SN. 18	SN.8	01434)				Other Notes	s/Comments				
	73					Multipa	rameter Pro	obe			F	luorometer	Hydrometer		Co	olorimetric		Alka	alinity	þ	
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sample Collected (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH03_IN T_T_002	7	2022-03-20 12:50	Y	7.72	6.83	5.95	110	2.97	20.7	3.75	Y	27.02	1.001							N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH03_IN T_T_002	12	2022-03-20 13:50	Y	8.63	6.73	7.00	67	2.04	19.1	4.41	Y	19.19	1.001	I N using bladder pump 85mBTOC			Parameters collected during purging using bladder pump placed at 85mBTOC				
IG_BH03_IN T_T_002	17	2022-03-20 14:45	Y	9.28	5.3	7.89	11	1.81	27.5	4.97	Y	18.95								N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH03_IN T_T_002	20	2022-03-20 15:50	Y	9.17	5.46	7.71	45	2.17	23.8	4.86	Y	18.49	1.002							N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH03_IN T_T_002		2022-03-22 14:00	Y	6.57	3.60	0.039	-13	0.00	368	0.025	Y	5.502	1.035	Y	>1.0	1.29	0.48		74	Y	Parameters and field analyses collected from Run#1 during sampling. Multiparameter probe not very reliable as the seal of the flow through cell failed. Sample water transferred to measuring cup.
IG_BH03_IN T_T_002		2022-03-22 14:30	Y	6.97	5.71	41.2	-83	2.83	45.8	25.1										Y	Parameters collected from sample water in measuring cup after 30 mins. Note that the use of the cup rather than the flow-through cell may affect redox sensitive parameters (DO, ORP, TDS)
IG_BH03_IN T_T_002		2022-03-23 13:30									Y	5.94								Y	Collected from Run #5 during sampling.
Completed by		AMSC		Verified by:		SN	IS					1						<u> </u>		<u> </u>	

Completed by:	AMSC	Verified by:	SNS
Date:	23-Mar-22	Date:	02-Apr-22

Well ID: MP38 Water Leve MP38 Water Leve Probe Serial #/Ra Date:	el After Samplin	0			.43 (Mar .64 (Mar EM	,	.66 (Mar .61 (Mar 2000	,		m BTOC m BTOC	End S	ïme g Ambient Pressu ampling Time g Ambient Pressu		11:25 97.56 (Mar 22) / 97.07 (Mar 23) 16:35 98.42 (Mar 22)/ 98.46 (Mar 23)	Mar 23 2022		Other		 IG_BH03_GW0	9 13 - Primary Sample 9 14 - Rinsate Sample 9 15 - Field Blank Sample
Sampling Run Start Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	ts/Prep Oben Valve	Evacuate Bottles uo (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Sampling Sequence Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post-sample, kPa)	Time	Comments (volume recovered, parameters measured, samples collected, etc)
12:33	IG_BH03_INT_ T_002	1	x	x	x	x	x	x	x	8274.22	N/A	N/A	x	105	N/A	x	N/A	8266.47	13:33	Sample collected from inside MP38 casing, at 942mBHA. Run #1 used to collect field parameters and field analytical measurements
14:49	IG_BH03_INT_ T_002	2	x	x	x	x	x	x	x	8261.68	N/A	N/A	x	140	N/A	x	N/A	8259.29	15:44	Sample collected from inside MP38 casing, at 942mBHA. Run #2 used to collect noble gas samples and general chemistry sample.
17:57	IG_BH03_INT_ T_002	3	x	x	x	x	x	x	x	8270.00	N/A	N/A	x	110	N/A	x	N/A	8262.16	18:48	Sample collected from inside MP38 casing, at 942mBHA. Run #3 used to collect remainder of BVL sample suite (Ammonia, Nutrients, DOC, Sulphide, SiO2, Ru and metals)
11:02	IG_BH03_INT_ T_002	4	x	x	x	x	x	x	х	8280.95	N/A	N/A	x	120	N/A	x	N/A	8273.00		Sample collected from inside MP38 casing, at 942mBHA. Run #4 used to collect 18O/2H/3H sample.
12:38	IG_BH03_INT_ T_002	5	x	x	x	x	x	x	x	8273.40	N/A	N/A	x	110	N/A	x	N/A	8265.55	13:25	Sample collected from inside MP38 casing, at 942mBHA. Run #5 used to collect 14C, 13C, archive samples and fluorescein measurement.
14:18	IG_BH03_INT_ T_002	6	x	x	х	x	x	x	х	8266.77	N/A	N/A	x	105	N/A	x	N/A	8258.70		Sample collected from inside MP38 casing, at 942mBHA. Run #6 used to collect 129I/36CI sample.
15:52	IG_BH03_INT_ T_002	7	x	x	x	x	x	x	x	8259.96	N/A	N/A	x	110	N/A	x	N/A	8252.05		Sample collected from inside MP38 casing, at 942mBHA. Run #7 used to colect 87Sr/86Sr and 37Cl samples.

Note: Record field parameter measurements on 20-203-01: Field Parameter Measurement/Testing - Field Data Sheet

Completed by:	MdK/AMSC	Verified by:	SNS
Date:	23-Mar-22	Date:	02-Apr-22

Well ID:	IG_BH05	Multiparameter Probe:	Horiba U52 (SN. UG3N4PTO)	Other Notes/Comments
Date(s):	21 Mar - 25 Mar 2022	Fluorometer:	AquaFluor (SN.801434)	
Operator(s):	AMSC, MdK	Colorimeter:	DR900 (SN. 181720001030)	

	q					Multipa	rameter P	robe			F	uorometer	Hydrometer			Colorimetric		Alka	linity	cted	
Port ID	Cumulative Purge/Sample Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	e Colle (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH05_IN T_T_007	12	2022-03-21 12:38	Y	7.60	6.16	1.53	198	12.31	8.6	0.982	Y	92.91	1.005	N/A						N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH05_IN T_T_007	20	2022-03-21 13:20	Y	8.26	5.84	0.241	182	0.49	7.3	0.157	Y	98.88	1.003	N/A						N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH05_IN T_T_007	30	2022-03-21 14:10	Y	8.68	6.41	0.219	158	0.72	7.4	0.142	Y	97.98	1.006	N/A						N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH05_IN T_T_007	50	2022-03-21 15:40	Y	8.74	6.63	0.276	176	1.42	6.9	0.180	Y	93.08	1.006	N/A						N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH05_IN T_T_007	55	2022-03-21 16:55	Y	8.20	7.12	0.292	182	1.40	6.9	0.190	Y	89.84		N/A						N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH05_IN T_T_007		2022-03-21 17:30	Y	8.09	7.13	0.291	185	1.68	6.8	0.189	Y	94.54	1.005	N/A						N	Parameters collected during purging using bladder pump placed at 85mBTOC
IG_BH05_IN T_T_007		2022-03-25 10:00	Y	6.11	5.72	5.55	-21	0.00	11.2	3.49	Y	37.79	1.005	Y	>1.0	2.85	0.05	0	206	Y	Parameters and field analyses collected from Run#1 during sampling.
IG_BH05_IN T_T_007		2022-03-25 10:35	Y	6.73	5.99	5.54	-67	0.00	7.8	3.49	N/A			N/A						N	Parameters collected after keeping Horiba in sample for 35 minutes

Completed by:	AMSC, MdK	Verified by:	SNS
Date:	Mar 21-25, 2022	Date:	02-Apr-22

Vell ID:	IG_BH05		Start Time	8:45
MP38 Water Level Before Sampling:	30.28 (Mar 25) / 31.49 (Mar 26)	m BTOC	Starting Ambient Pressure	96.63 (Mar 25) / 97.93 (Mar 26) kPa
MP38 Water Level After Sampling:	34.76 (Mar 25) / 32.68 (Mar 26)	m BTOC	End Sampling Time	11:30
Probe Serial #/Range	EMS5230/2000	kPa	Ending Ambient Pressure	97.08 (Mar 25) / 98.77 (Mar 26) kPa
Date:	25-26 Mar 2022			

			F	unctio	n Tes	ts/Pre	paratio	on						Sampling Sequence						
Sampling Run Start Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post-sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post-sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
9:15	IG_BH05_INT_ T_007	1	x	x	x	x	x	x	x	7134.77	N/A	N/A	x	110	N/A	x	N/A	7126.39	9:50	Sample collected from inside MP38 casing, at 788mBHA. Run #1 used to collect field parameters and field analytical measurements
10:30	IG_BH05_INT_ T_007	2	x	x	x	x	x	x	x	7128.39	N/A	N/A	x	100	N/A	x	N/A	7119.70	11:10	Sample collected from inside MP38 casing, at 788mBHA. Run #2 used to collect 87/86Sr and 37Cl
11:54	IG_BH05_INT_ T_007	3	x	x	x	x	x	x	х	7118.22	N/A	N/A	x	110	N/A		N/A	7109.72	12:30	Sample collected from inside MP38 casing, at 788mBHA. Run #3 used to collect 14C, 13C and metals
13:15	IG_BH05_INT_ T_007	4	x	x	x	x	x	x	x	7108.93	N/A	N/A	x	120	N/A	x	N/A	7100.49	13:50	Sample collected from inside MP38 casing, at 788mBHA. Run #4 used to collect 18O/2H/3H
14:37	IG_BH05_INT_ T_007	5	x	х	x	x	x	x	x	7093.60	N/A	N/A	x	120	N/A	x	N/A	7092.94	15:13	Sample collected from inside MP38 casing, at 788mBHA. Run #5 used to collect noble gas and SiO2
15:46	IG_BH05_INT_ T_007	6	x	x	x	x	x	x	х	7103.61	N/A	N/A	x	100	N/A	x	N/A	7095.60	16:20	Sample collected from inside MP38 casing, at 788mBHA. Run #6 used to collect 129I/36CI
10:23	IG_BH05_INT_ T_007	7	x	x	x	x	x	x	x	7131.80	N/A	N/A	x	150	N/A	x	N/A	7120.75	11:00	Sample collected from inside MP38 casing, at 788mBHA. Run #7 used to collect gen chem, sulphide, DOC and archive.

Note: Record field parameter measurements on 20-203-01: Field Parameter Measurement/Testing - Field Data Sheet

Completed by:	AMSC, MdK	Verified by:	SNS
Date:	26-Mar-22	Date:	02-Apr-22

			Shi	pping Informa	tion			Receiving				
COC Number/ID	Sample ID(s)	Shipped Date	Shipped Time	Temp. Shipped (deg C)	COC Signed by Geofirma (Y/N)	Shipping Address	Shipping Method	Received Date	Received Time	Temp Received (deg C)	COC Signed By Receiving Lab (Y/N)	Comments
GFIM_BVL_0005	IG_BH03_GW013, IG_BH03_GW014	23-Mar-22	7:00	<10	Y	946 Cobalt Crescent, Thunder Bay, ON P7B 5W3	Courier	24-Mar-22	13:44	3,2,2	Y	
GFIM_BVL_0006	IG_BH01_GW032, IG_BH05_GW001	28-Mar-22	7:30	<10	Y	946 Cobalt Crescent, Thunder Bay, ON P7B 5W3	Courier	29-Mar-22	16:26	1,2,1	Y	
GFIM_IT2_0004	IG_BH03_GW013, IG_BH03_GW015, IG_BH01_GW032, IG_BH05_GW001	28-Mar-22	7:30	<10	V	608 Weber St. North, Unit 3, Waterloo ON N2V 1K4	Courier	31-Mar-22			Y	
GFIM_NWMO_0004	IG_BH03_GW013, IG_BH01_GW032, IG_BH05_GW001	28-Mar-22	7:30	<10	Y	304 Main St., Ignace ON P0T 1T0	Hand delivered	28-Mar-22	7:30	<10	Y	
GFIM_UofO_0004	IG_BH03_GW013, IG_BH01_GW032, IG_BH05_GW001	06-Apr-22	15:00	<10		25 Templeton St., Ottawa ON	Hand delivered	06-Apr-22	15:30		Y	
		1										

Completed by:	AMSC	Verified by:	САМ
Date:	06-Apr-22	Date:	06-May-22

Laboratory Report Date	19-Apr-22
Laboratory Name	Bureau Veritas Laboratory
Laboratory Report ID (If applicable)	C279306, C283100
Analyses Completed	Major and Trace Elements and Metals; Total dissolved sulphur; Total dissolved iron; Reactive silica; Sulphide; Anions; pH; Alkalinity; Fluoride; TIC; TOC; DOC; TKN; Total Phosphorus; Total Ammonia; Total Nitrogen; Carbonate, Bicarbonate and Hydroxide
Associated COC #(s)	GFIM_BVL_0005, GFIM_BVL_0006

Samples Included in Laboratory Report

IG_BH03_GW013, IG_BH03_GW014, IG_BH01_GW032, IG_BH05_GW001

Quality Check and Verification	Verified By (Initials)	Comments
Results received from laboratory	AMSC	
All samples were tested or accounted for. Justification provided for any untested samples (e.g. spare sample)	AMSC	
Laboratory data report provided with results	AMSC	
Laboratory testing methods/techniques included in data report	AMSC	
Laboratory QA procedures and equipment calibration included in data report	AMSC	
Laboratory results are within reasonable/expected range	AMSC	DOC and TOC for sample IG_BH05_GW001 and IG_BH03_GW013 seem a bit high, Geofirma reached out to BV re-run the analyses, and it the original values reported were confirmed.

Other Comments/Notes:

RDL for metals on samples IG_BH01_GW032 and IG_BH03_GW013 are higher than what is normally reported. Geofirma has reached out to the lab to verify the reasoning behind this or if it was mis-reported. Lab confirmed the raised RDLs were due to elevated concentrations of Ca, Na and Sr.

Note: A copy of this form is to be complete for each laboratory data report that is received by Geofirma

Completed by:	AMSC	Verified by:	CAM
Date:	04-May-22	Date:	06-May-22

Template Revision: R0

Laboratory Report Date	2022-07-04, 2022-09-20
Laboratory Name	University of Ottawa (Radiohalides Laboratory)
Laboratory Report ID (If applicable)	20220704
Analyses Completed	129-I, 36-CI
Associated COC #(s)	GFIM_UofO_0004

Associated COC #(s)

Samples Included in Laboratory Report

IG_BH03_GW013, IG_BH01_GW032, IG_BH05_GW001

Quality Check and Verification	Verified By (Initials)	Comments
Results received from laboratory	AMSC	
All samples were tested or accounted for. Justification provided for any untested samples (e.g. spare sample)	AMSC	
Laboratory data report provided with results	AMSC	
Laboratory testing methods/techniques included in data report	AMSC	
Laboratory QA procedures and equipment calibration included in data report	AMSC	
Laboratory results are within reasonable/expected range	AMSC	

Other Comments/Notes:

Received orginal lab report for 129-I on July 4 2022, requested the lab re-issue the report to adjust the reporting units to atoms/g to keep it consistent with previous reports. Geofirma received revised lab report on October 28, 2022.

Received lab report for 36-Cl on September 20, 2022.

Completed by:	AMSC	Verified by:	CAM
Date:	2022-07-08 / 2022-10-31	Date:	21-Jul-22

Laboratory Report Date	2022-10-26 / 2023-03-30
Laboratory Name	University of Ottawa - Noble Gases Laboratory
Laboratory Report ID (If applicable)	n/a
Analyses Completed	Noble gases (He, Ne, Ar, Kr, Xe)
Associated COC #(s)	GFIM_UofO_0004

Samples Included in Laboratory Report

IG_BH03_GW013, IG_BH01_GW032, IG_BH05_GW001

Quality Check and Verification	Verified By (Initials)	Comments
Results received from laboratory	AMSC	
All samples were tested or accounted for. Justification provided for any untested samples (e.g. spare sample)	AMSC	
Laboratory data report provided with results	AMSC	
Laboratory testing methods/techniques included in data report	AMSC	
Laboratory QA procedures and equipment calibration included in data report	AMSC	
Laboratory results are within reasonable/expected range	AMSC	

Other Comments/Notes:

Note: Previous reports included 21Ne results, going forward only 20 and 22 Ne will be reported.

Received revised noble gas report, including the missing Ar ratios. [30-Mar-2023]

Completed by:	AMSC	Verified by:	SNS
Date:	2022-11-03 / 2023-04-04	Date:	04-Nov-22

Laboratory Report Date	08-Aug-22
Laboratory Name	Isotope Tracer Technologies Inc. (IT2)
Laboratory Report ID (If applicable)	220158
Analyses Completed	18-O, 2-H, 3-H, 87-Sr/86-Sr, 37-Cl, 13-C, 14-C
Associated COC #(s)	GFIM_IT2_0004

Samples Included in Laboratory Report

IG_BH03_GW013, IG_BH03_GW015, IG_BH01_GW032, IG_BH05_GW001

Quality Check and Verification	Verified By (Initials)	Comments
Results received from laboratory	AMSC	
All samples were tested or accounted for. Justification provided for any untested samples (e.g. spare sample)	AMSC	
Laboratory data report provided with results	AMSC	
Laboratory testing methods/techniques included in data report	AMSC	
Laboratory QA procedures and equipment calibration included in data report	AMSC	
Laboratory results are within reasonable/expected range	AMSC	

	Other	Comments/Notes:
--	-------	-----------------

Completed by:	AMSC	Verified by:	SNS
Date:	30-Sep-22	Date:	04-Nov-22

2022 Q2 (June) Data Quality Workbook (DQC)

20-203-1: Decontamination Record Form

Borehole ID:	BH01, BH03, BH05, BH06	Comments:
Date:	May 27 - June 06 2022	
Completed by:	AMSC, TKG	
Sampling Interval:	IG_BH01_T_INT_004, IG_BH03_T_INT_002, IG_BH05_T_INT_007	

						Decontam	ination Procedu	ıre		
Equipment	Date/Time	Decontamination Required (Y/N)	Location	PPE	Loose Contamination Removed	Detergent Wash (record type of detergent used)	Dionized Water Rinse	Air Dried (Minimize Dust)	Rinsate Sample Collected (Y/N)	Comments
Electronic Water Level Tape	2022-05-27 10:20	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-05-27 10:20	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-05-27 13:45	Y	IG_BH06	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-05-27 13:45	Y	IG_BH06	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-05-28 8:45	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
Solinst double valve pump	2022-05-28 9:00	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-05-29 9:45	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
Westbay sample bottles x 6	2022-05-29 9:50	Y	IG_BH05	Y	Y	Alconox	Y	Y	Y	Rinsate sample collected: IG BH05 GW003
Electronic Water Level Tape	2022-05-30 14:30	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-05-30 14:40	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-05-31 9:15	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-05-31 9:15	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
Solinst double valve pump	2022-05-31 12:30	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-06-01 8:45	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-06-01 8:50	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
Solinst double valve pump	2022-06-01 9:35	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-06-02 9:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-06-02 9:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
Westbay sample bottles x 6	2022-06-02 9:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-06-04 11:30	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-06-04 11:30	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
Westbay sample bottles x 6	2022-06-04 11:30	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-06-06 15:30	Y	IG_BH01	Y	Y	None	Y	Y	Ν	DI rinsed after sampling before returning to NWMO
Westbay sample bottles x 6	2022-06-06 13:30	Y	IG_BH01	Y	Y	None	Y	Y	Ν	DI rinsed after sampling before returning to NWMO

Completed by:	AMSC	Verified by:	MdK
Date:	06-Jun-22	Date:	12-Jul-22

Date	Time	Personnel	Equipment Type	Serial Number	Check Method & Standard(s) Used	Equipment Reading(s)	Calibration Required (Y/N)	Calibration Method & Standard(s) Used	Equipment Reading(s)	Calibration Completed (Y/N)	Comments
27-May-22	10:30	AMSC	MOSDAX Probe	EMS4960	Manual WL/P vs. Probe P	Manual P (anticipated) = 276.72 KPa; Probe P (measured) =288.32 Kpa	N	-	-	-	
28-May-22	9:15	AMSC	Fluorometer	807537	-	-	1	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 9.990ppb, 99.61ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Ja 2023
28-May-22	9:20	AMSC	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 7.01, 10.01	I	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	4.00pH, 4.49mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470, Exp. Oct 2022), pH 10.0 (LOT# 0GJ821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
29-May-22	7:15	AMSC	Fluorometer	807537	-	-	I	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 9.967ppb, 99.82ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Ja 2023
29-May-22	7:15	TKG	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 7.00, 10.00	-	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	4.00pH, 4.51mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470, Exp. Oct 2022), pH 10.0 (LOT# 0GJ821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
29-May-22	7:30	AMSC	DR900	200660001027	S20nm: Blank: 0.00 Std 1: 0.558 ± 0.05 p Std 2: 1.141 ± 0.10 Std 3: 1.741 ± 0.15 Blank: 0.00	520nm: Blank: 0.00 Std 1: 0.588 Std 2: 1.174 Std 3: 1.782 610nm: Blank: 0.00	N	-	-	-	Cal checked using DR900 absorbance check kit (SN.2763900).
					Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	Std 1: 0.588 Std 2: 1.162 Std 3: 1.779	N	-	-	-	
30-May-22	7:15	AMSC	Fluorometer	807537		-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 9.901ppb, 99.63ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Ja 2023
30-May-22	7:20	AMSC	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 7.00, 10.00	-	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	3.99pH, 4.49mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470, Exp. Oct 2022), pH 10.0 (LOT# 0GJ821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
31-May-22	12:15	AMSC	Fluorometer	807537	-	-	I	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 10.03ppb, 99.57ppb	Y	Calibrated using tumer design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Ja 2023
31-May-22	12:05	AMSC	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 7.00, 10.01	-	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	3.99pH, 4.49mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470, Exp. Oct 2022), pH 10.0 (LOT# 0GJ821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
01-Jun-22	9:15	AMSC	Fluorometer	807537	-	-	1	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 9.963ppb, 99.41ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Ja 2023
01-Jun-22	9:25	AMSC	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 7.00, 10.00	-	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	3.99pH, 4.52mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470, Exp. Oct 2022), pH 10.0 (LOT# 0GJ821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
02-Jun-22	7:20	AMSC	Fluorometer	807537		-	I	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 9.908ppb, 99.81ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Ja 2023
02-Jun-22	7:30	AMSC	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 7.00, 10.00	I	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	4.00pH, 4.49mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470, Exp. Oct 2022), pH 10.0 (LOT# 0GJ821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
02-Jun-22	7:45	AMSC	DR900	200660001027	520nm: Blank: 0.00 Std 1: 0.558 ± 0.05 Std 2: 1.141 ± 0.10 Std 3: 1.741 ± 0.15 610nm:	520nm: Blank: 0.00 Std 1: 0.583 Std 2: 1.163 Std 3: 1.787 610nm:	N	-	-	-	Cal checked using DR900 absorbance check kit (SN.2763900).
					P Blank: 0.00 Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	Blank: 0.00 Std 1: 0.577 Std 2: 1.152 Std 3: 1.766	N	-	-	-	(UKE) (USU).
04-Jun-22	7:15	AMSC	Fluorometer	807537	-		-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 10.01ppb, 99.66ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Ja 2023
04-Jun-22	7:30	AMSC	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	4.00, 7.00, 10.02	1	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	4.00pH, 4.50mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470, Exp. Oct 2022), pH 10.0 (LOT# 0GJ821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
					520nm: Blank: 0.00 5 Std 1: 0.558 ± 0.05 L Std 2: 1.141 ± 0.10 Ø Std 3: 1.741 ± 0.15	520nm: Blank: 0.00 Std 1: 0.585 Std 2: 1.163 Std 3: 1.779	N	-	-	-	Cal checked using DR900 absorbance check kit
04-Jun-22	7:25	AMSC	DR900	200660001027	610nm: Blank: 0.00 Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	610nm: Blank: 0.00 Std 1: 0.589 Std 2: 1.165 Std 3: 1.774	N	-	-	-	(SN.2763900).
06-Jun-22	9:00	AMSC	Fluorometer	807537	-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000ppb, 9.914ppb, 99.54ppb	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0679), 100ppb (LOT# 1F0680) Exp. Jr 2023
06-Jun-22	9:20	AMSC	HoribaU52	40H7XHMF	Lab provided solutions; 4.00, 7.00, 10.00	3.99, 7.00, 10.00	-	Lab-provided auto caliubration solution 4.0 Ph, 4.49mS/cm, 0.0NTU	3.99pH, 4.51mS/cm, 0.0NTU	Y	Calibrated using lab provided solutions: AutoCal (LOT# IG,4770, Exp. Oct 2022), pH 10.0 (LOT# 0G,821, Exp. Oct 2022), pH 7.0 (LOT# 1GF003, Exp. Jun 2023), pH 4.0 (LOT# 1GE539, Exp. May 2023)
Completed		AMSC			Verified bv:	MdK		1			
Completed b	у.	AMSC			venined by:	MGK		1			

Elev. Top of W Refere	Datum: Ground Level Lev. (5.5: 430.562) Probe Type: MOSDAX Patm 94.30 KPa Patm 95.10 KPa Patm Patm 95.10 KPa Patm Patm 95.10 KPa Patm Patm 94.30 KPa Temp. 25.59 °C Patm Patm 92.00 KPa Temp. 25.59 °C Date/Time 2022-05-30 17:03 Patm Patm 94.70 No pot Westbay Casing: 430.562 mASL ampler Valve Position: Closed MP38 Water Level 51.07 mBTOC MP38 Water Level 51.255 mBTOC Specific Weight 9.807 Gravitational Acceleratik 9.8065 Borehole angle: -90												°C in - kN/m3 m/s2			
	Port Position	Port Position From Cable	True Port Depth "Dp" (m	Start Profile Time	Inside Casing (P1- Landed Pressure)	Shoe Out	Fluid Pressure I Outside Casing (P2) (kPa)	Readings Time (H:M:S)	Probe Temp. (°C)	Shoe In	Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2-Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
Port No.	From Log (m)	(m)	BGS)		(kPa)					s	. ,					
1	977.3		976.91	15:34:00	9374.30	х	9623.28	15:35:00	13.70	х	9373.99	971.61	5.30		425.26	
2	888.8		888.49	15:52:00	8492.36	х	8694.91	15:53:00	13.40	х	8492.60	876.95	11.54			paused to adjust winch cable
4	804.4 769.3		804.14 769.06	16:00:00 16:04:00	7648.64 7296.54	x	7850.58	16:01:00 16:05:00	12.62 12.20	x	7648.70 7296.78	790.85	13.29 18.52		417.27 412.04	Interval was being purged by NWMO in preparation for sampling. Pumping port of this interval was closed and has begun to recover.
5	703.1		702.90	16:10:00	6634.71	x	6808.07	16:12:00	11.48	x	6634.86	684.55	18.35	-272.33	412.21	
6	649.8		649.62	16:15:00	6102.42	x	6280.52	16:16:00	11.04	x	6102.44	630.76	18.87	-219.06	411.70	
7	628.4		628.23	16:18:00	5888.89	x	6062.37	16:19:00	10.75	x	5888.04	608.51	19.72	-197.67	410.84	verified by TKG
8	574.4		574.26	16:27:00	5347.32	х	5539.83	16:28:00	9.95	х	5347.75	555.23	19.03	-143.70	411.53	
9	540.2		540.07	16:29:00	5004.20	х	5199.95	16:30:00	9.79	х	5004.89	520.57	19.50	-109.51	411.06	
10			517.28	16:32:00	4775.61	х	4988.72	16:33:00	9.57	х	4775.88	499.03	18.25	-86.72	412.31	
11			492.89	16:34:00	4531.40	x	4748.53	16:35:00	9.35	x	4531.65	474.54	18.35 19.28	-62.33	412.21	
12			432.01 409.22	16:38:00 16:40:00	3922.17 3692.48	x	4142.35 3927.35	16:39:00 16:41:00	8.86 8.55	x	3921.63 3692.69	412.73 390.81	19.28	-1.45 21.34	411.28 412.15	
13			325.54	16:44:00	2854.48	x	3927.35	16:41:00	7.85	X	2854.63	390.81	18.41	105.02	412.15	
14			323.34	16:44:00	2672.08	x	2922.85	16:47:00	7.56	x	2671.96	288.38	18.87	103.02	411.69	
15			231.17	16:49:00	1909.59	x	2178.66	16:50:00	6.91	x	1909.23	212.50	18.67	125.51	411.89	
17			199.17	16:52:00	1588.92	x	1890.80	16:53:00	6.51	x	1588.97	183.14	16.03	231.39	414.54	
18	149.0			16:55:00	1086.19	x	1384.61	16:56:00	6.07	x	1086.18	131.53	-131.53	430.56	562.09	
19	128.5		128.48	16:57:00	881.85	х	1177.86	16:58:00	5.88	х	881.39	110.45	18.04	302.08	412.53	
20	69.1		69.09	17:00:00	287.24	х	638.58	17:01:00	5.62	х	287.21	55.46	13.63	361.47	416.93	
L																
									<u> </u>							
									1		1					

Completed by:	AMSC	Verified by:	MdK
Date:	30-May-22	Date:	12-Jul-22 / 30-Oct-22

	Well ID	IG BH03						Pre Pofile				Post Pofile		Weather:	1	7 °C	1
		Ground Leve	-	Probe Type:	MOSDAY		n	93.12	kPa		n	93.95	kPa	dunen	Rainy		1
						-									nailly	_	1
	Elev. G.S.:		m	Serial No.:			Temp.		°C		Temp.		°C				1
Height of West	bay above G.S.:	1.299	m AGS	Probe Range:	2000psi		Date/Time	2022-05-31 9:38			Date/Time	2022-05-31 11:45					1
	Vestbay Casing:		m	Westbay Casing Type:			MP38 Water Level		mBTOC		MP38 Water Level		mBTOC	Specific Weight	9.807	kN/m3	1
	ence Elevation:			ampler Valve Position:			in 50 Water Lever	00.02	mbroc		ini so nater zerei	00.50	mbroc				1
			IIIAGL	ampier valve Position:	Ciuseu	-								Gravitational Accelerati		m/s2	1
E	Borehole angle:	-70												Patm	93.54		1
			-														j –
																-	
Notes:																	
																_	
	1	ſ	1				Fluid Pressure R						I.	1	1	1	
		Port	True Port		1		Fluid Pressure R	eadings	1		1	Pressure Head	Piezo Level	Z: Elev of pressure			
		Position	Depth		Inside Casing (P1-	Out				2					Freshwater		C
	Death Deathlean			Start Profile Time	Landed Pressure)	0	Outside Casing	Time (H:M:S)	Probe	e a	Inside Casing (P1)	Outside Port (m)	Outside Port	measurement port	Head (mASL)		Comments
	Port Position	From Cable	"Dp" (m	Start Home Hine		Shoe	(P2) (kPa)	Time (11.141.5)	Temp. (°C)	Sho	(kPa)	H=(P2-Patm)/w	(m) Dz = Dp-H	(mASL)	11666 (117/02)		
Port No.	From Log (m)	(m)	BGS)		(kPa)	sł				0,							
1	1 966.8		888.57	10:19:00	8535.79	х	8637.43	10:20:00	12.95	х	8535.42	871.20	17.37	-447.17	424.04	4	
	1		1							1							
	1	I													1	Interval wa	as being purged by NWMO in preparation for sampling. Pumping
	1	I													1		s interval was recently closed and seems to be recovering
3	2			10:25:00	8329.41	×	8330.32	10:26:00	13.06	~	8329.16	839.89	28.39	-426.88	413.0		d to last profile). UPDATE: After discussions with the NWMO, the
2	2			10.25.00	0325.41	^	6550.52	10.20.00	13.00	^	0325.10	035.05	20.55	420.00	415.0.		port was NOT closed (as previously reported), this provides an
	943.9		868.28													explanatio	on as to why P1 and P2 pressure values are similar.
				10.00.00	0150.10		0001.00	10:29:00	10.01		0150.00		20.70	-409.13	420.70	0	
3	3 924.0		850.53	10:28:00	8150.40	х	8231.68	10:29:00	12.94	х	8150.26	829.83	20.70	-409.13	420.70	0	
4	4			10:35:00	7775.06	х	7926.12	10:36:00	12.63	х	7774.75	798.67	14.90	-372.17	426.5	1	
	882.8		813.57														
					75.01.00		2000.02	10:40:00	10.10				17.65	-351.49	423.7	c .	
5	859.9		792.89	10:39:00	7564.69	х	7696.27	10:40:00	12.43	х	7564.54	775.24	17.65	-351.49	423.7	5	
	_															-	
6	5 794.3		733.26	10:45:00	6960.07	х	7121.02	10:46:00	11.94	х	6960.13	716.58	16.68	-291.86	424.72	2	
														1			
7	7			10:49:00	6575.35	х	6726.65	10:50:00	11.55	х	6575.28	676.37	18.91	-253.88	422.49	9	
	752.8		695.28														
8	B 676.0		624.50	10:55:00	5857.49	х	6043.36	10:56:00	10.90	х	5857.57	606.69					
9	9 637.8		589.28	10:59:00	5501.08	х	5690.22	11:00:00	10.49	х	5501.12	570.68	18.60	-147.88	422.8	1	
10			566.78	11:05:00	5272.80	×	5452.54	11:06:00	10.02	x		546.45			421.0	7	
11			524.65	11:10:00	4845.11	Û	5045.20	11:11:00	9.75	1 Û	4845.29	504.91	19.74				
						х				×			-				NI TKC
12			502.91	11:13:00	4625.88	х	4847.57	11:14:00	9.53	х		484.76				5 verified b	y ING
13	3 506.1		467.93	11:16:00	4269.82	х	4512.85	11:17:00	9.26	х	4270.03	450.63	17.30	-26.53	424.10	0	
14	4 465.9		430.90	11:19:00	3894.97	х	4178.73	11:20:00	8.92	х	3894.75	416.56	14.34	10.50	427.00	6	
15			389.63	11:22:00	3476.94	×	3776.13	11:23:00	8.57	×	3477.12	375.51	14.12				
16			342.83	11:25:00	3003.08	x	3318.73	11:26:00	8.11	x		328.87			427.4		
										-							
17			297.42	11:29:00	2543.54	х	2879.90	11:30:00	7.68	х		284.12			428.10		
18				11:33:00	1890.41	х	2244.74	11:34:00	7.12	х	1890.49	219.35					
19	9 228.1		211.75	11:35:00	1677.29	х	2044.87	11:36:00	6.84	х	1677.34	198.97	12.78	229.65	428.63	3	
20	-	İ	154.03	11:38:00	1093.18	×	1495.69	11:39:00	6.38	x	1093.17	142.97			430.3		
		ł		11:42:00	224.34	Ĵ	686.13		5.88	×	224.26						
21	1 73.0		68.16	11.42.00	224.34	x	060.15	11:43:00	00.0	×	224.20	60.43	1./3	3/3.24	433.0	<u>'</u>	
			ļ														
	1	1	1				1		1	1		1	1		1	1	

Completed by:	AMSC	Verified by:	MdK
Date:	31-May-22	Date:	12-Jul-22 / 30-Oct-22

Well ID	IG_BH05				Pre Pofile		Pos	st Pofile	Weather:	1	5 °C
Datum:	Ground Leve	1	Probe Type: MOSDAX		P _{atm} 95.52	kPa	P _{atm} 95.55	kPa	S	unny	
Elev. G.S.:	432.29	m	Serial No.: EMS4960		Temp. 20.99	°C	Temp. 5.62	°C			
Height of Westbay above G.S.:	1.31	m AGS	Probe Range: 2000psi		Date/Time 2022-05-27 10:25		Date/Time 2022-0	5-27 13:05	-		
Elev. Top of Westbay Casing:	433.60	m	Westbay Casing Type: MP38	MP38 V	Vater Level 51.675	mBTOC	MP38 Water Level 50.32	mBTOC	Specific Weight	9.807	kN/m3
Reference Elevation:	432.29	mASL	ampler Valve Position: Closed						Gravitational Acceleration	9.8065	m/s2
Borehole angle:	-70								Patm	95.54	
otes:											7

							Fluid Pressure R	eadings								
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out	Outside Casing (P2) (kPa)	Time (H:M:S)	Probe Temp. (°C)	Shoe In	Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2-Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
1	991.20		923.15	11:20:00	8840.15	х	9052.29	11:21:00	13.29	х	8839.94	913.30	9.85	-490.86	422.44	
2	974.30		907.47	11:25:00	8683.88	x	8894.21	11:26:00	13.40	x	8684.36	897.18	10.29	-475.18	422.00	Winch not spooling properly. Attempted to try to reposition but too much weight on wireline/ guide would not move. Will try again at top.
3	928.60		865.06	11:45:00	8260.50	х	8473.44	11:46:00	13.19	х	8260.55	854.28	10.78	-432.77	421.51	re-checked values by shoeing out a again (8472.64kPa)
4	865.50		806.50	11:51:00	7674.38	х	7888.10	11:52:00	12.66	х	7674.39	794.59	11.91	-374.21	420.38	
5	857.20		798.79	11:54:00	7597.52	х	7780.25	11:54:00	12.48	х	7597.63	783.59	15.20	-366.50	417.09	
6	800.80		746.43	11:59:00	7074.66	х	7159.26	12:00:00	12.04	х	7075.01	720.27	26.16	-314.14	406.13	
7	788.00		734.54	12:01:00	6955.39	x	6955.54	12:02:00	11.84	x	6955.73	699.50	35.04	-302.25	397.25	Re-landed to confirm value (6955.69kPa). Verified by TKG. Interval being purged by NWMO.
8	736.20		686.45	12:06:00	6475.24	х	6633.04	12:07:00	11.39	х	6475.21	666.62	19.83	-254.16	412.46	
9	679.80		634.09	12:11:00	5953.29	х	6110.47	12:12:00	10.89	х	5953.38	613.33		-201.80	411.53	
10	635.00		592.48	12:15:00	5538.51	х	5754.25	12:16:00	10.44	х	5538.08	577.01	15.47	-160.19	416.82	
11			585.33	12:17:00	5466.46	х	5671.89	12:18:00	10.28	х	5466.75	568.61	16.72	-153.04	415.57	
12			548.51	12:20:00	5099.76	х	5311.34	12:21:00	9.94	х	5099.63	531.85		-116.22	415.63	
13	542.00		505.99	12:23:00	4675.22	х	4875.51	12:24:00	9.52	х	4675.55	487.40		-73.70	413.70	
14	407.20		454.95	12:27:00	4166.25	х	4374.61	12:28:00	9.03	х	4166.51	436.33		-22.66	413.67	
15	427.80		399.56	12:31:00	3614.15	х	3821.55	12:32:00	8.48	х	3614.41	379.93		32.73	412.66	
16	0.1.00		348.37	12:36:00	3105.47	х	3333.08	12:38:00	7.81	х	3105.66	330.13	-	83.92	414.05	
17	020.00		305.20	12:40:00	2676.11	х	2925.16	12:41:00	7.45	х	2676.26	288.53		127.09	415.62	
18	312.90			12:43:00	2548.81	х	2786.69	12:44:00	7.25	х	2548.90	274.41	-274.41	432.29	706.70	
19	264.20		246.98	12:46:00	2097.23	х	2340.66	12:47:00	6.87	х	2096.88	228.93	18.05	185.31	414.24	
20		L	211.41	12:48:00	1743.77	х	1998.28	12:49:00	6.54	х	1743.81	194.02	17.39	220.88	414.90	
21		L	168.82	12:52:00	1320.32	х	1571.26	12:53:00	6.16	х	1320.77	150.48		263.47	413.95	
22			145.94	12:54:00	1093.56	х	1369.42	12:55:00	5.96	х	1093.12	129.90		286.35	416.25	
23			93.69	12:58:00	574.23	х	857.00	12:59:00	5.70	х	574.63	77.65		338.60	416.25	
24			85.09	12:59:00 13:02:00	489.29 300.24	x	789.55 618.08	13:00:00	5.61 5.54	X	489.25 300.68	70.77	14.32	347.20		verified by TKG
25	70.5		66.00	15.02:00	500.24	×	80.610	13:02:00	5.54	х	500.68	53.28	12.72	366.29	419.57	

Completed by:	AMSC	Verified by:	MdK
Date:	27-May-22	Date:	12-Jul-22 / 30-Oct-22

Well I	ID_IG_BH06	_			Pre Pofile			Post Pofile		Weather:	20	°C
Datun	m: Ground Leve	el	Probe Type: MOSDAX	Patm 95	.55	kPa	Patm	95.65	kPa	Su	unny	
Elev. G.S	5.: 417.74	m	Serial No.: EMS4960	Temp. 20	.45	°C	Temp.	5.30	°C			
Height of Westbay above G.S	i.: 0.91	m AGS	Probe Range: 2000psi	Date/Time 20	22-05-27 14:05		Date/Time	2022-05-27 16:37				-
Elev. Top of Westbay Casing	g: 418.65	m	Westbay Casing Type: MP38	MP38 Water Level 41	.80	mBTOC	MP38 Water Level	42.05	mBTOC	Specific Weight	9.807	kN/m3
Reference Elevation	n: 417.74	mASL	ampler Valve Position: Closed			_				Gravitational Acceleratic	9.8065	m/s2
Borehole angle	e: -70	-								Patm	95.60	

	1						Fluid Pressure R	eadings								
Port No.	Port Position From Log (m)	Position	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out	Outside Casing (P2) (kPa)	Time (H:M:S)	Probe Temp. (°C)	Shoe In	Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2-Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
1	990.20		919.41	14:59:00	8844.87	х	9167.46	15:00:00	13.42	х	8844.04	925.04	-5.63	-501.67	423.37	
2	948.40		880.65	15:03:00	8458.64	x	8784.19	15:04:00	13.36	x	8458.58	885.96	-5.31	-462.91	423.05	
3	907.20		842.46	15:12:00	8079.71	х	8399.23	15:13:00	12.90	х	8079.88	846.70	-4.24	-424.72	421.98	
4	852.30		791.60	15:18:00	7574.54	х	7866.67	15:19:00	12.48	х	7574.11	792.40	-0.80	-373.86	418.54	
5	828.00		769.09	15:21:00	7349.47	х	7628.98	15:23:00	12.20	х	7349.56	768.16	0.93	-351.35	416.81	
6	796.90		740.28	15:27:00	7064.56	х	7339.97	15:28:00	11.86	х	7064.43	738.69	1.59	-322.54	416.15	
7	739.00		686.61	15:35:00	6531.12	x	6795.54	15:37:00	11.33	x	6531.86	683.18	3.43	-268.87	414.31	
8	719.10		668.15	15:39:00	6347.44	х	6597.50	15:40:00	11.14	х	6348.18	662.99	5.16	-250.41	412.58	
9	702.20		652.47	15:45:00	6193.55	х	6436.79	15:46:00	10.78	х	6193.20	646.60	5.87	-234.73	411.87	
10	687.00		638.37	15:47:00	6053.59	х	6302.11	15:48:00	10.69	х	6053.32	632.87	5.50	-220.63	412.24	
11	629.10		584.64	15:51:00	5519.76	х	5777.45	15:53:00	10.32	х	5519.77	579.37	5.27	-166.90	412.47	
12	568.10		528.00	15:58:00	4957.21	х	5207.44	15:59:00	9.72	х	4957.44	521.24	6.76	-110.26	410.98	
13	514.80		478.50	16:01:00	4466.07	х	4728.46	16:03:00	9.30	х	4466.05	472.40	6.10	-60.76		verified by TKG
14	488.90		454.44	16:04:00	4227.83	х	4490.71	16:05:00	9.03	х	5227.63	448.16	6.28	-36.70	411.46	
15	464.50		431.77	16:07:00	4002.53	х	4270.76	16:08:00	8.77	х	4002.79	425.73	6.04	-14.03	411.70	
16	411.20		382.27	16:11:00	3513.10	х	3784.37	16:12:00	8.35	х	3512.91	376.14	6.13	35.47	411.61	
17	368.50		342.64	16:14:00	3120.82	х	3400.61	16:15:00	7.94	х	3121.03	337.01	5.63	75.10	412.11	
18	270.70			16:19:00	2294.82	х	2581.34	16:20:00	7.19	х	2294.55	253.47	-253.47	417.74	671.21	
19	214.80		199.93	16:24:00	1706.01	х	2003.89	16:25:00	6.57	х	1705.65	194.58	5.35	217.81	412.39	
20	160.00		148.98	16:28:00	1200.89	х	1510.10	16:29:00	5.96	х	1200.45	144.23	4.75	268.76	412.99	
21	147.8		137.63	16:30:00	1087.89	х	1411.14	16:31:00	5.76	х	1087.88	134.14	3.49	280.11	414.25	
22	82.4		76.73	16:33:00	483.96	х	827.77	16:34:00	5.44	х	483.92	74.66	2.07	341.01	415.67	

Completed by:	AMSC	Verified by:	MdK
Date:	27-May-22	Date:	12-Jul-22 / 30-Oct-22

Well ID:	IG_BH01	Multiparameter Probe:	Horiba U52 (SN. 40H7XHMF)	Other Notes/Comments	IG_BH01_GW033 - Primary Sample
Date(s):	01 Jun - 06 Jun 2022	Fluorometer:	AquaFluor (SN.807537)		IG_BH01_GW034 - Duplicate Sample
Operator(s):	AMSC, TKG	Colorimeter:	DR900 (SN. 200660001027)		

	B					Multipa	rameter Pro	obe			F	luorometer	Hydrometer		Co	olorimetric		Alka	linity	pe	
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sample Collected (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH01_IN T_T_004	16	2022-06-01 11:00	Y	8.2	11.13	24.5	150	0.14	27.2	15.2	Y	5.792	-				-			N	Parameters collected during purging using bladder pump placed at 85mBTOC with MOSDAX probe landed on port and valve open.
IG_BH01_IN T_T_004	22	2022-06-01 12:30	Y	8.33	13.00	23.9	155	0.00	50.3	14.8	Y	5.278	1.020			-	-			N	Parameters collected during purging using bladder pump placed at 85mBTOC with MOSDAX probe landed on port and valve open.
IG_BH01_IN T_T_004	26	2022-06-01 14:00	Y	8.29	15.59	22.3	152	0.00	0.0	13.8	Y	5.054					-			N	Parameters collected during purging using bladder pump placed at 85mBTOC with MOSDAX probe landed on port and valve open.
IG_BH01_IN T_T_004	35	2022-06-01 15:30	Y	8.28	17.79	22.6	178	0.06	0.0	14.0	Y	4.315	1.018			-				N	Parameters collected during purging using bladder pump placed at 85mBTOC with MOSDAX probe landed on port and valve open.
IG_BH01_IN T_T_004		2022-06-04 13:25	Y	8.22	12.32	19.9	209	0.00	56.1	12.4	Y	4.092	1.013	Y	0.631	0.27	0.05	0	8		Collected during sampling from run #1. Parameters collected by running sample through horiba flow through cell
IG_BH01_IN T_T_004		2022-06-04 13:50	Y	8.36	16.07	19.4	47	0.00	39.9	12.0			-				-			Y	Collected during sampling from run #1. Parameters collected after 25min of sample sitting in horiba flow through cell
IG_BH01_IN T_T_004		2022-06-06 10:05				-					Y	3.604								Y	Collected during sampling from run #10.
IG_BH01_IN T_T_004		2022-06-06 11:35	Y	8.30	15.12	20.3	171	0.00	4.3	12.6		1	-			1	-				Collected during sampling from run #11. Parameters collected by running sample through horiba flow through cell
IG_BH01_IN T_T_004		2022-06-06 12:00	Y	8.47	15.57	15.9	60	0.00	0.0	9.89										Y	Collected during sampling from run #11. Parameters collected after 25min of sample sitting in horiba flow through cell

Completed by:	AMSC	Verified by:	MdK
Date:	06-Jun-22	Date:	12-Jul-22

20-203-1: Decontamination Record Form

Well ID: MP38 Water Level Before Sampl MP38 Water Level After Samplin Probe Serial #/Range Date:	0			73.90 (4- 74.34 (4- 4-	Jun)/ 74. Jun) / 7 EN	5.02 (5 1S4960/2	Jun) / 74. Jun) /71.7	'0 (6-Jui		m BTOC m BTOC kPa	End Sa	ime g Ambient Pressu ampling Time Ambient Pressu	ure	5 (4-Jun) / 9:02 (5-Jun) /8:49 (6- 94.94 (4-Jun) / 95.34 (5- Jun)/95.46 (6-Jun) 16:27 (4-Jun) / 18:20 (5-Jun) / 13:02 (6-Jun) 95.20 (4-Jun) / 95.29 (5-Jun) / 95.15 (6-Jun)	June) kPa kPa		Other N			33 - Primary Sample 134 - Duplicate Sample
				Funct	ion Tes	ts/Prep	aration							Sampling Sequence						
Sampling Run Start Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post- sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
12:07	IG_BH01_INT_ T_004	1	x	x	x	x	x	x	x	7087.81	x	7460.08	×	900	7435.67	x	x	7087.03	13:23	Collected by landing probe on the sampling port. Run #1 used to collect multimeter parameters, infield analytical measurements, ammonia and nutrient samples
13:37	IG_BH01_INT_ T_004	2	x	x	x	x	x	x	x	7085.39	x	7456.67	x	900	7432.20	x	x	7085.65	14:52	Collected by landing probe on the sampling port. Run #2 used to collect 13-C and 14-C samples.
15:02	IG_BH01_INT_ T_004	3	x	x	x	x	x	x	x	7084.64	x	7455.07	x	900	7430.87	x	x	7084.37	16:17	Collected by landing probe on the sampling port. Run #3 used to collect archive, SiO2 and Ru samples
9:02	IG_BH01_INT_ T_004	4	x	x	x	x	x	x	x	7083.64	x	7460.45	x	900	7432.48	x	x	7082.81	10:17	Collected by landing probe on the sampling port. Run #4 used to collect gen chem and DOC samples
10:31	IG_BH01_INT_ T_004	5	x	x	x	x	x	x	x	7070.23	x	7457.18	x	600	7447.91	x	x	7069.59	11:47	Collected by landing probe on the sampling port. Run #5 used to collect noble gas and metals samples
11:57	IG_BH01_INT_ T_004	6	x	x	x	x	x	x	x	7068.69	x	7457.77	x	600	7447.71	x	x	7068.45	14:00	Collected by landing probe on the sampling port. Run #6 used to collect noble gas and sulfide samples
14:05	IG_BH01_INT_ T_004	7	x	x	x	x	x	x	x	7081.64	x	7458.36	x	900	7433.05	x	x	7080.11	15:20	Collected by landing probe on the sampling port. Run #7 used to collect 18-O/2-H/3-H sample
15:33	IG_BH01_INT_ T_004	8	x	x	x	x	x	x	x	7079.18	x	7455.61	x	900	7431.07	x	x	7079.25	16:49	Collected by landing probe on the sampling port. Run #8 used to collect 18-O/2-H/3-H sample
17:01	IG_BH01_INT_ T_004	9	x	x	x	x	x	x	x	7078.54	x	7454.32	x	900	7431.02	x	x	7078.02	18:12	Collected by landing probe on the sampling port. Run #9 used to collect 37-Cl samples
8:49	IG_BH01_INT_ T_004	10	x	x	x	x	x	x	x	7077.90	x	7459.82	x	900	7433.06	x	x	7077.65	10:04	Collected by landing probe on the sampling port. Run #10 used to collect 129-I/36-Cl sample
10:15	IG_BH01_INT_ T_004	11	x	x	x	x	x	x	x	7077.24	x	7456.09	x	900	7431.30	x	x	7076.22	11:34	Collected by landing probe on the sampling port. Run #11 used to collect 129-I/36-CI sample
11:43	IG_BH01_INT_ T_004	12	x	x	x	x	x	x	x	7075.53	x	7454.96	x	900	7429.17	x	x	7074.99	12:55	Collected by landing probe on the sampling port. Run #12 used to collect 87-Sr/86-Sr samples

Completed by:	TKG/AMSC	Verified by:	MdK
Date:	06-Jun-22	Date:	12-Jul-22

Well ID:	IG_BH03	Multiparameter Prob	Horiba U52 (SN. 40H7XHMF)	Other Notes/Comments IG_BH03_GW016 - Primary Sample
Date(s):	31 May - 04 Jun 2022	Fluorometer:	AquaFluor (SN.807537)	
Operator(s):	AMSC, TKG	Colorimeter:	DR900 (SN. 200660001027)	

	-					Multipara	meter Pr	obe			F	luorometer	Hydrometer		Co	olorimetric		Alka	linity		
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidit y (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sampl e Collec ted (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH03_INT_ T_002	10	2022-05-31 14:00	Y	7.81	11.85	35.8	30	0.92	34.2	21.8	Y	19.07									Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT_ T_002	16	2022-05-31 15:00	Y	8.12	11.02	37.80	30	0.92	21.8	23.1	Y	20.39								N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT_ T_002	18	2022-05-31 16:00	Y	8.19	11.11	38.3	28	0.85	21.6	23.4	Y	20.89	-				-			N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT_ T_002	20	2022-05-31 16:45	Y	8.17	11.41	37.9	33	0.89	38.4	23.10	Y	21.93								N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT_ T_002		2022-06-02 11:50	Y	7.13	14.26	8.69	-189	0.00	2.1	5.47	Y	18.47	1.015	Y	0.298	3.23	0.03	0	35	Y	Collected during sampling run #1 by landing on sampling port. Sample diluted 11x for ferrous iron measurement. After discussion to change method, these data are to be disregarded.
IG_BH03_INT_ T_002		2022-06-02 15:10	Y	7.47	10.04	39.4	-177	0.00	346	24.0	Y	4.575	1.030				-			Y	Collected during sampling fro run #3, measured by running sample through horiba flow- through cell.
IG_BH03_INT_ T_002		2022-06-02 15:40	Y	8.05	11.23	40.2	-349	0.00	186	24.5	Y		-	Y	0.417	1.43	0.57	0	106	Y	Collected during sampling fro run #3, measured after sample remained in horiba flow through cell for 30mins. Precipate formed in test tube when sulfide reagens were added, this may have effected the reading. Sample wa diluted and the reading was 0.2mg/L.
IG_BH03_INT_ T_002		2022-06-04 10:35									Υ	3.701									Collected during sampling from run #9.

O	41400	14-15-11-1	MIL
Completed by:	AMSC	Verified by:	MdK
Date:	04-Jun-22	Date:	12-Jul-22

Well ID: MP38 Water Leve MP38 Water Leve Probe Serial #/Ran Date:	I After Sampling	0		3.31 (2-J	Jun) / 69 Jun) / 74. EMS4	.35 (3-Ju 4960/20	un) /71.7 In) / 72.8	9 (4-Jun		m BTOC m BTOC	Star End	t Time ting Ambient Pressur Sampling Time ing Ambient Pressure		10:08 (2-Jun) / 9:15 (3-Jun) / 9:12 (4-Jun) 94:33 (2-Jun) / 95.02 (3-Jun) /95.32 (4-Jun) 16:55 (2-Jun) / 15:50 (3-Jun) / 10:45 (4-Jun) 94:71 (2-Jun) / 95.51 (3-Jun) / 95.48 (4-Jun)	kPa kPa	С	ther Notes/Commen	s: IG_BH03_GW	016 - Primary Sample
				Funct	ion Tes	ts/Prep	aration						:	Sampling Sequence					
Sampling Run Start Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve Shoe-In	Landed Westba MP38 Pressure (post-sample, kPa	Time	Comments (volume recovered, parameters measured, samples collected, etc)
10:08	IG_BH03_INT_ T_002	1	x	x	x	x	x	x	x	8266.60	x	8268.01	x	253	8258.08	x >	8256.8	11:40	Collected by landing probe on the sampling port.Run #1 used to collect multimeter parameters and infield analytical measurements. Pumping port appears to be open. Noted that the NAFI levels were above what was expected. Notified NWMO and Geofirma PM
11:55	IG_BH03_INT_ T 002	2	x	x	x	x	x	x	х	8256.78	х	8257.77	х	206	8248.29	x >	8247.32	13:15	Collected by landing probe on the sampling port.Run #2 used to collect 129-I/36-Cl
13:40	IG_BH03_INT_ T_002	3	x	x	x	x	x	x	x	8307.77	na	na	x	220	8297.88	x n	a na	15:10	Following discussions, change in method was used to collect these sample. Previous samples were discarded. Run #3 was collected from within the MP38 casing, ~2m above pumping port. Run #3 was used to collect multimeter parameters and infield analytical measurements.
15:25	IG_BH03_INT_ T 002	4	x	x	x	x	x	x	х	8297.61	na	na	х	209	8287.55	x n	a na	16:40	Collected from within the MP38 casing, ~2m above pumping port. Run #4 was used to collect 87/86-Sr, 37Cl and Ru.
9:15	IG_BH03_INT_ T_002	5	x	x	x	x	x	x	x	8309.99	na	na	x	185	8299.65	x n	a na	10:35	Collected from within the MP38 casing, ~2m above pumping port. Run #5 was used to collect 129-I/36-Cl and SiO2
10:50	IG_BH03_INT_ T_002	6	x	x	x	x	x	x	x	8289.74	na	na	x	80	8287.35	x n	a na	12:36	Collected from within the MP38 casing, ~2m above pumping port. Run #6 was used to collect noble gases and archive.
12:45	IG_BH03_INT_ T 002	7	x	x	х	x	x	х	x	8299.05	na	na	х	200	8289.24	x n	a na	14:05	Collected from within the MP38 casing, ~2m above pumping port. Run #7 was used to collect 18-O/2-H/3-H.
14:20	IG_BH03_INT_ T_002	8	x	×	x	x	x	x	x	8289.83	na	na	x	210	8279.83	x n	a na	15:38	Collected from within the MP38 casing, ~2m above pumping port. Run #8 was used to collect 14-C, 13-C, ammonia and nutrients.
9:12	IG_BH03_INT_ T_002	9	x	x	x	x	x	x	x	8297.05	na	na	x	214	8287.06	x n	a na	10:33	Collected from within the MP38 casing, ~2m above pumping port. Run #9 was used to collect DOC, sulfide, metals and gen chem

Completed by:	TKG/ AMSC	Verified by:	MdK
Date:	04-Jun-22	Date:	12-Jul-22

Well ID: Date(s): Operator(s):		28 May	G_B⊢ -30 ∣ //SC,	May 2022		Multiparame Fluorometer: Colorimeter:			A	oa U52 (SN quaFluor (\$ 000 (SN. 20	SN.80	07537)		Other Notes/Comments IG_BH05_GW002 - Primary Sample IG_BH05_GW003 - Rinsate Sample IG_BH05_GW004 - Blank Sample					pie		
	g					Multipa	rameter P	robe			FI	luorometer	Hydrometer			Colorimetric		Alka	linity	ed	
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO₃ (mg/L)	Sample Collected (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH05_IN T_T_007	8	2022-05-28 10:30	Y	7.28	16.10	9.78	74	1.58	19.1	6.16	Y	36.24	1.005							N	Collecetd during purging through Solisnt double valve pump placed at ~85mBTOC
IG_BH05_IN T_T_007	15	2022-05-28 12:00	Y	7.21	18.97	7.74	49	1.70	41.2	4.87	Y	37.40	1.004							N	Collecetd during purging through Solisnt double valve pump placed at ~85mBTOC
IG_BH05_IN T_T_007	20	2022-05-28 13:30	Y	7.14	17.93	7.00	61	1.17	48.1	4.41	Y	41.99	1.004							N	Collecetd during purging through Solisnt double valve pump placed at ~85mBTOC
IG_BH05_IN T_T_007	35	2022-05-28 15:30	Y	7.24	14.81	4.89	82	3.12	23.0	3.130	Y	43.63	1.006							N	Collecetd during purging through Solisnt double valve pump placed at ~85mBTOC
IG_BH05_IN T_T_007		2022-05-29 11:05	Y	6.98	10.97	13.9	105	0.00	121	8.64	Y	5.43	1.012							Y	Collected from run #1 during sampling from within the MP38 casing (~790 mBHA). Parameters collected in horiba flow through cell
IG_BH05_IN T_T_007		2022-05-29 11:15												Y	0.374	7.50	2.10	0	235	Y	Collected from run #1 during sampling from within the MP38 casing (~790 mBHA). Sample had to be diluted 10x to get readings for ferrous iron and sulfide.
IG_BH05_IN T_T_007		2022-05-29 11:30	Y	7.12	14.08	10.9	-75	0.00	54.9	6.78											Collected from run #1 during sampling from within the MP38 casing (~790 mBHA). Parameters collected from water in the horiba flow through cell after sitting for 25mins.
IG_BH05_IN T_T_007		2022-05-30 13:35	Y	6.42	19.13	7.25	-74	0.00	94.1	4.56	Y	6.544							-		Collected from run #7 during sampling from within the MP38 casing (~790 mBHA). Parameters collected in horiba flow through cell
Completed by	:	AMSC	,	Verified by		MdK									1						·

Date:

30-May-22

Date:

12-Jul-22

Well ID: IG BH05 Start Time 9:55 (29-May)/ 9:30 (30-May)	Other Notes/Comments:	IG BH05 GW
MP38 Water Level Before Sampling: 46.85 (29-May) 43.60 (30-May) m BTOC Starting Ambient Pressure 94.59 (29-May) 94.61 (30-May) kPa		IG_BH05_GW
MP38 Water Level After Sampling: 48.955 (29-May)/ 46.275 (30 May) m BTOC End Sampling Time 16:45 (29-May)/ 13:44 (30-May)		IG BH05 GW
Probe Serial #/Range EMS4960/2000psi Ending Ambient Pressure 94.47 (29-May) 94.34 (30-May) kPa		10_01100_011
Probe Serial #/Kange Environment 4900/2000psi Environment 4900/2000/2000/2000psi Environment 4900/2000/2000/2000/2000/2000/2		

GW002 - Primary Sample

GW003 - Rinsate Sample

GW004 - Blank Sample

			F	unctio	on Test	ts/Pre	paratio	on						Sampling Sequence						
Sampling Run Start Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post-sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post-sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
9:55	IG_BH05_INT_ T_007	1	x	x	x	x	x	x	x	7040.86	na	na	x	130	7033.00	x	na	na	11.00	Port open, did not land probe. Valve opened approx. 2m above pumping port. Run #1 used to collect multimeter parameters and infield analytical measurements.
11:32	IG_BH05_INT_ T_007	2	x	x	x	x	x	x	x	7025.42	na	na	x	65	7022.23	x	na	na	12:34	Valve opened approx. 2m above pumping port. Run #2 used to collect gen chem, Ru, reactive silica, nutrients and ammonia
14:26	IG_BH05_INT_ T_007	3	x	x	x	x	x	x	x	7025.93	na	na	x	168	7015.22	x	na	na	15:30	Standby due to thunderstorm. Valve opened approx. 2m above pumping port. Run #3 used to collect metals, sulfide, DOC, archive, 87/86 Sr
15:41	IG_BH05_INT_ T_007	4	х	х	х	х	х	x	x	7014.84	na	na	x	170	7003.42	x	na	na		Valve opened approx. 2m above pumping port. Run #4 used to collect 129I / 36Cl, 37Cl
9:30	IG_BH05_INT_ T_007	5	x	x	x	x	x	x	x	7046.24	na	na	x	45	7043.33	x	na	na	11:12	Valve opened approx. 2m above pumping port. Run #5 used to collect noble gas samples and fluorescein measurements
11:22	IG_BH05_INT_ T_007	6	х	х	х	х	х	x	x	7050.36	na	na	х	175	7040.68	х	na	na	12:25	Valve opened approx. 2m above pumping port. Run #6 used to collect 18O/2H/3H.
12:34	IG_BH05_INT_ T_007	7	x	x	x	x	x	x	x	7041.78	na	na	x	170	2030.44	x	na	na	13:36	Valve opened approx. 2m above pumping port. Run #7 used to collect 14C and horiba measurements

Completed by:	TKG/AMSC	Verified by:	MdK
Date:	30-May-22	Date:	12-Jul-22

				Sh	ipping Infor	nation			Receiving I	nformatior	1	
COC Number/ID	Sample ID(s)	Shipped Date	Shipped Time	Temp. Shipped (deg C)	COC Signed by Geofirma (Y/N)	Shipping Address	Shipping Method	Received Date	Received Time	Temp Received (deg C)	COC Signed By Receiving Lab (Y/N)	Comments
GFIM_BVL_0007	IG_BH05_GW002, IG_BH05_GW003	31-May-22	7:30	<10 (on ice)	Y	946 Cobalt Cres Thunder Bay ON P7B 5W3	Courier	01-Jun-22	16:01	5,5,6	Y	
GFIM_BVL_0008	IG_BH03_GW016, IG_BH01_GW033, IG_BH01_GW034	07-Jun-22	9:00	<10 (on ice)	Y	946 Cobalt Cres Thunder Bay ON P7B 5W3	Courier	07-Jun-22	14:02	8,7,7	Y	
GFIM_IT2_0005	IG_BH05_GW002, IG_BH05_GW004, IG_BH03_GW016, IG_BH01_GW033, IG_BH01_GW034	07-Jun-22	9:00	<10 (on ice)	Y	608 Weber St. N Unit3, Waterloo, ON N2V 1K4	Courier	09-Jun-22	11:20	n/a	Y	
GFIM_NWMO_0005	IG_BH05_GW002, IG_BH03_GW016, IG_BH01_GW033, IG_BH01_GW034	06-Jun-22	17:00	<10 (on ice to fridge)	Y	304 Main St., Ignace ON P0T 1T0	Hand delivered	06-Jun-22	17:00	n/a	Y	
GFIM_UofO_0005	IG_BH05_GW002, IG_BH03_GW016, IG_BH01_GW033, IG_BH01_GW034	13-Jun-22	13:30	<10 (on ice)	Y	25 Templeton St., Ottawa ON K1N 6N5	Hand delivered	13-Jun-22	13:30	n/a	Y	Comment from lab "leaks when squeezed". After follow-up with the lab: no evidence of leaking during transit, it only leaked when the bottle was squeezed. There was no volume loss in the sample observed and as the samples were being analyzed for 129-I and 36-CI, contact with air would not contaminate the sample. No impact on the sample.

Completed by:	AMSC	Verified by:	MdK
Date:	13-Jun-22	Date:	12-Jul-22

Laboratory Report Date		2022/06/29, 2022/0	07/12								
Laboratory Name		Bureau Veritas									
Laboratory Report ID (If applicable)		C2F6327, C2F02	23								
Analyses Completed	Major and Trace Elements and Metals; Total dissolve Fluoride; TIC; TOC; DOC; TKN; Total Phosphorus; To	d sulphur; Total dissolv	ved iron; Reactive silica; Sulphide; Anions; pH; Alkalinity;								
Associated COC #(s)	GFIM_BVL_0007, GFIM_BVL_0008										
Samples Included in Laboratory Repo	rt										
[IG_BH	[IG_BH05_GW002] [IG_BH05_GW003] [IG_BH03_GW016] [IG_BH01_GW033] [IG_BH01_GW034]										
Quality Check and Verification		Verified By (Initials)	Comments								
Results received from laboratory		AMSC									
All samples were tested or accounted for spare sample)	. Justification provided for any untested samples (e.g.	AMSC									
Laboratory data report provided with rest	ults	AMSC									
Laboratory testing methods/techniques in	ncluded in data report	AMSC									
Laboratory QA procedures and equipme	nt calibration included in data report	AMSC									
Laboratory results are within reasonable	/expected range	AMSC	See note below								

Other Comments/Notes:

Chloride concentration of sample IG_BH05_GW002 was slightly below what was expected (3700 mg/L), Geofirma requested that the lab re-analyze the sample to confirm the results. The revised report (C2F0223V2) reported a higher concentration (5200 mg/L), more in-line with what was expected and still within the labs RPD acceptance criteria for dupplicates.

Completed by:	AMSC	Verified by:	MdK
Date:	18-Jul-22	Date:	20-Jul-22

Laboratory Report Date	aboratory Report Date 2022-08-08										
Laboratory Name	Isotoj	pe Tracer Technologi	es Inc. (IT2)								
Laboratory Report ID (If applicable)		220237									
Analyses Completed	18-O, 2-H, 3-H, 87-Sr/86-Sr, 37-Cl, 13-C, 14-C										
Associated COC #(s)	GFIM_IT2_0005										
Samples Included in Laboratory Report	rt										
[H	G_BH05_GW002][IG_BH05_GW004][IG_BH03_GW0	016][IG_BH01_GW033]][IG_BH01_GW034]								
Quality Check and Verification		Verified By (Initials)	Comments								
Results received from laboratory		AMSC									
All samples were tested or accounted for spare sample)	. Justification provided for any untested samples (e.g.	AMSC									
Laboratory data report provided with resu	llts	AMSC									
Laboratory testing methods/techniques in	ncluded in data report	AMSC									
Laboratory QA procedures and equipment	nt calibration included in data report	AMSC									
Laboratory results are within reasonable/	expected range	AMSC	See comment below								

Other Comments/Notes:

Results slightly higher than expected for sample IG_BH05_GW004 (blank), asked lab to re-run analysis to confirm. Re-analysis showed lower value (as expected), repeat result was still within the variation of the orginal.

Completed by:	AMSC	Verified by:	SNS
Date:	09-Nov-22	Date:	10-Jan-23

Laboratory Report Date		20-Sep-22, 28-Oct-	-22								
Laboratory Name	University	of Ottawa (Radiohali	des Laboratory)								
Laboratory Report ID (If applicable)		n/a									
Analyses Completed		129-I, 36-Cl									
Associated COC #(s)		GFIM_UofO_000	5								
Samples Included in Laboratory Report	rt										
[IG_BH05_GW002][IG_BH03_GW016][IG_BH01_GW033][IG_BH01_GW034]											
Quality Check and Verification		Verified By (Initials)	Comments								
Results received from laboratory		AMSC									
All samples were tested or accounted for spare sample)	. Justification provided for any untested samples (e.g.	AMSC									
Laboratory data report provided with resu	llts	AMSC									
Laboratory testing methods/techniques in	ncluded in data report	AMSC									
Laboratory QA procedures and equipment	nt calibration included in data report	AMSC									
Laboratory results are within reasonable/	expected range	AMSC									

Other Comments/Notes:

Completed by:	AMSC	Verified by:	SNS
Date:	09-Nov-22	Date:	10-Jan-23

aboratory Report Date 26-Oct-22												
Laboratory Name	University	/ of Ottawa - Noble Ga	ases Laboratory									
Laboratory Report ID (If applicable)		n/a										
Analyses Completed	N	oble gases (He, Ne, Ar	, Kr, Xe)									
Associated COC #(s)		GFIM_UofO_000	5									
Samples Included in Laboratory Repo	rt											
	[IG_BH05_GW002][IG_BH03_GW016][IG_BI	H01_GW033][IG_BH01	1_GW034]									
Quality Check and Verification		Verified By (Initials)	Comments									
Results received from laboratory		AMSC										
All samples were tested or accounted for spare sample)	r. Justification provided for any untested samples (e.g.	AMSC										
Laboratory data report provided with resu	ults	AMSC										
Laboratory testing methods/techniques ir	ncluded in data report	AMSC										
Laboratory QA procedures and equipme	nt calibration included in data report	AMSC										
Laboratory results are within reasonable/	/expected range	AMSC										
		•										
Other Comments/Notes:												

Note: Previous reports included 21Ne results, going forward (including this quarter) only total Ne will be reported.

Completed by:	AMSC	Verified by:	SNS
Date:	09-Nov-22	Date:	10-Jan-23

2022 Q3 (September) Data Quality Workbook (DQC)

Borehole ID:	BH01, BH03, BH05, BH06	Comments:
Date:	16-Sept-22 to 29-Sept-22	
Completed by:	MdK, MEOR	
Sampling Interval:		

						Decontam	ination Proced	ure		
Equipment	Date/Time	Decontamination Required (Y/N)	Location (BH)	PPE	Loose Contamination Removed	Detergent Wash (record type of detergent used)	Dionized Water Rinse	Air Dried (Minimize Dust)	Rinsate Sample Collected (Y/N)	Comments
Electronic Water Level Tape	2022-09-16 9:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
MOSDAX sampler probe EMS 4960	2022-09-16 9:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
Electronic Water Level Tape	2022-09-16 15:45	Y	IG_BH06	Y	Y	Alconox	Y	Y	N	
MOSDAX sampler probe EMS 4960	2022-09-16 15:45	Y	IG_BH06	Y	Y	Alconox	Y	Y	N	
Westbay sample bottle	2022-09-16 15:45	Y	IG_BH06	Y	Y	Alconox	Y	Y	N	
Electronic Water Level Tape	2022-09-17 9:30	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
MOSDAX sampler probe EMS 4960	2022-09-17 9:30	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
Bladder Pump	2022-09-17 9:30	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
Westbay sample bottle	2022-09-17 17:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
Electronic Water Level Tape	2022-09-18 9:00	Y	IG_BH05	Y	Y	Alconox	Y	Y	N	
MOSDAX sampler probe EMS 4960	2022-09-18 9:00	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-09-18 13:00	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-09-18 13:10	Y	IG_BH01	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-09-19 8:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 5288	2022-09-19 8:30	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
Westbay sample bottles (x6)	2022-09-19 8:30	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
Copper tubing (2x)	2022-09-19 9:30	Y	IG_BH03	Y	Y	Alconox	Y	Y	N	
Copper tubing (6x)	2022-09-20 9:00	Y	IG_BH03	Y	Y	Alconox	Y	Y	Ν	
Electronic Water Level Tape	2022-09-22 8:15	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
MOSDAX sampler probe EMS 5288	2022-09-22 8:15	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
Bladder Pump	2022-09-22 8:15	Y	IG_BH05	Y	Y	Alconox	Y	Y	N	
Electronic Water Level Tape	2022-09-23 8:15	Y	IG_BH01	Y	Y	Alconox	Y	Y	N	
Bladder Pump	2022-09-23 8:15	Y	IG_BH01	Y	Y	Alconox	Y	Y	N	
MOSDAX sampler probe EMS 5288	2022-09-24 7:15	Y	IG BH01	Y	Y	Alconox	Y	Y	N	
Westbay sample bottles (x7)	2022-09-24 7:15	Y	IG_BH01	Y	Y	Alconox	Y	Y	N	
			_							
Copper tubing (4x)	2022-09-24 8:15	Y	IG_BH01	Y	Y	Alconox	Y	Y	N	
Electronic Water Level Tape	2022-09-25 7:15	Y	IG_BH05	Y	Y	Alconox	Y	Y	N	
MOSDAX sampler probe EMS 5288	2022-09-25 7:30	Y	IG_BH05	Y	Y	Alconox	Y	Y	Ν	
Westbay sample bottles (x7)	2022-09-25 7:30	Y	IG_BH05	Y	Y	Alconox	Y	Y	Y	Collected rinsate sample: IG_BH05_GW007
Copper tubing (8x)	2022-09-25 7:30	Y	IG_BH05	Y	Y	Alconox	Y	Y	N	
		<u> </u>								
	•		-		-	•	•	•		•
Completed by:	MDK				Verified by:	AMSC				
Date:	04-Oct-22				Date:	24-Oct-22				

Date	Time	Personnel	Equipment Type	Serial Number	Check Method & Standard(s)	eration Check Equipment Reading(s)	Calibration Required	Calibration Method	eration Performed	Calibration Completed	Comments
					Used	Equipment (ceaulig(s)	(Y/N)	& Standard(s) Used	Reading(s)	(Y/N)	
16-Sep-22	9:45	MdK	MOSDAX Probe	EMS4960	Manual WL/P vs. Probe P	Manual P (anticipated) = 331.26 KPa; Probe P (measured) =344.68 Kpa	Ν	-	-	-	
16-Sep-22	17:00	MdK	Fluorometer	807511	-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.002 10.06 100.0	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
17-Sep-22	17:00	MdK	Fluorometer	807511		-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.007 10.04 99.92	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
17-Sep-22	10:45	MEOR	HoribaU52	PDWJB880	Lab provided solutions; 4.00, 7.00, 10.00	4.00 7.00 10.00	ł	Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.49 0.1	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 1GF003), pH 4.0 (LOT#1GE539)
19-Sep-22	9:50	MdK	Fluorometer	807511	-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 10.04 99.84	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
19-Sep-22	10:00	MdK	HoribaU52	PDWJB880	Lab provided solutions; 4.00, 7.00, 10.00	4.00 7.01 10.01		Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.98 4.49 0.0	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 1GF003), pH 4.0 (LOT#1GE539)
19-Sep-22	9:50	MdK	DR900	200660001027	520nm: Blank: 0.00 Std 1: 0.558 ± 0.05 Std 2: 1.141 ± 0.10 Ø 81: 1.741 ± 0.15 Ø	520nm: Blank: 0.000 Std 1: 0.592 Std 2: 1.168 Std 3: 1.781 610nm:	N	-	-	-	Cal checked using DR900 absorbance check kit (SN 2763900).
					Blank: 0.00 Std 1: 0.566 ± 0.05 4 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	Blank: 0.000 Std 1: 0.586 Std 2: 1.161 Std 3:1.769	Ν	-	-	-	(012.0000).
20-Sep-22	8:30	MdK	Fluorometer	807511	-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.680 100.3	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
20-Sep-22	8:30	MdK	HoribaU52	PDWJB880	Lab provided solutions; 4.00, 7.00, 10.00	3.96 7.02 10.01		Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.49 0.2	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 1GF003), pH 4.0 (LOT#1GE539)
20-Sep-22	8:30	MdK	DR900	200660001027	520nm: Blank: 0.00 Std 1: 0.558 ± 0.05 Std 2: 1.141 ± 0.10 Std 3: 1.741 ± 0.15	520nm: Blank: 0.000 Std 1: 0.589 Std 2: 1.166 Std 3: 1.777	Ν	-	-	-	Cal checked using DR900 absorbance check kit
					610nm: Blank: 0.00 Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	610nm: Blank: 0.000 Std 1: 0.587 Std 2: 1.162 Std 3:1.769	N	-	-	-	(SN.2763900).
21-Sep-22	9:15	MdK	Fluorometer	807511	-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.932 100.1	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
22-Sep-22	9:00	MdK	Fluorometer	807511	-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.680 100.3	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
22-Sep-22	9:00	MdK	HoribaU52	PDWJB880	Lab provided solutions; 4.00, 7.00, 10.00	4.03 7.00 10.04	-	Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.50 0.8	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 1GF003), pH 4.0 (LOT#1GE539)
23-Sep-22	8:30	MdK	Fluorometer	807511	-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.005 10.25 100.5	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
23-Sep-22	9:00	MdK	HoribaU52	PDWJB880	Lab provided solutions; 4.00, 7.00, 10.00	3.97 7.07 10.00		Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.53 0.2	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 1GF003), pH 4.0 (LOT#1GE539)
24-Sep-22	8:00	MdK	Fluorometer	807511	-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 10.21 99.82	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
24-Sep-22	8:20	MdK	HoribaU52	PDWJB880	Lab provided solutions; 4.00, 7.00, 10.00	3.95 7.05 10.00	1	Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.50 0.1	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470), pH 10.0 (LOT#1GI516), pH 7.0 (LOT# 1GF003), pH 4.0 (LOT#1GE539)
24-Sep-22	8:00	MdK	DR900	200660001027	520nm: Blank: 0.00 5 Std 1: 0.558 ± 0.05 Std 2: 1.141 ± 0.10 Std 3: 1.741 ± 0.15	520nm: Blank: 0.000 Std 1: 0.586 Std 2: 1.164 Std 3: 1.776	N	-	-	-	Cal checked using DR900 absorbance check kit
					610nm: Blank: 0.00 Std 1: 0.566 ± 0.05 Glassian Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	610nm: Blank: 0.000 Std 1: 0.585 Std 2: 1.160 Std 3:1.767	N	-	-	-	(ŠN.2763900).
25-Sep-22	7:45	MdK	Fluorometer	807511	-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 10.20 101.2	Y	Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
25-Sep-22	8:00	MdK	HoribaU52	PDWJB880	Lab provided solutions; 4.00, 7.00, 10.00	3.96 6.98 9.99	-	Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.51 0.0	Y	Calibrated using lab provided solutions: AutoCal (LOT# 1GJ470), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 1GF003), pH 4.0 (LOT#1GE539)

25-Sep-22	7:45	MdK	K DR900	DRom	200660001027	520nm: Blank: 0.00 55 Std 1: 0.558 ± 0.05 ⊢ Std 2: 1.141 ± 0.10 56 Std 3: 1.741 ± 0.15	520nm: Blank: 0.000 Std 1: 0.590 Std 2: 1.165 Std 3: 1.776	N	-	-	-	Cal checked using DR900 absorbance check kit
20-3ep-22	7.45	WUK	DK900	20000001027	e 610nm: Blank: 0.00 Std 1: 0.566 ± 0.05 Std 2: 1.133 ± 0.10 Std 3: 1.730 ± 0.15	610nm: Blank: 0.000 Std 1: 0.584 Std 2: 1.160 Std 3:1.767	N	-	-	-	(ŠN.2763900).	
26-Sep-22	8:30	MdK	Fluorometer	807511	-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.709 99.85		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024	

Completed by:	MDK	Verified by:	AMSC
Date:	27-Sep-22	Date:	24-Oct-22

Elev. Top of W Refere B	Datum: Elev. G.S.: ay above G.S.: estbay Casing: ence Elevation: orehole angle:	0.32 430.88 430.562 -90	mASL	Probe Type: Serial No.: Probe Range: Westbay Casing Type: ampler Valve Position:	EMS4960 2000psi MP38		Temp.	2022-09-18 13:20	kPa °C mBTOC		Temp.	2022-09-18 17:15	kPa °C mBTOC	Weather: Specific Weight Gravitational Accelerati P _{atm}	Overcast 9.807	°C kN/m3 m/s2
lotes:	Sample Interv	al: IG_BH01_IN	1_1_002				Fluid Pressure F	testing					1	1	1]
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out	Outside Casing (P2) (kPa)	Time (H:M:S)	Probe Temp. (°C)	ShoeIn	Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2- Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
1	977.3	976.63	976.91	14:10:00	9606.20	Y	9624.32	14:36:00	14.08	Y	9606.48	971.63	5.28	-546.35	425.28	Outside P similar to Inside P. However, the formation pressure (P2) is consistent with previous measurement
2	888.8	885.76	888.49	14:46:00	8710.98	Y	8706.01	14:47:00	13.31	Y	8710.87	877.99	10.49	-457.92	420.07	Port open. Currently being purged by NWMO
3	804.4	801.56	804.14	14:54:00	7855.83	Y	7843.72	14:55:00	12.55	Y	7855.66	790.07	14.08	-373.58	416.49	Outside P similar to Inside P. However, the formation pressure (P2) is consistent with previous measurement
4	769.3	766.84	769.06	15:00:00	7501.25	Y	7469.99	15:01:00	12.17	Y	7501.24	751.96	17.10	-338.50	413.46	port, likely recovering
5	703.1	701.15	702.90	15:05:00	6833.21	Y	6815.89	15:09:00	11.36	Y	6833.10	685.26	17.63	-272.33	412.93	Verified by MEOR. Outside P similar to Inside P. How the formation pressure (P2) is consistent with previou measurements
6	649.8	648.01	649.62	15:15:00	6295.48	Y	6279.32	15:16:00	10.82	Y	6295.26	630.55	19.07	-219.06	411.49	Outside P lower than inside P. However, the formatic pressure (P2) is consistent with previous measureme
7	628.4	626.73	628.23	15:19:00	6079.48	Y	6067.46	15:20:00	10.57	Y	6079.87	608.95	19.29	-197.67	411.28	Outside P lower than inside P. However, the formatic pressure (P2) is consistent with previous measureme
8	574.4	573.32	574.26	15:24:00	5536.42	Y	5533.57	15:25:00	10.12	Y	5536.28	554.51	19.75	-143.70	410.81	Outside P similar to Inside P. However, the formation pressure (P2) is consistent with previous measureme
9	540.2	538.69	540.07	15:29:00	5192.03	Y	5200.35	15:30:00	9.79	Y	5192.33	520.53	19.54	-109.51	411.02	Outside P similar to Inside P. However, the formation pressure (P2) is consistent with previous measureme
10		515.78	517.28	15:32:00	4962.14	Y	4979.01	15:33:00	9.51	Y	4962.39	497.96	19.32	-86.72	411.24	
11		491.75	492.89	15:35:00	4717.69	Y	4742.27	15:36:00	9.27	Y	4717.96	473.82	19.07	-62.33	411.49	
12		430.90	432.01	15:39:00	4106.47	Y	4142.32	15:40:00	8.68	Y	4107.12	412.64		-1.45	411.19	
13		408.64	409.22	15:43:00	3878.48	Y	3921.22	15:44:00	8.42	Y	3878.25	390.10	19.12	21.34	411.44	
14		324.43 306.08	325.54 307.25	16:18:00	3046.17	Y	3097.57	16:19:00	7.16	Y	3046.17	306.11 288.27		105.02	411.13 411.58	
15		306.08	307.25	16:04:00 16:27:00	2862.89 2106.12	Y	2922.55 2180.23	16:05:00	7.16	Y	2862.51 2106.18	288.27 212.57	18.98	123.31	411.58 411.97	
10		198.53	199.17	16:32:00	1787.74	Y	1886.63	16:33:00	6.18	Y	1787.77	182.64	16.53	231.39	411.97	
17		148.81	148.98	16:41:00	1289.08	Y	1380.31	16:42:00	5.67	v	1289.09	131.01	17.97	281.58	412.59	
10		128.20	128.48	16:46:00	1086.11	Ŷ	1173.49	16:47:00	5.50	Y	1086.11	109.92	18.57	302.08	412.00	
20		68.68	69.09	16:56:00	496.07	Ŷ	632.33	16:57:00	5.35	Ŷ	496.50	54.74		361.47	416.21	
	1				1	1			1	1	1			1	1	

Completed by:	MDK, MEOR	Verified by:	AMSC / MdK
Date:	18-Sep-22	Date:	24-Oct-22 / 31-Oct-23

	Elev. G.S.: ay above G.S.:	1.299 442.702 441.403 -70	m m AGS m mASL	Probe Type: Serial No.: Probe Range: Westbay Casing Type: ampler Valve Position:	EMS4960 2000psi MP38		Temp.	2022-09-16 9:32	kPa °C mBTOC		Temp.	5.55 2022-09-16 14:37	kPa °C mBTOC	Weather: Specific Weight Gravitational Accelerati P _{atm}	9.807 9.805 95.92	°C
		Port					Fluid Pressure I	Readings								
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out	Outside Casing (P2) (kPa)	Time (H:M:S)	Probe Temp. (°C)	ShoeIn	Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2-Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
1	966.8	964.78	888.57	10:38:00	8400.98	Y	8638.88	10:39:00	12.96	Y	8400.15	871.11	17.46	-447.17	423.94	
2	943.9	941.98	868.28	10:49:30	8194.49	Y	8340.75	10:50:30	13.02	Y	8194.36	840.71	27.57	-426.88	413.83	Pumping port closed on 2022/06/12 in preparation for sam
3	924.0	922.16	850.53	10:56:30	8015.58	Y	8237.07	10:57:30	12.87	Y	8015.13	830.14	20.39	-409.13	421.01	
4	882.8	880.73	813.57	11:07:00	7640.56	Y	7918.39	11:08:00	12.50	Y	7640.35	797.64	15.93	-372.17	425.47	Verified by MEOR
5	859.9	857.92	792.89	11:13:00	7430.40	Y	7700.32	11:14:00	12.32	Y	7430.19	775.41	17.48	-351.49	423.92	
6	794.3	792.74	733.26	11:21:00	6826.81	Y	7115.59	11:22:00	11.82	Y	6826.48	715.78	17.48	-291.86	423.92	
7	752.8	751.20		11:28:00	6442.28	Y	6725.92	11:29:00	11.33	Y	6442.16	676.05		-253.88	422.17	
8	676.0 637.8	674.71 636.72		11:39:00	5725.24	Y	6039.04	11:40:00 11:44:00	10.69	Y	5725.19	606.01		-183.10 -147.88	422.91 422.45	
10		612.13		11:43:00 11:48:00	5368.96 5141.00	Y	5689.11 5455.78	11:44:00	10.33	Y Y	5368.84 5140.87	570.33 546.53		-147.88 -125.38	422.45	
10		566.71		11:56:00	4713.97	Y	5045.45	11:57:00	9.54	Y	4713.63	504.69		-125.58	421.45	
12		543.12		12:03:00	4493.86	Ŷ	4844.47	12:04:00	9.28	Ŷ	4493.94	484.20		-61.51	422.69	
13	506.1	505.52		12:09:00	4138.77	Y	4508.31	12:10:00	9.04	Y	4138.92	449.92		-26.53	423.40	
14	465.9	465.80	430.90	12:14:00	3763.79	Y	4169.08	12:15:00	8.65	Y	3763.98	415.33	15.57	10.50	425.83	Verified by MEOR
15	421.1	420.68		12:28:00	3346.27	Y	3621.43	12:29:00	8.16	Y	3346.70	359.49		51.77		Rechecked (3634.12KPa), re-landed and rechecked (3635.11kPa) and Verified by MEOR. P2 is ~100kPa lower than previously recorded
16		369.95		12:53:00	2872.66	Y	3304.45	12:54:00	7.84	Y	2872.36	327.17		98.57	425.74	
17		320.81		13:19:00	2412.87	Y	2878.23	13:20:00	7.33	Y	2412.92	283.71		143.98	427.69	
18		250.93 228.11		13:26:00 13:30:00	1760.12 1545.53	Y	2244.58 2042.90	13:27:00 13:31:00	6.79	Y	1759.72 1545.55	219.09		208.50 229.65	427.60	
20		228.11		13:30:00	1545.53 960.99	Y	2042.90	13:31:00	6.56 5.91	Y	1545.55 961.49	198.53	-	229.65	428.18	
20	73.0	73.3		14:02:00	96.98	Y	690.47	09:43:00	11.24	Y	96.17	60.63		373.24	423.94	Parameters associated with final check at 14:02 we unexpected therefore the more accurate values at
						-						1				

Completed by:	MDK, MEOR	Verified by:	AMSC / MdK
Date:	16-Sep-22	Date:	24-Oct-22 / 31-Oct-23

Elev. Top of \ Refe		1.31 433.60 432.29 -70	m m AGS m mASL	Probe Type: Serial No.: Probe Range: Westbay Casing Type: ampler Valve Position: 7	EMS4960 2000psi MP38		Temp.	2022-09-18 9:15	kPa ºC mBTOC		Temp.	8.85 2022-09-18 12:40	kPa ℃ mBTOC	Weather: Specific Weight Gravitational Accelerati P _{atm}	Overcast 9.807	s °C kN/m3 m/s2
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out	Fluid Pressure R Outside Casing (P2) (kPa)	eadings Time (H:M:S)	Probe Temp. (°C)	ShoeIn	Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2-Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
	1 991.20	987.94	923.15	10:09:00	8813.94	Y	9047.75	10:10:00	13.14	Y	8813.91	912.85	10.30	-490.86	421.99	9
	2 974.30	971.05	907.47	10:20:00	8656.67	Y	8880.17	10:21:00	13.33	Y	8657.09	895.77	11.70	-475.18	420.59	
	3 928.60	925.86	865.06	10:25:00	8232.70	Υ	8499.94	10:26:00	13.14	Y	8232.20	856.99	8.07	-432.77	424.22	2
	4 865.50	863.01	806.50	10:31:00	7644.86	Y	7924.10	10:32:00	12.61	Y	7644.92	798.28	8.22	-374.21	424.07	7
	5 857.20	855.13	798.79	10:33:00	7568.07	Y	7775.05	10:34:00	12.42	Y	7567.51	783.08	15.71	-366.50	416.58	3
	6 800.80	798.67	746.43	10:46:00	7043.97	Y	7147.49	10:47:00	11.73	Y	7044.07	719.09	27.34	-314.14	404.95	5
	7 788.00	786.00	734.54	10:59:00	6924.54	Y	7005.95	11:00:00	11.49	Y	6924.52	704.66	29.88	-302.25	402.41	Pumping port closed on 2022/08/15 in preparation for sampling
	8 736.20	734.75	686.45	11:04:00	6443.39	Y	6598.62	11:05:00	11.26	Y	6442.94	663.12	23.33	-254.16		
	9 679.80	678.61	634.09		5919.70	Y	6077.73	11:10:00	10.76	Y	5919.91	610.01	24.08	-201.80		Rechecked
	.0 635.00	633.88	592.48		5503.95	Y	5765.38	11:15:00	10.33	Y	5503.88	578.16	14.32	-160.19	417.97	
	.1 627.30	626.21	585.33	11:17:00	5432.35	Y	5670.55	11:18:00	10.15	Y	5432.50	568.49	16.84	-153.04	415.45	
	2 587.70	586.93	548.51	11:22:00	5064.48	Y	5326.12	11:23:00	9.76	Y	5064.14	533.37	15.14	-116.22	417.15	Verified by MEOR
	3 542.00 4 487.20	541.57 486.95	505.99 454.95		4639.49	Y	4919.31	11:28:00 11:33:00	9.37	Y	4639.52	491.88	14.11	-73.70		
	4 487.20	486.95	454.95	11:32:00 11:38:00	4128.84 3575.27	Y	4396.19 3821.49	11:33:00	8.84 8.32	Y	4128.73 3575.08	438.54 379.94	16.41	-22.66		
	.6 372.90	373.00	348.37		3064.55	Y	3324.08	11:48:00	7.55	Y	3064.60	379.94	19.02	83.92		
	7 326.60	327.11	305.20	11:53:00	2633.25	Y	2912.24	11:55:00	7.12	Y	2633.37	287.23	17.97	127.09		
	8 312.90	313.20	292.42	11:57:00	2505.87	Ŷ	2781.05	12:00:00	6.94	Y	2505.92	273.85	18.57	139.87	413.72	
	9 264.20	264.94	246.98		2051.53	Ŷ	2334.42	12:06:00	6.58	Ŷ	2051.58	228.31	18.67	185.31		
	226.10	226.91	211.41		1696.58	Y	1985.39	12:09:00	6.35	Y	1696.61	192.72	18.69	220.88		
2	1 180.5	181.52	168.82	12:13:00	1271.26	Y	1563.48	12:14:00	6.05	Y	1271.26	149.70	19.12	263.47	413.17	7
2	2 156.0	157.08	145.94		1043.99	Y	1357.71	12:18:00	5.80	Y	1043.55	128.72	17.22	286.35	415.07	7
2	100.1	101.25	93.69	12:21:00	521.48	Y	841.29	12:22:00	5.55	Y	521.44	76.06	17.63	338.60	414.66	5
	4 90.9	91.94	85.09		435.63	Y	770.35	12:25:00	5.46	Y	435.61	68.82	16.27	347.20	416.02	
2	.5 70.5	71.68	66.00	12:29:00	245.67	Y	591.02	12:30:00	5.42	Y	245.67	50.54	15.46	366.29	416.83	3

Completed by:	MDK, MEOR	Verified by:	AMSC / MdK
Date:	18-Sep-22	Date:	24-Oct-22 / 31-Oct-23

r	Well ID	IG BH06						Pre Pofile				Post Pofile		Weather:	10	°C
		Ground Leve		Probe Type:	MOSDAX		Peter	96.73	kPa		Pata		kPa		Overcast	-
	Elev. G.S.:		m	Serial No.:			Temp.		°C		Temp.		°C			
Height of Westb	ay above G.S.:	0.91	m AGS	Probe Range:				2022-09-16 15:50				2022-09-16 19:10	-			-
Elev. Top of W	estbay Casing:	418.65	m	Westbay Casing Type:		-	MP38 Water Level		mBTOC		MP38 Water Level		mBTOC	Specific Weight	9.807	kN/m3
	ence Elevation:			ampler Valve Position:										Gravitational Accelerati		m/s2
	orehole angle:					-								Patm		11/32
D	orenoie angle.	-70												r atm	96.56	
Notes:	Sample interv	al: IG_BH06_	INT_T_008													
																1
-	1						Fluid Pressure R	andings					1		1	
		Port	True Port			+	Thata Pressure R	caungs	1		1	Pressure Head	Piezo Level	Z: Elev of pressure		
	Port Position	Position	Depth		Inside Casing (P1-	Out	Outside Casing		Probe	el	Inside Casing (P1)	Outside Port (m)	Outside Port	measurement port	Freshwater	Comments
	From Log	From Cable	"Dp" (m	Start Profile Time	Landed Pressure)	Shoe	(P2) (kPa)	Time (H:M:S)	Temp. (°C)	Shoe	(kPa)	H=(P2-Patm)/w	(m) Dz = Dp-H	(mASL)	Head (mASL)	
Port No.	(m)	(m)	BGS)		(kPa)					s						
1	990.20	986.56	919.41	16:58:00	8613.40	Y	9174.47	16:59:00	13.22	Y	8613.57	925.66	-6.25	-501.67	423.99	
	948.40	0.45.05	880.65	17.00.00	8228.03	Y	0700.04	17 10 00	10.10		8228.09		-5.81	-462.91	423.55	
2	948.40	945.35	880.65	17:09:00	8228.03	Y	8790.04	17:10:00	13.18	Ŷ	8228.09	886.46	-5.81	-462.91	423.55	
3	907.20	903.87	842.46	17:14:00	7847.41	Y	8406.81	17:15:00	12.91	Y	7847.38	847.38	-4.92	-424.72	422.66	
4	852.30	849.15	791.60	17:21:00	7343.17	Y	7853.76	17:22:00	12.41	Y	7343.31	790.99	0.61	-373.86	417.13	
5	828.00	824.92	769.09	17:25:00	7119.40	Y	7621.21	17:26:00	12.15	Y	7119.27	767.27	1.82	-351.35	415.92	
6	796.90	794.15	740.28	17:32:00	6833.87	Y	7342.18	17:33:00	11.77	Y	6833.64	738.82	1.46	-322.54	416.28	
7	739.00	736.36	686.61	17:37:00	6301.11	Y	6762.87	17:38:00	11.35	Y	6300.77	679.75	6.86	-268.87	410.88	Verified by MEOR
8	719.10	717.01	668.15	17:41:00	6117.77	Y	6117.97	17:42:00	11.05	v	6117.71	613.99	54.16	-250.41	363 58	Pumping port open. Currently being purged by NWMO.
9	702.20	699.94	652.47	17:45:00	5962.98	Y	6443.19	17:46:00	10.87	v	5962.80	647.15				· · · · · · · · · · · · · · · · · · ·
10		684.65	638.37	17:47:00	5822.52	Ŷ	6308.17	17:48:00	10.69	Ŷ	5822.72	633.39			412.76	
11		626.89	584.64	17:55:00	5289.62	Ŷ	5777.91	17:56:00	10.03	v	5289.57	579.32			412.42	
12		566.28	528.00	18:01:00	4727.58	Y	5207.98	18:02:00	9.70	Y	4727.82	521.20				
13		513.00	478.50	18:09:00	4236.20	Y	4720.37	18:10:00	9.14	Y	4236.41	471.48			410.72	
14		487.17	454.44	18:12:00	3997.56	Y	4492.44	18:13:00	8.89	Ŷ	3997.72	448.24			411.54	
15		462.85	431.77	18:18:00	3773.18	Ŷ	4273.13	18:19:00	8.54	Ŷ	3773.25	425.88				
16		409.93	382.27	18:23:00	3283.15	Ŷ	3788.55	18:24:00	8.20	Ŷ	3283.29	376.47				
17		367.43	342.64	18:30:00	2891.53	Ŷ	3403.25	18:31:00	7.67	Ŷ	2891.60	337.18			412.28	
18		277.97	259.30	18:36:00	2065.58	Y	2584.21	18:37:00	6.92	Ŷ	2065.66	253.66		158.44	412.10	
19	214.80	214.05	199.93	18:41:00	1476.57	Y	2007.45	18:42:00	6.41	Ŷ	1476.59	194.85		217.81	412.66	
20		159.71	148.98	18:46:00	972.29	Y	1511.43	18:47:00	5.84	Ŷ	971.82	144.27			413.03	
21	147.8	147.58	137.63	18:51:00	859.12	Y	1394.23	18:52:00	5.51	Y	859.11	132.32	5.31	280.11	412.43	
22	82.4	81.9	76.73	18:58:00	255.50	Y	822.01	18:59:00	5.12	Y	255.43	73.97	2.76	341.01	414.98	
	1															

Completed by:	MDK, MEOR	Verified by:	AMSC / MdK	
Date:	16-Sep-22	Date:	24-Oct-22 / 31-Oct-23	

Well ID:	IG_BH01	Multiparameter Probe:	Horiba U52 (SN. PDWJB880)	Other Notes/Comments	IG BH01 GW035 - Primary Sample	
Date(s):	23-Sep-22 to 24-Sep-22	Fluorometer:	AquaFluor (SN.807511)			
Operator(s):	MdK, MEOR	Colorimeter:	DR900 (SN. 200660001027)			

	ъ					Multipar	rameter Pro	obe			F	luorometer	Hydrometer		C	olorimetric		Alka	alinity	cted	
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescei n (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ^{2*} (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sample Collect (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH01_IN T_T_002	10	2022-09-23 9:45	Y	7.91	7.59	18.0	123	0.26	93.5	11.2	Y	18.18	1.015	-		-			-	N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH01_IN T_T_002	20	2022-09-23 10:45	Y	8.29	8.45	18.0	-73	0.00	54.8	11.2	Y	18.46	1.015	-	-	-		-	-	N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH01_IN T_T_002	25	2022-09-23 11:45	Y	8.39	9.60	18.0	-112	0.00	30.8	11.1	Y	18.42	1.012		-	-		-	-	N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH01_IN T_T_002	30	2022-09-23 12:45	Y	8.40	10.92	17.6	-129	0.00	19.2	10.9	Y	18.70	1.015	-	-	-		-	-	N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH01_IN T_T_002	38	2022-09-23 13:45	Y	8.58	11.33	17.3	-150	0.00	14.8	10.7	Y	18.65	1.015	-	-	-		-	-	N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH01_IN T T 002		2022-09-24 9:15			-					-	Y	51.17			-					Y	Collected during sampling from run #1
IG_BH01_IN T_T_002	-	2022-09-24 13:20	Y	9.70	10.83	13.7	-120	0.00	36.0	8.50	Y	49.10	1.012	Y	0.631	2.19	0.09	0	18	Y	Collected during sampling from run #3. Horiba parameters collected by running sample through horiba flow through cell
IG_BH01_IN T_T_002		2022-09-24 13:30	Y	9.14	11.96	13.9	-137	0.00	35.0	8.61	Y		-	-	-	-		-	-	Y	Collected during sampling from run #3. Parameters collected after 10min of sample sitting in horiba flow through cell
IG_BH01_IN T_T_002		2022-09-24 13:45	Y	8.80	12.18	14.0	-136	0.00	29.9	8.71	Y				-	-		-	-	Y	Collected during sampling from run #3. Parameters collected after 25min of sample sitting in horiba flow through cell
IG_BH01_IN T_T_002		2022-09-24 16:25		-	-		-			-	Y	50.05	-		-	-	-		-	Y	Collected during sampling from run #5

Completed by:	MDK, MEOR	Verified by:	AMSC	
Date:	24-Sep-22	Date:	24-Oct-22	

Well ID: MP38 Water Level Before Samp	•					IG_BH0 29.39	1			m BTOC		g Ambient Press	ure	7:40 96.64	kPa		Other N	lotes/Comments:	IG BH01 GW0	35 - Primary Sample
MP38 Water Level After Samplin	ng:					32.97				m BTOC	End Sa	ampling Time		17:56						
Probe Serial #/Range					1	EMS528	8			kPa	Ending	g Ambient Pressu	ire	94.75	kPa					
Date:					1	24-Sep-2	22													
				Funct	ion Tes	ts/Prep	aration							Sampling Sequence						
Sampling Run Start Date/Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre- sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post- sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
2022-09-24 8:19	IG_BH01_INT _T_002	1	x	x	x	x	×	x	x	8726.79	x	8722.29	×	212	8712.06	x	x	8716.96		Collected by landing probe on the sampling port. Run #1 used to collect field filtered parameters (metals, sulphide,DOC, 5 ¹ °C-DIC), Ammonia, Nutrients, and FI.
2022-09-24 9:58	IG_BH01_INT _T_002	2	x	x	x	x	x	x	x	8705.15	x	8701.87	x	87	8698.59	x	x	8701.86	11:22	Collected by landing probe on the sampling port. Run #2 used to collect noble gas and Archive sample.
2022-09-24 12:08	IG_BH01_INT _T_002	3	x	x	x	x	x	x	x	8711.28	x	8707.19	×	262	8696.54	x	x	8702.66	13:12	Collected by landing probe on the sampling port. Run #3 used to collect in-field analysis and non-field filtered parameters (Relative Silica and Anions).
2022-09-24 13:52	IG_BH01_INT _T_002	4	×	x	x	x	x	x	x	8698.60	x	8695.33	x	113	8690.42	x	x	8694.91		Collected by landing probe on the sampling port. Run #4 used to collect noble gas and ¹⁴ C-DIC
2022-09-24 15:32	IG_BH01_INT _T_002	5	x	x	x	x	x	x	x	8705.15	x	8701.87	x	243	8690.82	x	x	8696.95		Collected by landing probe on the sampling port. Run #5 used to collect ठ ¹⁶ O, ठ ² H, ³ H and ⁸⁷ SR/ ⁸⁶ SR
2022-09-24 17:08	IG_BH01_INT _T_002	6	x	x	x	x	x	x	x	8702.70	x	8699.43	x	240	8688.78	x	x	8694.50		Collected by landing probe on the sampling port. Run #6 used to collect $^{127}I,^{38}CI$ and $\delta^{17}CI$

Completed by:	MDK, MEOR	Verified by:	AMSC
Date:	24-Sep-22	Date:	24-Oct-22

Well ID:	IG_BH03	Multiparameter Pro	Horiba U52 (SN. PDWJB880)	Other Notes/Comments	IG BH03 GW017 - Primary Sample
Date(s):	Sept 17, 2022 to Sept 21, 2022	Fluorometer:	AquaFluor (SN.807511)		IG BH03 GW018 - Duplicate Sample
Operato	(s): MdK, MEOR	Colorimeter:	DR900 (SN. 200660001027)		

	q					Multipara	ameter P	robe			F	luorometer	Hydrometer		C	olorimetric		Alka	linity		
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ^{2*} (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sampl e Collec ted (Y/N)	Comments
IG_BH03_INT _T_002	2	2022-09-17 13:00	Y	8.86	15.14	26.8	199		8.2	16.6	Y	19.09		-	-	-	-	1	-		Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT _T_002	6	2022-09-17 14:00	Y	8.43	14.31	45.9	75	0.65	25.0	28.0	Y	13.54	-	-	-	-		-	-		Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT _T_002	10	2022-09-17 15:00	Y	8.70	15.23	44.0	40	0.32	14.9	26.8	Y	13.52	-	-		-		1	-		Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT _T_002	18	2022-09-17 16:30	Y	8.83	12.22	43.6	39	0.49	50.9	26.6	Y	13.52	-	1	-	-	-	1	-	N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH03_INT T 002	-	2022-09-19 14:25	-				-		-		Υ	2.804		1			-	-		Y	Collected during sampling from run #2
IG_BH03_INT _T_002	-	2022-09-20 14:15	Y	7.28	17.54	47.4	-46	0.00	27.6	28.9	Y	2.676	1.037	Y	0.602	2.065	0.307	0	18		Collected during sampling from run #6. Horiba parameters collected by running sample through horiba flow through cell; A lot of floculant was observed in sulfide analysis.
IG_BH03_INT _T_002		2022-09-20 14:25	Y	7.13	19.95	46.3	-112	0.00	14.8	28.3	-	-		-				-		Y	Collected during sampling from run #6. Parameters collected after 10min of sample sitting in horiba flow through cell
IG_BH03_INT _T_002		2022-09-20 14:40	Y	7.00	20.38	46.7	-145	0.00	15.8	28.5	-	-		-				-		Y	Collected during sampling from run #6. Parameters collected after 25min of sample sitting in horiba flow through cell
IG_BH03_INT T 002		2022-09-21 13:30					-		-		Υ	2.898		-		-	-	-	-	Y	Collected during sampling from run #11

Completed by:	MDK, MEOR	Verified by:	AMSC
Date:	21-Sep-22	Date:	24-Oct-22

																1 🗆			
Well ID:					ŀ	G_BH03	3				Star	t Time		9:00 ; 7:55; 8:00		Of	her Notes/Comments:	IG BH03 GW0	17 - Primary Sample
MP38 Water Leve	el Before Samp	ling:			83.10	; 83.48; 8	84.10			m BTOC	Star	ting Ambient Pressu	re	94.75; 95.87; 95.66	kPa			IG BH03 GW0	18 - Duplicate Sample
MP38 Water Leve	el After Samplir	ig:			83.52	; 84.25; 8	84.01			m BTOC	End	Sampling Time		16:00 ; 20:15: 15:05					
Probe Serial #/Ra	nge				EMS49	960/ EMS	S 5288				End	ing Ambient Pressur	е	95.93; 95.06: 96.55	kPa				
Date:				19-S	ep-22 ; 2	0-Sep-2	2; 21-Sep	-22											
				Functi	ion Tes	ts/Prep	aration							Sampling Sequence					
Sampling Run Start Date/Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve Shoe-In	Landed Westbay MP38 Pressure (post-sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
2022-09-19 9:56	IG_BH03_INT _T_002	1	x	x	x	x	×	x	x	8137.91	x	8323.83	x	N/A	N/A	x x	N/A		Pressures did not stabilize, no water was collected during run. Changed sampler probe (to EMS5288) to troubleshoot issue.
2022-09-19 12:29	IG_BH03_INT _T_002	2	x	x	x	x	x	x	x	8124.72	x	8325.61	x	120	8294.98	x x	8124.31	14:20	Collected by landing probe on the sampling port. Run #2 used to collect noble gas and Ruthenium samples
2022-09-19 14:58	IG_BH03_INT T 002	3	x	x	x	x	x	x	x	8134.96	x	8311.75	x	288	8182.70	x x	8134.11	15:51	Collected by landing probe on the sampling port. Run #3 used to collect #SR/#7SR sample and Ammonia
2022-09-20 8:39	IG_BH03_INT _T_002	4	x	x	x	x	x	x	x	8134.13	x	8314.19	x	426	8190.86	x x	8133.29	9:38	Collected by landing probe on the sampling port. Run #4 used to collect filtered samples (metals, DOC, sulfide, 6 ¹³ C-DIC, archive)
2022-09-20 10:51	IG_BH03_INT _T_002	5	×	x	x	x	x	×	x	8121.05	x	8250.47	x	75	8216.17	x x	8120.23	11:58	Collected by landing probe on the sampling port. Run #5 used to collect noble gas
2022-09-20 12:50	IG_BH03_INT T 002	6	x	x	x	x	x	х	x	8132.50	x	8253.76	x	471	8130.39	x	8131.66	13:52	Collected by landing probe on the sampling port. Run #6 used to collect field parameters, reactive silica, and nutrients
2022-09-20 14:54	IG_BH03_INT T 002	7	x	x	x	x	x	x	x	8119.02	x	8205.98	x	95	8171.68	x x	8119.01	15:56	Collected by landing probe on the sampling port. Run #7 used to collect noble gas
2022-09-20 19:01	IG_BH03_INT _T_002	8	x	x	x	x	x	x	x	8130.46	x	8242.33	x	437	8118.6	x x	8129.62	19:53	Collected by landing probe on the sampling port. Run #8 used to collect 500mL general bottle for BVL
2022-09-21 8:42	IG_BH03_INT _T_002	9	x	x	x	x	x	x	x	8131.29	x	8279.02	x	394	8152.9	x x	8130.44	9:40	Collected by landing probe on the sampling port. Run #9 used to collect MCDIC bottles
2022-09-21 10:35	IG_BH03_INT _T_002	10	x	x	x	x	x	x	x	8130.48	x	8215.5	x	566	8096.55	x x	8130.03	11:34	Collected by landing probe on the sampling port. Run #10 used to collect bottles for 6 th 0, 8 ³ H, ³ H
2022-09-21 12:27	IG_BH03_INT _T_002	11	x	x	x	x	x	x	x	8130.47	x	8169.67	x	400	8044.71	x x	8130.03	13:28	Collected by landing probe on the sampling port. Run #11 used to collect bottles for & Cl and FI measurement.
2022-09-21 14:15	IG_BH03_INT _T_002	12	x	×	x	x	×	x	×	8130.49	x	8132.11	x	393	8008.8	x x	8129.63	15:05	Collected by landing probe on the sampling port. Run #12 used to collect bottles for $^{\rm VPI,\ WCI}$

Note: Record field parameter measurements on 20-203-01: Field Parameter Measurement/Testina - Field Data Sheet

 Completed by:
 MDK. MEOR
 Verified by:
 AMSC

 Date:
 21-Sep-22
 Date:
 24-Oct-22

Well ID: Date(s): Operator(s):		22-Sept-22 ;	IG_B⊦ 25-Se dK, M	p-22; 26-S	ep-22	Multiparame Fluorometer Colorimeter:			A	ba U52 (SN quaFluor (\$ 900 (SN. 20	SN.80	7511)				Other Notes/Con	mments	IG BH05 G IG BH05 G IG BH05 G IG_BH05_G	W007 - Rinsa	ate San te Samp	nple Ne
	pe				1	Multipa	rameter P	robe			Fl	uorometer	Hydrometer			Colorimetric	1	Alka	linity	lected	
Port ID	Cumulative Purge/Samplec Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescei n (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sample Collec (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH05_IN T_T_007	2	2022-09-22 10:05	Y	7.81	10.05	16.6	-97	0.40	120	10.3	Y	13.47	1.020	-	-		-			N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH05_IN T_T_007	10	2022-09-22 11:00	Y	8.22	7.88	16.0	-112	0.00	64.9	9.93	Y	13.94	1.017	-	-		-	-		N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH05_IN T_T_007	15	2022-09-22 12:00	Y	7.86	11.35	15.0	-117	0.02	40.2	9.32	Y	13.28	1.015	-	-		-			N	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH05_IN T_T_007	18	2022-09-22 13:00	Υ	7.76	10.66	15.10	-123	0.16	54.2	9.36	Υ	13.35	1.010	-	-		-			Ν	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH05_IN T_T_007	30	2022-09-22 14:00	Υ	7.75	8.66	15.1	-101	0.69	57.8	9.36	Y	13.13	1.015	-	-		-	-		Ν	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH05_IN T_T_007	35	2022-09-22 14:50	Υ	7.75	9.53	14.8	-102	0.98	55.6	9.23	Υ	13.40	1.015	-	-		-		-	Ν	Collected during purging using solinst bladder pump lowered to ~85 mBTOC with Mosdax probe landed on port and valve opened.
IG_BH05_IN T T 007		2022-09-25 9:50		-	-	-			-	-	Υ	2.679	-	-	-		-		-	Y	Collected during sampling from run #1
IG_BH05_IN T_T_007		2022-09-25 15:00	Y	9.64	10.28	17.6	-112	0.04	22.5	10.9	Y	2.212	1.011	Y	0.427	2.73	0.90	0	180	Y	Collected during sampling from run #4. Horiba parameters collected by running sample through horiba flow through cell; Sulfide and Ferrous Iron initially exceeded detection limit, therefore were diluted
IG_BH05_IN T T 007		2022-09-25 15:10	Υ	8.60	11.80	17.2	-148	0.00	32.5	10.7			-	-	-		-			Υ	Collected during sampling from run #4. Parameters collected after 10min of sample sitting in horiba flow through cell
IG_BH05_IN T_T_007		2022-09-25 15:25	Υ	8.17	11.90	17.3	-159	0.00	24.3	10.7			-	-	-		-			Y	Collected during sampling from run #4. Parameters collected after 25min of sample sitting in horiba flow through cell
IG_BH05_IN T_T_007		2022-09-26 14:45	-	-	-	-		-	-	-	Y	4.146	-	-	-		-			Y	Collected during sampling from run #9
IG_BH05_IN T T 007		2022-09-26 16:10	-	-	-	-			-	-	Υ	4.822	-	-	-		-			Υ	Collected during sampling from run #10

Completed by:	MDK, MEOR	Verified by:	AMSC
Date:	26-Sep-22	Date:	24-Oct-22

Vell ID: //P38 Water Leve //P38 Water Leve						IG_BH 0; 76.99 07; 77.47	9; 77.3			m BTOC m BTOC		Time ng Ambient Press sampling Time	ure	8:00; 7:45; 9:20 95.24; 97.14; 98.14 16:35; 16:10; 11:00	kPa		Other N	lotes/Comments:	IG BH05 GV	V005 - Primary Sample V006 - Duplicate Sample V007 - Rinsate Sample
Probe Serial #/Ra Date:	inge			25-S		EMS 52 26-Sep		-Sep-22			Endin	g Ambient Pressu	ıre	95.96; 96.99; 97.83	kPa				IG_BH05_GV	V008 - Blank Sample
			F	unctio	on Te	sts/Pre	parat	ion						Sampling Sequence						
Sampling Run Start Date/Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre- sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post-sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post- sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
2022-09-25 8:47	IG_BH05_INT _T_007	1	x	x	x	x	×	x	x	6741.70	x	7016.27	x	441	7003.18	x	x	6741.22	9:43	Collected by landing probe on the sampling por Run #1 used to collect noble gas and nutrients
2022-09-25 10:25	IG_BH05_INT _T_007	2	x	x	x	x	x	x	x	6752.71	x	7014.65	x	862	6997.46	x	x	6751.38	11:25	Collected by landing probe on the sampling por Run #2 used to collect metals, DOC, Sulphide, Reactive Silica and Ammonia.
2022-09-25 12:10	IG_BH05_INT _T_007	3	x	x	x	x	x	x	x	6740.07	x	7013.43	x	482	6997.07	x	x	6739.59	13:03	Collected by landing probe on the sampling por Run #3 used to collect noble gases and ruthenium
2022-09-25 13:43	IG_BH05_INT _T_007	4	×	x	x	x	×	x	x	6750.67	x	7013.03	x	928	6996.24	x	x	6749.75	14:44	Collected by landing probe on the sampling por Run #4 used to collect in-field analysis and general chemistry bottles.
2022-09-25 15:36	IG_BH05_INT _T_007	5	x	x	x	x	x	x	x	6741.70	x	7012.21	x	661	6997.47	x	x	6740.80	16:31	Collected by landing probe on the sampling por Run #5 used to collect noble gases and Archiv
2022-09-26 8:22	IG_BH05_INT _T_007	6	x	x	x	x	x	x	x	6751.53	x	7017.55	x	966	7001.94	x	x	6750.57	9:15	Collected by landing probe on the sampling por Run #6 used to collect ठ¹³C-DIC and¹4C-DIC
2022-09-26 10:08	IG_BH05_INT _T_007	7	x	x	x	x	x	x	x	6750.69	x	7015.06	x	993	6999.9	x	x	6749.34	11:08	Collected by landing probe on the sampling por Run #7 used to collect δ ^{ss} O, δ ² H, ³ H
022-09-26 11:52	IG_BH05_INT _T_007	8	x	x	x	x	x	x	x	6750.26	x	7013.03	x	921	6997.05	x	x	6748.94	12:43	Collected by landing probe on the sampling por Run #8 used to collect δ ^{se} O, δ ² H, ³ H
2022-09-26 13:37	IG_BH05_INT _T_007	9	x	x	x	x	x	x	x	6749.86	х	7011.81	x	885	6994.2	x	х	6748.13	14:30	Collected by landing probe on the sampling por Run #9 used to collect 5 ³⁷ Cl and Fl
2022-09-26 15:18	IG_BH05_INT _T_007	10	×	x	x	x	×	x	x	6749.04	x	7010.99	x	921	6995.01	x	x	6747.31	16:10	Collected by landing probe on the sampling por Run #10 used to collect ^{se} SR/ ^{sr} SR and FI
2022-09-26 9:57	IG_BH05_INT T 007	11	x	x	х	х	x	х	x	6750.28	x	7016.71	x	930	7001.94	х	х	6748.53	10:55	Collected by landing probe on the sampling port. Run #11 used to collect ¹²⁷ I. ³⁸ Cl

Completed by:	MDK, MEOR	Verified by:	AMSC
Date:	26-Sep-22	Date:	24-Oct-22

	1			S	hipping Inform	ation			Receiving	Informatio	n	
COC Number/ID	Sample ID(s)	Shipped Date	Shipped Time	Temp. Shipped (deg C)	COC Signed by Geofirma (Y/N)	Shipping Address	Shipping Method	Received Date	Received Time	Temp Received (deg C)	COC Signed By Receiving Lab (Y/N)	
GFIM_BVL_0009	IG_BH03_GW017 IG_BH03_GW018	21-Sep-22	12:30	8	Y	Bureau Veritas Labs 946 Cobalt Crescent Thunder Bay, ON	Purolator	22-Sep-22	11:12	4,2,3	Y	
GFIM_BVL_0010	IG_BH01_GW035 IG_BH05_GW005 IG_BH05_GW006 IG_BH05_GW007	26-Sep-22	10:30	4	Y	Bureau Veritas Labs 946 Cobalt Crescent Thunder Bay, ON	Purolator	28-Sep-22	16:24	1,2,1	Y	
GFIM_NWMO_0006	IG_BH03_GW017 IG_BH03_GW018 IG_BH01_GW035 IG_BH05_GW005 IG_BH05_GW006	27-Sep-22	13:00	5	Y	Ignace	Hand delivered	27-Sep-22	13:15	6	Y	Archive Samples
GFIM_IT2_0006	IG_BH03_GW017 IG_BH03_GW018 IG_BH01_GW035 IG_BH05_GW005 IG_BH05_GW006 IG_BH05_GW008	28-Sep-22	13:05	4	Y	608 Weber St. N Unit3, Waterloo, ON N2V 1K4	Purolator	29-Sep-22	n/a	n/a	Y	
GFIM_UofO_0006	IG_BH03_GW017 IG_BH03_GW018 IG_BH01_GW035 IG_BH05_GW005 IG_BH05_GW006	04-Oct-22	11:30	<10 (on ice)	Y	25 Templeton St., Ottawa ON K1N 6N5	Hand delivered	04-Oct-22	11:30	n/a	Y	

Completed by:	MDK	Verified by:	AMSC
Date:	05-Oct-22	Date:	24-Oct-22

Laboratory Report Date	25-Nov-22									
Laboratory Name	Bureau Veritas									
Laboratory Report ID (If applicable)	C2R5589. C2S0594									
Analyses Completed	Major and Trace Elements and Metals; Total dissolved sulphur; Total dissolved iron; Reactive silica; Sulphide; Anions; pH; Alkalinity; Fluoride; TIC; TOC; DOC; TKN; Total Phosphorus; Total Ammonia; Total Nitrogen; Carbonate, Bicarbonate and Hydroxide									
Associated COC #(s)	GFI	M_BVL_0009, GFIM	_BVL_0010							
Samples Included in Laboratory Repo	rt									
	IG_BH03_GW017 IG_BH03_GW018 IG_BH01_GW035 IG_BH05_GW005 IG_BH05_GW006 IG_BH05_GW007									
Quality Check and Verification		Verified By (Initials)	Comments							
Results received from laboratory		AMSC								
All samples were tested or accounted for. spare sample)	Justification provided for any untested samples (e.g.	AMSC								
Laboratory data report provided with resul	ts	AMSC								
Laboratory testing methods/techniques in	cluded in data report	AMSC								
Laboratory QA procedures and equipmen	t calibration included in data report	AMSC								
Laboratory results are within reasonable/e	xpected range	AMSC	See notes below							

Other Comments/Notes: -Report #C2R5599: Some discrepancies between samples IG_BH03_GW017 and IG_BH03_GW018 for TKN analysis (and associated total Nitrogen calc). Geofirma reached out to lab to confirm reported results and to re-run TKN analysis, if possible. Awaiting response. [AMSC 14-Nov-22] -Lab re-ran samples for TKN (and associated Nitrogen calc) and the repreated results were lower and more inline with the original result reported for IG_BH03_GW017. The lab is investigating the discreptancy. [AMSC 29-Nov-22]

-Geofirma asked lab to correct the sample IDs : changing the hyphens (-) to underscores (_). Awaiting corrected lab reports. [AMSC 14-Nov-22] -Corrected lab report received. [AMSC 29-Nov-22]

Completed by:	AMSC	Verified by:	SNS
Date:	14-Nov-22	Date:	18-Nov-22

Laboratory Report Date	24-Mar-23								
Laboratory Name	Isotope Tracer Technologies (IT2)								
Laboratory Report ID (If applicable)		220901							
Analyses Completed	18-0, 2-	H, 3-H, 87-Sr/86-Sr, 37	-Cl, 13-C, 14-C						
Associated COC #(s)		GFIM_IT2_0006							
Samples Included in Laboratory Report	t								
	IC_BH03_GW017 IG_BH03_GW018 IG_BH01_GW035 IG_BH05_GW005 IG_BH05_GW006 IG_BH05_GW008								
Quality Check and Verification		Verified By (Initials)	Comments						
Results received from laboratory		AMSC							
All samples were tested or accounted for. spare sample)	lustification provided for any untested samples (e.g.	AMSC							
Laboratory data report provided with result	3	AMSC							
Laboratory testing methods/techniques inc	luded in data report	AMSC							
Laboratory QA procedures and equipment	calibration included in data report	AMSC							
Laboratory results are within reasonable/ex	pected range	AMSC							

Other Comments/Notes:

Partial results received from lab as a draft. Awaiting 14-C results and official lab report. [10-Jan-2023]

Final report received. [24-Mar-2023]

Completed by:	AMSC	Verified by:	CAM
Date:	29-Mar-23	Date:	18-Jul-23

Laboratory Report Date	01-Mar-2023; 27-Apr-2023; 19-Jun-2023									
Laboratory Name	University of Ottawa - Hydrogeochemistry Laboratory									
Laboratory Report ID (If applicable)		N/A								
Analyses Completed		129-I, 36-CI, Noble G	ases							
Associated COC #(s)		GFIM_UofO_000	6							
Samples Included in Laboratory Repo	rt									
	IG_BH03_GW017 IG_BH03_GW018 IG_BH01_GW035 IG_BH05_GW005 IG_BH05_GW006									
Quality Check and Verification		Verified By (Initials)	Comments							
Results received from laboratory		AMSC								
All samples were tested or accounted for. spare sample)	Justification provided for any untested samples (e.g.	AMSC								
Laboratory data report provided with result	s	AMSC								
Laboratory testing methods/techniques inc	luded in data report	AMSC								
Laboratory QA procedures and equipment	calibration included in data report	AMSC								
Laboratory results are within reasonable/e	kpected range	AMSC								
1										

Results provided by the University of Ottawa in three separate reports for 36Cl, 129I, and noble gases.

Note: A copy of this form is to be complete for each laboratory data report that is received by Geofirma

Other Comments/Notes:

Completed by:	AMSC	Verified by:	CAM
Date:	10-May-23	Date:	18-Jul-23
8			

2022 Q4 (December) Data Quality Workbook (DQC)

Borehole ID:	BH01, BH03, BH05, BH06	Comments:
Date:	Nov 30 - Dec 14, 2022	
Completed by:	AMSC, KBT [IG_BH01_T_INT_007] [IG_BH01_T_INT_002] [IG_BH03_T_INT_021]	
Sampling Interval:	[IG_BH05_T_INT_005] [IG_BH06_T_INT_008]	

						Decontam				
Equipment	Date/Time	Decontamination Required (Y/N)			Loose Contamination Removed	Detergent Wash (record type of detergent used)	Dionized Water Rinse	Air Dried (Minimize Dust)	Rinsate Sample Collected (Y/N)	Comments
Electronic Water Level Tape	2022-11-30 8:15	Y	BH03	Y	Y	Y	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-11-30 8:45	Y	BH03	Y	Y	Y	Y	Y	N	
Electronic Water Level Tape	2022-12-01 7:30	Y	BH01	Y	Y	Y	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-12-01 8:15	Y	BH01	Y	Y	Y	Y	Y	N	
Westbay sample bottles (x8)	2022-12-01 14:30	Y	BH01	Y	Y	Y	Y	Y	N	
Electronic Water Level Tape	2022-12-04 8:05	Y	BH06	Y	Y	Y	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-12-04 8:05	Y	BH06	Y	Y	Y	Y	Y	N	
Westbay sample bottles (x8)	2022-12-04 12:00	Y	BH06	Y	Y	Y	Y	Y	Y	IG_BH05_GW009 (Rinsate)
Electronic Water Level Tape	2022-12-06 9:00	Y	BH03	Y	Y	Y	Y	Y	Ν	
MOSDAX sampler probe EMS 5230	2022-12-06 8:45	Y	BH03	Y	Y	Y	Y	Y	N	
Westbay sample bottles (x4)	2022-12-06 9:00	Y	BH03	Y	Y	Y	Y	Y	Ν	
MOSDAX sampler probe EMS 5288	2022-12-06 12:40	Y	BH03	Y	Y	Y	Y	Y	N	
Electronic Water Level Tape	2022-12-07 14:00	Y	BH01	Y	Y	Y	Y	Y	N	
Bladder Pump	2022-12-07 14:00	Y	BH01	Y	Y	Y	Y	Y	N	
MOSDAX sampler probe EMS 4960	2022-12-08 13:00	Y	BH01	Y	Y	Y	Y	Y	N	
Westbay sample bottles (x5)	2022-12-08 13:00	Y	BH01	Y	Y	Y	Y	Y	Ν	
MOSDAX sampler probe EMS 4960	2022-12-10 15:00	Y	BH05	Y	Y	Y	Y	Y	N	
Electronic Water Level Tape	2022-12-10 15:00	Y	BH05	Y	Y	Y	Y	Y	N	
Bladder Pump	2022-12-11 14:00	Y	BH05	Y	Y	Y	Y	Y	N	
Westbay sample bottles (x6)	2022-12-12 11:00	Y	BH05	Y	Y	Y	Y	Y	N	
MOSDAX sampler probe EMS 4960	2022-12-14 15:30	Y	BH03	Y	Y	Y	Y	Y	N	
Electronic Water Level Tape	2022-12-14 15:30	Y	BH03	Y	Y	Y	Y	Y	Ν	

Completed by:	AMSC	Verified by:	MdK
Date:	14-Dec-22	Date:	13-Jan-23

	_	ime Personnel Equipment Type Serial N				Cali k Method & Standard(s)	bration Check			pration Performed	Calibration	
Date	Time	Personnel	Equipment Type	Serial Number	Chec	k Method & Standard(s) Used	Equipment Reading(s)	Calibration Required (Y/N)	Calibration Method & Standard(s) Used	Equipment Reading(s)	Completed (Y/N)	Comments
30-Nov-22	9:35	AMSC	MOSDAX Probe	EM\$5230	м	anual WL/P vs. Probe P	Manual P (anticipated) = 654.08 KPa; Probe P (measured) = 659.58 Kpa	N	-	-	-	
30-Nov-22	6:15	КВТ	Fluorometer	807511		-	-	1	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.971 99.94		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
30-Nov-22	6:00	AMSC	HoribaU52	21214		ab provided solutions; 4.00, 7.00, 10.00	3.98 7.00 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.49 mS/cm 0.0 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE998), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
30-Nov-22	6:15	AMSC	DR900	200660001027	e Std Test Kit	520nm: Blank: 0.00 Ski 1: 0.597 ± 0.05 Ski 2: 1.257 ± 0.10 Ski 3: 1.890 ± 0.15 610nm:	520nm: Blank: 0.000 Std 1: 0.603 Std 2: 1.271 Std 3: 1.913 610nm:	N	-	-		Cal checked using DR900 absorbance check kit (LOT# A2294)
					支	Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 ± 0.15	Blank: 0.000 Std 1: 0.569 Std 2: 1.196 Std 3: 1.792	N		-	-	
01-Dec-22	6:00	AMSC	Fluorometer	807511			-			0.000 10.07 99.60		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
02-Dec-22	6:00	КВТ	HoribaU52	21214	L	ab provided solutions; 4.00, 7.00, 10.00	3.98 7.02 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.98 4.49 mS/cm 0.0 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT#1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
02-Dec-22	6:00	КВТ	Fluorometer	807511		-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.958 99.96		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
03-Dec-22	7:00	KBT	Fluorometer	807511			-	1	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.001 9.984 99.99		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
03-Dec-22	7:15	КВТ	HoribaU52	21214	L	ab provided solutions; 4.00, 7.00, 10.00	3.99 7.00 10.01	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.49 mS/cm 0.5 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT#1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
03-Dec-22	7:00	KBT	DR900	200660001027	Std Ter	520nm: Blank: 0.00 Std 1: 0.597 ± 0.05 Std 2: 1.257 ± 0.10 Std 3: 1.890 ± 0.15	520nm: Blank: 0.000 Std 1: 0.598 Std 2: 1.269 Std 3: 1.908	N	-	-		Cal checked using DR900 absorbance check kit (LOT# A2294)
					Absorbance:	610nm: Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 ± 0.15	610nm: Blank: 0.000 Std 1: 0.565 Std 2: 1.185 Std 3: 1.801	N	-	-	-	(had only)
04-Dec-22	6:15	AMSC	Fluorometer	807511		-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.971 99.96		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
04-Dec-22	6:25	КВТ	HoribaU52	21214	L	ab provided solutions; 4.00, 7.00, 10.00	3.99 7.00 10.01	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.52 mS/cm 0.0 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
04-Dec-22	6:25	AMSC	DR900	200660001027	Std Test K	520nm: Blank: 0.00 Std 1: 0.597 ± 0.05 Std 2: 1.257 ± 0.10 Std 3: 1.890 ± 0.15	520nm: Blank: 0.000 Std 1: 0.611 Std 2: 1.277 Std 3: 1.916	N		-		Cal checked using DR900 absorbance check kit (LOT# A2294)
					Absorbance	610nm: Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 + 0.15	610nm: Blank: 0.000 Std 1: 0.576 Std 2: 1.198 Std 3: 1.791	N	-	-		A2234)
05-Dec-22	6:45	КВТ	Fluorometer	807511		-	-	1	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.959 100.1		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
05-Dec-22	7:00	AMSC	HoribaU52	21214	L	ab provided solutions; 4.00, 7.00, 10.00	3.99 7.01 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.49 mS/cm 0.0 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE998), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
05-Dec-22	6:50	КВТ	DR900	200660001027		520nm: Blank: 0.00 Skt 1: 0.597 ± 0.05 Skt 2: 1.257 ± 0.10 Skt 3: 1.890 ± 0.15 610nm:	520nm: Blank: 0.000 Std 1: 0.620 Std 2: 1.275 Std 3: 1.910 610nm:	N	-	-	-	Cal checked using DR900 absorbance check kit (LOT# A2294)
					Absorbance	Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 ± 0.15	Blank: 0.000 Std 1: 0.579 Std 2: 1.197 Std 3: 1.798	N	-	-		(ALLOW)
06-Dec-22	6:45	КВТ	Fluorometer	807511		-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.001 9.986 99.93		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
06-Dec-22	7:00	AMSC	HoribaU52	21214	L	ab provided solutions; 4.00, 7.00, 10.00	4.00 7.00 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.48 mS/cm 0.1 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE988), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
06-Dec-22	7:00	KRT	DB900	200550001027	Std Test Ki	520nm: Blank: 0.00 Std 1: 0.597 ± 0.05 Std 2: 1.257 ± 0.10 Std 3: 1.890 ± 0.15	520nm: Blank: 0.000 Std 1: 0.609 Std 2: 1.273 Std 3: 1.905	N		-		Cal checked using DR900 absorbance check kit (LOT#
0000011	1.00	ND1	51050	10000001011	Absorbance	610nm: Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 ± 0.15	610nm: Blank: 0.000 Std 1: 0.549 Std 2: 1.186 Std 3: 1.782	N		-		A2294)
07-Dec-22	6:40	КВТ	Fluorometer	807511		-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.960 99.98		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
07-Dec-22	6:45	AMSC	HoribaU52	21214	L	ab provided solutions; 4.00, 7.00, 10.00	3.99 7.00 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.49 mS/cm 0.1 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE999), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
07-Dec-22	6:50	KBT	DR900	200660001027	Std Test Ki	520nm: Blank: 0.00 Std 1: 0.597 ± 0.05 Std 2: 1.257 ± 0.10 Std 3: 1.890 ± 0.15	520nm: Blank: 0.001 Std 1: 0.612 Std 2: 1.272 Std 3: 1.911	N	-	-	-	Cal checked using DR900 absorbance check kit (LOT#
ur-Dec-22	6:50	KB1	DK300	200660001027	Absorbance:	610nm: Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 ± 0.15	610nm: Blank: 0.000 Std 1: 0.562 Std 2: 1.199 Std 3: 1.809	N	-	-	-	A2294)
08-Dec-22	6:25	AMSC	Fluorometer	807511		-	-	-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.929 100.1		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024

08-Dec-22	6:30	KBT	HoribaU52	21214		Lab provided solutions; 4.00, 7.00, 10.00	4.00 7.00 10.00	N	Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.42 mS/cm 0.1 NTU		Calbrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
08-Dec-22	6:35	AMSC	DR900	200660001027	Std Test Kit	520nm: Blank: 0.00 Std 1: 0.597 ± 0.05 Std 2: 1.257 ± 0.10 Std 3: 1.890 ± 0.15	520nm: Blank: 0.000 Std 1: 0.618 Std 2: 1.273 Std 3: 1.930	N		-	1	Cal checked using DR900 absorbance check kit (LOT#
0000011	0.35	Alloo	Diabo	10000001011	Absorbance	610nm: Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 ± 0.15	610nm: Blank: 0.000 Std 1: 0.580 Std 2: 1.201 Std 3: 1.812	N	-	-		A2294)
09-Dec-22	6:15	AMSC	Fluorometer	807511		-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 10.25 99.65		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
09-Dec-22	6:20	КВТ	HoribaU52	21214		Lab provided solutions; 4.00, 7.00, 10.00	3.98 7.00 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.98 4.48 mS/cm 0.1 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT#1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
10-Dec-22	6:45	KBT	Fluorometer	807511		-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 10.05 99.91		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
10-Dec-22	6:30	KBT	HoribaU52	21214		Lab provided solutions; 4.00, 7.00, 10.00	4.00 7.00 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.48 mS/cm 0.1 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
10-Dec-22	6:35	KBT	DR900	200660001027	Std Test Kit	520nm: Blank: 0.00 Std 1: 0.597 ± 0.05 Std 2: 1.257 ± 0.10 Std 3: 1.890 ± 0.15	520nm: Blank: 0.000 Std 1: 0.614 Std 2: 1.281 Std 3: 1.923	N	-	-		Cal checked using DR900 absorbance check kit (LOT#
10-De0-22	0.30	NBI	DRBO	20000001027	Absorbance	610nm: Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 + 0.15	610nm: Blank: 0.000 Std 1: 0.566 Std 2: 1.200 Std 3: 1.800	N	-	-		A2294)
11-Dec-22	7:00	KBT	Fluorometer	807511		-	-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.000 9.953 100.1		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
11-Dec-22	7:00	AMSC	HoribaU52	21214		Lab provided solutions; 4.00, 7.00, 10.00	4.00 7.02 10.00	N	Lab-provided auto callubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	4.00 4.47 mS/cm 0.0 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
12-Dec-22	6:40	KBT	Fluorometer	807511		-		-	3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb	0.004 9.964 99.93		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
12-Dec-22	6:45	KBT	HoribaU52	21214		Lab provided solutions; 4.00, 7.00, 10.00	3.99 7.02 10.00	N	Lab-provided auto caliubration solution 4.0 pH, 4.49mS/cm, 0.0NTU	3.99 4.48 mS/cm 0.0 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT# 1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
13-Dec-22	6:35	AMSC	Fluorometer	807511			-		3 pt calibration with standard solution, 0ppb, 10ppb, 100ppb Lab-provided auto	0.000 9.916 100.0		Calibrated using turner design fluorescein standards: 10ppb (LOT# 10F0730), 100ppb (LOT# 1F0732) Exp. Jan 2024
13-Dec-22	6:30	KBT	HoribaU52	21214		Lab provided solutions; 4.00, 7.00, 10.00	3.97 7.00 10.00	N	callubration solution 4.0 pH, 4.49mS/cm, 0.0NT11	3.97 4.48 mS/cm 0.0 NTU		Calibrated using lab provided solutions: AutoCal (LOT# 2GE898), pH 10.0 (LOT#1GI516), pH 7.0 (LOT# 2GE579), pH 4.0 (LOT#1GE539)
13-Dec-22	6:35	AMSC	DR900	200660001027	e Std Test Kit	520nm: Blank: 0.00 Std 1: 0.597 ± 0.05 Std 2: 1.257 ± 0.10 Std 3: 1.890 ± 0.15	520nm: Blank: 0.000 Std 1: 0.601 Std 2: 1.267 Std 3: 1.922	N	-	-		Cal checked using DR900 absorbance check kit (LOT#
					Absorbance	610nm: Blank: 0.00 Std 1: 0.556 ± 0.05 Std 2: 1.173 ± 0.10 Std 3: 1.764 ± 0.15	610nm: Blank: 0.000 Std 1: 0.572 Std 2: 1.203 Std 3: 1.799	N	-	-	-	A2294)
Completed by	y:	AMSC			Verif	ied by:	MdK		I			
Date:		14-Dec-22			Date		13-Jan-23		<u>l</u>			

Refer	Datum: Elev. G.S.: Day above G.S.: /estbay Casing: ence Elevation: Sorehole angle:	0.32 430.88 430.562 -90	m m AGS m mASL	Probe Type: Serial No.: Probe Range: Westbay Casing Type: Sampler Valve Position:	EMS5230 2000psi MP38			Temp.	2022-12-01 10:05	kPa °C mBTOC			Temp.	2022-12-01 16:05	kPa °C mBTOC	Weather: Specific Weight Gravitational Acceleratio P _{atm}	-12 Partly Sunny 9.807 9.8065 97.23	°C kN/m3 m/s2
Notes:	Sample interv Pressure profi			due to spooling issues	with winch.]
					-			Fluid Pressure F	Readings				•		P ¹ 1 1 1	7.51 (
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out	#Rotation	Outside Casing (P2) (kPa)	Time (H:M:S)	Probe Temp. (°C)	Shoe In	# Rotation		Pressure Head Outside Port (m) H=(P2- Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
1	. 977.3	973.16	976.91	11:10:00	9601.66	х	14	9625.42	11:11:00	13.79	х	14	9601.15	971.57	5.34	-546.35	425.22	
2	888.8	885.43	888.49	11:29:00	8702.08	x	14	8693.24	11:30:00	13.35	x	14	8701.88	876.52	11.97	-457.92	418.59	Confirmed measurement by remeasuring (P2 = 8692.92 Kpa). Normal pressure spike and stabilization observed on both measurements. Verified by AMSC. Currently being purged by NWMO.
3	804.4	801.61	804.14	11:47:00	7844.44	x	14	7846.35	11:49:00	12.44	x	14	7843.80	790.16	13.98	-373.58	416.58	Confirmed measurement by remeasuring (P2 = 7846.4 Kpa). Normal pressure spike and stabilization observed on both measurements.
4	769.3	766.18	769.06	12:03:00	7486.93	x	14	7473.55	12:04:00	12.01	x	14	7486.99	752.15	16.91	-338.50	413.65	Confirmed measurement by remeasuring (P2 = 7473.60 Kpa). Normal pressure spike and stabilization observed on both measurements.
5	703.1	700.39	702.90	12:19:00	6815.17	x	14	6818.15	12:20:00	11.34	×	14	6814.92	685.32	17.58	-272.33	412.99	Confirmed measurement by remeasuring (P2 = 6819.07 Kpa). Normal pressure spike and stabilization observed on both measurements.
6	649.8	647.11	649.62	12:36:00	6274.24	x	14	6282.10	12:38:00	10.74	×	14	6274.00	630.66	18.96	-219.06	411.60	Confirmed measurement by remeasuring (P2 = 6282.23 Kpa). Normal pressure spike and stabilization observed on both measurements.
7	628.4	626.07	628.23	12:50:00	6056.85	x	14	6068.36	12:52:00	10.46	x	14	6056.92	608.86	19.37	-197.67	411.19	Confirmed measurement by remeasuring (P2 = 6068.42 Kpa). Normal pressure spike and stabilization observed on both measurements.
8	574.4	571.86	574.26	13:07:00	5509.97		14	5536.01	13:09:00	9.99	x	14		554.58				Confirmed measurement by remeasuring (P2 = 5536.07 Kpa). Normal pressure spike and stabilization observed on both measurements.
9		538.07	540.07	13:22:00	5163.24	x		5200.32	13:24:00	9.59		13		520.35			410.84	
10		515.33 491.26	517.28 492.89	13:31:00 13:42:00	4932.26 4685.56	x	14	4981.26 4744.48	13:33:00 13:43:00	9.35		14 14		498.02	19.27	-86.72 -62.33	411.30	
12		430.79	432.01	13:57:00	4065.30		14	4143.11	1:58:00	8.39		14		412.55				
13	409.3	407.79	409.22	14:09:00	3839.14	x	14	3924.29	14:10:00	8.15	х	14	3839.22	390.24	18.98	21.34		
14		324.19	325.54	14:27:00	2992.27		14	3096.29	14:28:00	7.44		14		305.81			410.83	
15		306.12 230.09	307.25 231.17	14:37:00	2808.82	х	14 15	2921.68	14:39:00 14:54:00	7.07		14 15		288.00		123.31 199.40	411.32	
16		230.09	231.17 199.17	14:53:00 15:04:00	2039.96 1717.58	x		2180.37 1886.35	14:54:00	6.31 6.03		15		212.41			411.81 413.83	8
18		148.37	148.98	15:15:00	1212.80	x		1379.22	15:37:00	5.46		14		130.72	18.26			Trouble landing (no mag collar). AMSC verified.
19		127.80	128.48	15:44:00	1006.70	х		1173.12	15:45:00	5.43		14		109.71	18.78	302.08	411.79	
20	69.1	68.33	69.09	15:54:00	407.77	х	14	633.61	15:55:00	5.32	х	14	407.66	54.69	14.40	361.47	416.17	7
	1									1		\vdash			<u> </u>			
										1								

c	Completed by:	KBT, AMSC	Verified by:	MdK
C	Date:	01-Dec-22	Date:	13-Jan-23 / 30-Oct-23

	ay above G.S.:	442.702 441.403	m AGS m	Serial No.: Probe Range: Westbay Casing Type: ampler Valve Position:	MP38			Temp. Date/Time MP38 Water Level	2022-12-14 15:48	°C mBTOC			Temp. Date/Time MP38 Water Level	2022-12-14 19:34		Specific Weight Gravitational Accelerati P _{atm}	9.807 9.8065 95.79	kN/m3 m/s2
:	Communication profile with a Attempt #1 or Attempt #2 or	on issues wen combination n Nov 30 2022 n Dec 06 2022	e encounte of equipm 2 using EM 2 using EM	robes while pressure p ered during profiling ar ent including switching IS5230 - no success S5230 & EMS5288 - no d here) using EMS4960	nd increased with de g out probes, winche success	pth. T	, a poin	t where there was n	ot enough communica	tion to collect t	he pro	essure	e measurements from	n the two deepest inter	vals. Geofirma ma	de multiple attempts to	o complete the	
		Port	True Port		1	1	- 10	Fluid Pressure F	Readings	1		10		Pressure Head	Piezo Level	Z: Elev of pressure		
Port No.	Port Position From Log (m)	Position From Cable (m)	Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out	# rottions	Outside Casing (P2) (kPa)	Time (H:M:S)	Probe Temp. (°C)	Shoe In	# rottion:	Inside Casing (P1) (kPa)	Outside Port (m) H=(P2-Patm)/w	Outside Port (m) Dz = Dp-H	measurement port (mASL)	Freshwater Head (mASL)	Comments
1	. 966.8	967.13	888.57	18:07:00	8993.07	x	2		-					#VALUE!	#VALUE!	-447.17	#VALUE!	unable to shoe out, only 2-3 rotations. Seems to be some comms issue
2	943.9	941.07	868.28	17:53:00	8760.23	x	3		-					#VALUE!	#VALUE!	-426.88	#VALUE!	unable to shoe out, only 2-3 rotations. Seems to be som comms issue
3	924.0	921.84	850.53	17:48:00	8582.35	х	14	8267.85	17:49:00	12.51	х	14	8582.28	833.29	17.24	-409.13	424.16	
4	882.8	880.56	813.57	17:43:00	8208.31	×	14	7931.70	17:44:00	12.18	x	14	8208.39	799.01	14.56	-372.17	426.84	
5	859.9	857.86	792.89	17:39:00	7998.87	x	14	7708.44	17:40:00	11.86	x	14	7998.85	776.25	16.64	-351.49	424.76	
6	794.3	792.59	733.26	17:32:00	7394.61	x	14	7131.49	17:33:00	11.32	x	14	7394.04	717.42	15.84	-291.86	425.56	
7	752.8	752.50	695.28	17:26:00	7010.06	x	14	6801.65	17:27:00	10.89	x	14	7009.67	683.78	11.50	-253.88	429.91	P2 flagged as anomolous. Re-checked (P2 = 6801.75 kPa). Normal pressure spike a stabilization observed on both measurements.
8	676.0	675.73	624.50	17:18:00	6292.77	x	14	6156.22	17:19:00	10.23	x	14	6293.41	617.97	6.53	-183.10	434.87	P2 flagged as anomolous. Re-checked (P2 = 6156.44 kPa). Normal pressure spike a stabilization observed on both measurements.
9	637.8	638.37	589.28	17:10:00	5936.63	x	14	5903.19	17:11:00	9.94	x	14	5936.94	592.17	-2.89	-147.88	444.29	Re-checked (P2 = 5903.46 kPa). Normal pressure spike a stabilization observed on both measurements.
10	613.4	612.42	566.78	17:05:00	5708.63	x	15	5554.28	17:06:00	9.66	x	15	5708.80	556.59	10.19	-125.38	431.21	P2 flagged as anomolous Re-checked (P2 = 5554.95 kPa). Normal pressure spike a stabilization observed on both measurements.
11	. 567.7	567.39	524.65	16:57:00	5281.73	x	15	5132.75	16:58:00	9.27	x	15	5281.95	513.61	11.04	-83.25	430.36	P2 flagged as anomolous Re-checked (P2 = 5134.33 kPa). Normal pressure spike a stabilization observed on both measurements.
12	544.1	543.72	502.91	16:52:00	5062.80	x	15	5035.69	16:53:00	9.02	x	15	5062.64	503.71	-0.80	-61.51	442.20	P2 flagged as anomolous Re-checked (P2 = 5035.99 kPa). Normal pressure spike a stabilization observed on both measurements.
13	506.1	506.38	467.93	16:45:00	4708.11	x	15	4690.03	16:46:00	8.70	x	15	4707.53	468.47	-0.54	-26.53	441.94	P2 flagged as anomolous Re-checked (P2 = 4690.31 kPa). Normal pressure spike a stabilization observed on both measurements.
14	465.9	465.77	430.90	16:37:00	4332.79	x		4314.68	16:38:00	8.34	x	15		430.19		10.50	440.69	P2 flagged as anomolous Re-checked (P2 = 4315.04 kPa). Normal pressure spike a stabilization observed on both measurements.
15	421.1	421.74	389.63	16:30:00	3915.92	x	16	3798.19	16:31:00	7.83	х	16	3915.77	377.53	12.10	51.77	429.30	P2 flagged as anomolous
16			342.83	16:23:00	3441.29	×	16	3375.21	16:24:00	7.32	x	16		334.40		98.57		Re-checked (P2 = 3375.49 Kpa) Normal pressure spike a stabilization observed on both measurements.
17	321.0	321.52 252.36		16:17:00 16:11:00	2982.01 2328.78		15 16	2892.06 2253.42	16:18:00 16:12:00	6.86 6.38	x	15 16		285.13 220.01		143.98 208.50		verified by AMSC
19				16:04:00	2115.38		16	2050.79	16:05:00	6.14	x	16		199.35		229.65		
20		166.56	154.03	19:18:00	1529.02	x		1535.10	19:19:00	5.93	х	15		146.76		287.37		recently closed, previously being purged by NWMO
21	73.0	73.67	68.16	19:26:00	675.32	x	15	678.36	19:27:00	5.45	х	15	676.17	59.40	8.76	373.24	432.65	currently being purged by NWMO
						-	-											

Completed by:	KBT, AMSC	Verified by:	MdK
Date:	14-Dec-22	Date:	13-Jan-23 / 30-Oct-23

Refer	Datum: Elev. G.S.:	1.31 433.60 432.29 -70	m m AGS m mASL	Probe Type: Serial No.: Probe Range: Westbay Casing Type: jampler Valve Position:	EMS4960 2000psi MP38			Temp.	2022-12-10 15:10	kPa °C mBTOC			Temp.	2022-12-11 13:30	kPa °C mBTOC	Weather: Specific Weight Gravitational Acceleratio P _{atm}	Cloudy 9.807	°C kN/m3 m/s2
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out		Fluid Pressure R Outside Casing (P2) (kPa)	eadings Time (H:M:S)	Probe Temp. (°C)	Shoe In		Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2-Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
1	991.20	989.34	923.15	10:44:00	9001.94	х	14	9052.88	10:45:00	13.51	х	14	9002.17	913.17	9.98	-490.86	422.31	
2	974.30	972.00	907.47	11:00:00	8843.63	x	12	8874.17	11:01:00	13.41	x	12	8844.00	894.94	12.53	-475.18	419.76	
3	928.60	927.34	865.06	11:07:00	8418.74	х	10	8495.66	11:08:00	13.08	х	10	8418.59	856.35	8.71	-432.77	423.58	
4	865.50	864.43	806.50	11:16:00	7830.50	х	13	7918.67	11:17:00	12.38	х	13	7830.67	797.51	8.99	-374.21	423.30	
5	857.20	856.22	798.79	11:20:00	7753.67	x	11	7749.31	11:23:00	12.24	x	11	7753.57	780.24	18.55	-366.50	413.74	Currently being purged, re-checked (P2 = 7749.79 kPa). Verified by AMSC
é	800.80	800.10	746.43	11:28:00	7230.03	x	9	7187.71	11:29:00	11.90	x	9	7230.06	722.98	23.45	-314.14	408.84	Communication issues, unable to shoe-out (10-Dec-22). Remeasured on 11-Dec-22
7	788.00	787.17	734.54	17:24:00	7112.31	х	9	7070.51	17:30:00	11.48	х	9	711.83	711.03	23.51	-302.25	408.78	re-landed and re-checked (P2 = 7070.41 Kpa)
8	736.20	736.53	686.45	17:08:00	6632.15	х		6624.80	17:10:00	10.80		13		665.58	20.87	-254.16	411.42	
9	679.80	679.44	634.09	16:59:00	6109.64	х		6106.61	17:00:00	10.33		14		612.74	21.35	-201.80	410.94	re-checked to confirm (P2 = 6106.91 Kpa)
10		634.76	592.48	16:50:00	5694.95	х		5761.70	16:51:00	9.86		14	5693.83	577.57	14.91	-160.19	417.38	
11		627.20 587.63	585.33 548.51	16:45:00	5624.29	X	14 14	5675.17	16:46:00 16:41:00	9.64 9.27		14 14		568.75	16.58 15.52	-153.04 -116.22	415.71 416.77	
12		587.63	548.51	16:40:00 16:34:00	5256.41 4832.50	x	14 14	5324.53 4909.32	16:35:00	9.27		14 14	5256.64 4832.32	490.66	15.52	-116.22 -73.70	416.77 416.96	
14		487.40	454.95	16:28:00	4323.63	Ŷ	14	4390.72	16:29:00	8.24		14		490.00	13.33		410.30	
19		487.40	399.56	16:21:00	3770.60	x	14	3824.86	16:22:00	7.66		14		380.07	19.49		413.11	
16		373.54	348.37	16:15:00	3260.64	x	14	3328.81	16:16:00	7.16		14		329.49	18.88	83.92	413.41	
17		327.35	305.20	16:10:00	2829.92	x	14	2918.53	16:11:00	6.79	x		2829.84	287.66	17.54	127.09	414.75	
18	3 312.90	313.85	292.42	16:06:00	2702.63	х	14	2791.27	16:07:00	6.56	х	14	2702.55	274.68	17.74	139.87	414.55	
19		265.25	246.98	16:00:00	2249.27	х	15	2339.36	16:01:00	6.17		15		228.60	18.38	185.31		verified by AMSC
20		227.28	211.41	15:55:00	1894.87	х	15	1994.18	15:56:00	5.86		15		193.40	18.01	220.88	414.28	
21		181.62	168.82	15:48:00	1469.61	х	15	1574.70	15:49:00	5.60				150.63	18.19	263.47	414.10	
22		157.14	145.94	15:43:00	1241.98	х		1360.61	15:43:00	5.43		15	1242.41	128.80	17.14	286.35	415.15	
23		101.11 91.91	93.69 85.09	15:35:00 15:30:00	720.54 634.87	x	15 14	857.59 779.76	15:36:00 15:31:00	5.36 5.48		15 14		77.51	16.18 15.52		416.11 416.77	
24		71.56	66.00	15:23:00	444.70	X		602.85	15:31:00	5.48	x			51.53	15.52	347.20	416.77 417.82	
2	/0.5	/1.56	00.00	13.23.00	444.70	^	113	002.05	15:20:00	5.65	~	13	444.04	51.55	14.47	366.29	41/.82	

Completed by:	KBT, AMSC	Verified by:	MdK
Date:	11-Dec-22	Date:	13-Jan-23 / 30-Oct-23

Elev. Top of		0.91 418.65 417.74 -70	m m AGS m mASL	Probe Type: Serial No.: Probe Range: Westbay Casing Type: Sampler Valve Position:	EMS5230 2000psi MP38		Temp.	2022-12-04 8:30	kPa °C mBTOC			Temp.	2022-12-04 15:37	kPa °C mBTOC	Weather: Specific Weight Gravitational Accelerati P _{atm}	-16 snowy 9.807 9.8065 96.00	°C kN/m3 m/s2
														1	I	1	
Port No.	Port Position From Log (m)	Port Position From Cable (m)	True Port Depth "Dp" (m BGS)	Start Profile Time	Inside Casing (P1- Landed Pressure) (kPa)	Shoe Out Rotations	Fluid Pressure Rea Outside Casing (P2) (kPa)	adings Time (H:M:S)	Probe Temp. (°C)	Shoe In	Rotations	Inside Casing (P1) (kPa)	Pressure Head Outside Port (m) H=(P2-Patm)/w	Piezo Level Outside Port (m) Dz = Dp-H	Z: Elev of pressure measurement port (mASL)	Freshwater Head (mASL)	Comments
	1 990.20	988.10	919.41	09:53:00	8683.34	x 14	9179.38	09:54:00	13.24	х	14	8683.29	926.21	-6.80	-501.67	424.54	
	2 948.40	946.33	880.65	10:04:00	8297.70	x 14	8791.32	10:06:00	13.22	x	14	8297.44	886.64	-5.99	-462.91	423.73	
	3 907.20	905.34	842.46	10:21:00	7918.77	x 14	8409.51	10:22:00	12.78	х	14	7918.82	847.71	-5.25	-424.72	422.99	
	4 852.30	850.76	791.60	10:37:00	7413.77	x 13	7883.77	10:38:00	12.23	х	13	7413.83	794.10	-2.50	-373.86	420.24	
	5 828.00	826.61		10:47:00	7189.97	x 13	7635.66	10:48:00	12.04	х	13	7189.59	768.80	0.29	-351.35	417.45	
	6 796.90	795.40	740.28	11:05:00	6902.93	x 13	7341.78	11:06:00	11.64	х	13	6902.93	738.84	1.44	-322.54	416.30	
	7 739.00	737.69	686.61	11:17:00	6370.14	x 13	6754.55	11:19:00	11.17	x	13	6370.33	678.96	7.65	-268.87	410.09	
	8 719.10	718.00	668.15	11:26:00	6187.17	x 13	6186.87	11:29:00	10.91	x	13	6186.93	621.07	47.08	-250.41	370.66	verified by AMSC, Port open for purging, rechecked value by shoe in-out
	9 702.20	701.27	652.47	11:40:00	6031.59	x 13	6435.52	11:42:00	10.73	х	13	6031.65	646.43	6.04	-234.73		
	.0 687.00	686.04		11:49:00	5891.56	x 13	6305.82	11:50:00	10.53	х	13	5891.62	633.20	5.17	-220.63	412.57	
	1 629.10	628.19	584.64	12:00:00	5358.79	x 14	5774.73	12:02:00	10.10	х	14	5358.56	579.05	5.59	-166.90	412.15	
	2 568.10 3 514.80	567.35 514.31	528.00 478.50	12:11:00 12:27:00	4796.59 4304.83	x 14 x 14	5207.36 4718.32	12:12:00 12:28:00	9.55 8.99	x		4796.37 4304.53	521.20 471.33		-110.26 -60.76		
	4 488.90	488.52	478.50	12:35:00	4304.83	x 14 x 13	4/18.32	12:28:00	8.99	x	14	4304.53	4/1.33	6.59	-60.76		
	464.50	464.32	431.77	12:55:00	3841.70	x 14	4269.77	12:56:00	8.39	x	-	3841.70	425.59	6.18	-14.03		
	6 411.20	411.28	382.27	13:08:00	3351.75	x 15	3785.13	13:09:00	7.95	x	15	3351.93	376.17	6.10	35.47	411.64	
	7 368.50	368.61	342.64	13:23:00	2959.92	x 14	3398.76	13:24:00	7.51	х	14	2960.01	336.78		75.10		
	.8 278.70	279.14	259.30	13:47:00	2134.36	x 14	2581.51	13:48:00	6.58	х	14	2134.46	253.44		158.44		
	.9 214.80	215.41	199.93	14:08:00	1546.09	x 14	2003.26	14:09:00	5.94	х		1546.09	194.48		217.81	412.29	
	160.00	160.79	148.98	14:23:00	1041.18	x 15	1509.35	14:35:00	5.41	х		1041.12	144.12	4.86	268.76	412.88	
	1 147.8 2 82.4	148.53 83.0	137.63 76.73	14:41:00 14:58:00	928.70 325.79	x 15 x 15	1395.59 802.21	14:45:00 15:01:00	5.29 4.90	X	-	929.17 326.18	132.52	5.11	280.11 341.01	412.63 413.02	
	82.4	83.0	/0./3	14:58:00	325.79	X 15	802.21	15:01:00	4.90	х	15	320.18	72.01	4.72	341.01	413.02	
	1																

Completed by:	KBT	Verified by:	MdK
Date:	04-Dec-22	Date:	13-Jan-23 / 30-Oct-23

Well ID:	IG_BH01	Multiparameter Probe:	Horiba U52 (SN. 21214)	Other Notes/Comments	IG_BH01_GW028 - Requested Re-sample from IG_BH01_T_INT_007 for noble gas analyses
Date(s):	Dec 02 2022 & Dec 09 - 10 2022	Fluorometer:	AquaFluor (SN.807511)		
Operator(s):	AMSC, KBT	Colorimeter:	DR900 (SN. 200660001027)		IG_BH01_GW036 - Primary Sample

	-					Multipa	rameter Pro	obe			F	luorometer	Hydrometer		Co	olorimetric		Alka	linity	pa	
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sample Collected (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH01_T _INT_007	1	2022-12-02 14:45	Y	8.08	3.88	17.0	-35	0	14.7		Y	4.095	1.015							Ν	Parameters collected from purge water, collected by Westbay sample bottles prior to the re-sampling of IG_BH01INT_007 for noble gas analyses. As requested by NWMO. Purge water collected from interval using WB bottles - WB probe attached to the sampling port.
IG_BH01_T _INT_002	10	2022-12-07 16:30	Y	8.02	7.27	38.1	97	0.03	194	23.2	Y	3.469	1.027				-			Ν	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).
IG_BH01_T _INT_002	15	2022-12-07 17:15	Υ	8.16	4.91	37.9	49	2.81	157	23.1	Υ	3.456	1.026							Ν	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).
IG_BH01_T _INT_002	26	2022-12-08 10:10	Y	8.52	8.32	36.1	13	0.00	107	22.0	Y	3.472	1.027							Ν	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).
IG_BH01_T _INT_002	43	2022-12-08 12:25	Y	8.56	9.36	35.7	-34	0.23	102	21.8	Y	3.241	1.027				-			N	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open). Horiba moved into new bucket, likely why DO exceeds 0.
IG_BH01_T _INT_002	51	2022-12-08 13:30	Y	8.57	8.64	35.8	-39	0.00	176.0	21.8	Y	3.379	1.027				-			Ν	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).
IG_BH01_T _INT_002	n/a	2022-12-09 10:45	-	1	-	-			-		Y	1.537	1.027	-			-			×	Collected from run #1 while sampling. Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open). Sample was filtered before any measurements were taken.
IG_BH01_T _INT_002	n/a	2022-12-10 11:25	Y	8.81	7.84	35.0	133	0.00	201.0	21.3	Y	1.922	1.025	Y	>1.0	0.02	0.41	0	15	Y	Collected from run #6 during sampling. Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open).
IG_BH01_T _INT_002	n/a	2022-12-10 11:35	Y	8.48	8.19	35.2	106	0.00	196	21.5							-			Y	Collected from run #6 during sampling. Horiba measurements taken after sample sat in flow through cell for 10 mins. Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open).

10-Dec-22

Date

13-Jan-23

Well ID:						IG_BH0	1				Start T	ïme		8:50 (09-Dec-22)			Other N	lotes/Comments:		128 - Requested Re-sample from T_007 for noble gas analyses
MP38 Water Level Before Sampli	ing:				38.2	7 (09-De	ec-22)			m BTOC	Startin	g Ambient Pressu	ire	97.01	kPa					
MP38 Water Level After Sampling	g:				39.6	6 (10-De	ec-22)			m BTOC	End Sa	ampling Time		13:30 (10-Dec-22)					IG_BH01_GW0	036 - Primary Sample
Probe Serial #/Range					EMS	5230, EN	1S4960			kPa	Ending	Ambient Pressu	re	-	kPa					
Date:					02-Dec	-22 to 10)-Dec-22													
				Functi	ion Tes	ts/Prep	aration							Sampling Sequence						
Sampling Run Start Date/Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post- sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
2022-12-02 13:05	IG_BH01_INT_ T_007	1	x	x	x	x	33	x	x	6073.73	x	6067.60	x	406	6054.58	x	x	6071.29	13:37	Start of day: WL = 37.83mBTOC, Patm = 95.53 Kpa, T = 10.35 deg C. Run 1 was used for purging prior to noble gas sampling as requested by NWMO on Nov. 10 2022. Sample collected from interval - WB probe attached to the sampling port (pumping port closed)
2022-12-02 15:30	IG_BH01_INT_ T_007	2	x	x	x	x	31	x	x	6074.72	x	6064.56	x	553	6053.03	x	x	6071.53	16:14	Run 2 was used for purging prior to noble gas sampling as requested by NWMC on Nov. 10 2022. Sample collected from interval - WB probe attached to the sampling port (pumping port closed). End of day: WL = 33.44mBTOC, Patm = 95.32 KPa,T= 6.22 deg C.
2022-12-03 10:47	IG_BH01_INT_ T_007	3	x	x	x	x	28	x	x	6081.20	x	6067.40	x	304	6063.05	x	x	6069.01	10:56	Run 3 was used to collect (2 of 4 Cu tubes) noble gas samples and field parameters. As requested by NWMO. Sample collected from interval - WB probe attached to the sampling port (pumping port closed).
2022-12-03 14:20	IG_BH01_INT_ T_007	4	x	x	x	x	34	x	x	6073.34	x	6066.96	x	246	6062.31	x	x	6071.96	14:28	Run 4 was used to collect (2 of 4 Cu tubes) noble gas samples and field parameters. As requested by NWMO. Sample collected from interval - WB probe attached to the sampling port (pumping port closed)
2022-12-09 8:50	IG_BH01_INT_ T_002	1	x	x	x	x	33	x	na	9392.66	na	na	x	127	na	x	na	9382.41	10:45	mag collar 885.92m, Target 2m above port 951.92m, depth on counter 951.87m. Samples was collected from within the MP38 casing ~2m above the pumping port (pumping port left open). Rum#1 used to collect NaFI and SG measurents and 14C, 13C and archive samples
2022-12-09 10:59	IG_BH01_INT_ T_002	2	x	x	x	x	32	x	na	9394.76	na	na	x	147	na	x	na	9384.65	12:28	Sample was collected from within the MP38 casing -2m above the pumping port (pumping port left open). Depth on counter 951.91m. Run #2 was used to collect 3H/2H/180 sample.
2022-12-09 12:47	IG_BH01_INT_ T_002	3	x	x	x	x	33	x	na	9393.35	na	na	x	81	na	x	na	9387.90	14:32	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open). Depth on counter 951.98m. Run #3 used to collect half of the noble gas (2 of 4) and 37CL
2022-12-09 14:47	IG_BH01_INT_ T_002	4	x	x	x	x	33	x	na	9394.82	na	na	x	90	na	x	na	9389.59	16:55	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open). Depth on counter 951.96m. Run #4 was used to collect remaining half (2 of 4) noble gas sample and 875r/86Sr.
2022-12-09 17:14	IG_BH01_INT_ T_002	5	х	x	x	x	32	x	na	9423.94	na	na	x	221	na	x	na	9413.97	19:01	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open).Depth on counter 951.92m. Run #5 used to collect 36Cl/129I.
2022-12-10 9:00	IG_BH01_INT_ T_002	6	x	x	x	x	33	x	na	9399.94	na	na	×	114	na	x	na	9389.97	11:20	Sample was collected from within the MP38 casing -2m above the pumping port (pumping port left open).Mag Collar 885.72m, Target 2m above port 951.72m. Depth on counter 951.78m. Run #6 used to collect field parameters /measurements and Si and ammonia samples.
2022-12-10 11:37	IG_BH01_INT_ T_002	7	x	x	x	x	32	x	-	9398.21	na	na	x	135	na	x	na	9388.32	13:35	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open).Depth on counter 951.75m. Run #7 used to collect gen chem, nutrients, Ru, metals, DOC and sulfide samples.

Note: Record field parameter measurements on 20-203-01: Field Parameter Measurement/Testing - Field Data Sheet

Completed by:	AMSC, KBT	Verified by:	MdK
Date:	10-Dec-22	Date:	13-Jan-23

Well ID:	IG_BH03	Multiparameter Pro	Horiba U52 (SN. 21214)	Other Notes/Comments	IG_BH03_GW019 - Primary Sample
Date(s):	07-Dec-22	Fluorometer:	AquaFluor (SN.807511)		
Operator(s):	AMSC, KBT	Colorimeter:	DR900 (SN. 200660001027)		

	q					Multipara	ameter P	robe			F	luorometer	Hydrometer		C	olorimetric		Alka	linity		
Port ID	Cumulative Purge/Samplec Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)			Sampl e Collec ted (Y/N)	Comments (sampling run #, sample ID, water colour or
IG_BH03_INT _T_021	na	2022-12-07 9:45	Y	8.10	3.19	2.86	215	3.15	497	1.83	Y	10.34	1.006	Y		1.79	0.53	0	44	N	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port felt open). Collected sample from INT021 just for in-field parameters as requested by NWMO.
														1							

Completed by:	AMSC	Verified by:	MdK
Date:	07-Dec-22	Date:	13-Jan-23

Well ID:					10	G_BH03					Star	t Time		9:25			Oth	her Notes/Comments:	IG_BH03_GW	119 - Primary Sample
MP38 Water Leve	l Before Samp	ling:				12.05				m BTOC	Star	ting Ambient Pressu	re	97.37	kPa					
MP38 Water Leve	l After Samplir	ng:				11.14				m BTOC	End	Sampling Time		10:15						
Probe Serial #/Rai	nge				EMS 4	4960/ 20	00psi				Endi	ing Ambient Pressure	э	97.39	kPa					
Date:					07	7-Dec-22	2													
				Functi	ion Tes	ts/Prep	aration							Sampling Sequence						
Sampling Run Start Date/Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve		westbay wir 30	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post- sample kPa)	Close Valve		Landed Westbay MP38 Pressure (post-sample, kPa)		Comments (volume recovered, parameters measured, samples collected, etc)
2022-12-07 9:31	IG_BH03_INT _T_021	1	x	x	x	x	32	x	na	677.25	na	na	x	300	na	x	na	673.33		Sample was collected from within the MP38 casing -2m above the pumping port (pumping port left open). Sample collected to take in-field measurements. Weather was -30 deg C, all measurements were taken inside work truck with heat on.

Note: Record field parameter measurements on 20-203-01: Field Parameter Measurement/Testing - Field Data Sheet

Completed by:	AMSC, KBT	Verified by:	MdK
Date:	07-Dec-22	Date:	13-Jan-23

Well ID: Date(s): Operator(s):	1	Dec		H05 14 2022 , KBT		Multiparame Fluorometer Colorimeter:		:	A	oriba U52 (quaFluor (\$ 900 (SN. 20	SN.80	07511)				Other Notes/Co	mments	IG_BH05_G IG_BH05_G IG_BH05_G IG_BH05_G	W010 - Blank W011 - Prima	Sampl	ie Iple
	pe				1	Multipa	rameter P	robe			FI	uorometer	Hydrometer			Colorimetric	1	Alka	linity	lected	
Port ID	Cumulative Purge/Sampled Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Calibrated	Fluorescein (ppb)	Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃ (mg/L)	Sample Collec (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH05_IN T_T_005	10	2022-12-11 15:00	Y	7.69	8.05	13.7	-176	0.25	216	8.49	Y	8.273	1.008							N	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).Purge water is dark brown and slightly turbid
IG_BH05_IN T_T_005	18	2022-12-11 16:10	Y	7.65	8.15	13.6	-188	0.00	136	8.45	Y	9.092	1.008							N	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).Purge water is dark brown and slightly turbid
IG_BH05_IN T_T_005	26	2022-12-11 17:00	Y	7.62	8.03	14.5	-188	0.00	122	9.01	Y	9.217	1.008							N	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).Purge water is dark brown and slightly turbid
IG_BH05_IN T_T_005	30	2022-12-12 9:10	Y	7.64	7.49	14.50	-175	0.54	82.6	8.99	Y	9.557	1.010					N casing (pu			Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open).Purge water is dark brown and slightly turbid
IG_BH05_IN T T 005	38	2022-12-12 10:20	Υ	7.69	7.61	14.2	-205	0.00	57.7	8.82	Y	9.853	1.009							Ν	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open). Purge water is brown coloured
IG_BH05_IN T T 005	44	2022-12-12 11:45	Υ	7.65	6.9	14.2	-195	0.00	43.1	8.82	Y	9.858	1.010							Ν	Collected during purging through bladder pump at ~85 mBTOC within MP38 casing (pumping port open). Purge water is brown coloured
IG_BH05_IN T_T_005	n/a	2022-12-12 14:50	-	-							Y	10.27								Y	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open). Measurement taken from during sampling from run #1, sample was filtered prior to measurement
IG_BH05_IN T_T_005	n/a	2022-12-13 10:45	Y	9.60	10.87	13.2	-184	8.16	0.0	8.16	Y	4.914	1.013	Y	0.234	8.50	1.15	0	158	Y	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open). Infield measurements taken during sampling from run #4. Sample water was black and very turbid. Sample needed to be filtered to measure aikalinity. Fluorescein from the filtered sample was 11.08ppb. Sample was diluted (x50) for ferrous iron and (X5) for sulfide measurements.
IG_BH05_IN T_T_005	n/a	2022-12-13 11:00	Y	7.58	16.78	13.3	-138	6.52	646	8.27	Y									N	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port left open). Horiba measurements taken after sample sat in flow-through cell for 15mins. DO measurement is likely unreliable, higher than expected from a sample at depth (may be due to high turbidity dirtying the DO sensor). The high temperature reading is likely a refelection of the water being at surface (near a heater) while allowing meaurements to stabilize in flow through cell.
Completed by Date:	y:	AMSC 14-Dec-22		Verified by: Date:		Mdi 13-Jar					<u> </u>				-		l	-	-	-	

Well ID:						IG_BH	05				Start 1	lime		13:00 (12-Dec-22)			Other N	lotes/Comments:	IG BH05 G	N009 - Rinsate Sample
MP38 Water Leve	el Before Sampl	ling:			53.62	2 (12-D	ec-22)			m BTOC	Startir	ng Ambient Press	ure	97.15 (12-Dec-22)	kPa				IG_BH05_G	W010 - Blank Sample
MP38 Water Leve	el After Samplin	g:			46.4	9 (14-D	ec-22)			m BTOC	End S	ampling Time		14:35 (14-Dec-22)					IG BH05 G	W011 - Primary Sample
Probe Serial #/Ra	inge				EMS4	4960 / 2	2000psi	i			Endin	g Ambient Pressu	re	96.42 (14-Dec-22)	kPa				IG BH05 G	W012 - Duplicate Sample
Date:					Dec	12 - 14	, 2022													
			F	unctio	on Tes	ts/Pre	parati	on						Sampling Sequence						
Sampling Run Start Date/Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post-sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post- sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
2022-12-12 12:50	IG_BH05_INT_ T_005	1	x	x	x	x	33	x	na	7607.63	na	na	x	185	na	x	na	7597.62	14:50	Nag collar at 856.08m, hestalled Mag collar 857.8m, Target 2m above Pumping Port. 855.08m, Actual depth neading: 855.00m within the MP38 casing ~2m above the pumping port (pumping port open). Run #1 used to collect If measurements and 14-C and 13-C samples. Sample water is black and turbid
2022-12-12 15:02	IG_BH05_INT_ T_005	2	x	×	x	x	33	x	na	7617.85	na	na	x	154	na	x	na	7607.26	16:50	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port open). depth reading 855.08m. Run #2 used to collect 37-CI and Ru samples. Sample water is black and turbid
2022-12-12 16:59	IG_BH05_INT_ T_005	3	x	×	x	×	34	x	na	7624.61	na	na	x	139	na	x	na	7614.18	18:45	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port open). Depth reading 855.07m. Run #3 used to collect 87-Sr/86-Sr and ammonia samoles. Samole water is black and turbid.
2022-12-13 8:50	IG_BH05_INT_ T_005	4	x	×	x	×	33	x	na	7659.62	na	na	x	160	na	x	na	7648.92	10:32	Mag collar at 855 90m, installed Mag collar 857 8m. Target 2m above Pumping Port.854 90m, Actual depth reading: 854 92m. Sample was collected from within the MP38 casing -2m above the pumping port (pumping port open). Run #4 used to collecit in field measurements and parameters and Si samples. Sample water is black and turbid.
2022-12-13 10:45	IG_BH05_INT_ T_005	5	x	×	x	x	34	x	na	7657.35	na	na	x	163	na	x	na	7646.37	12:32	Sample was collected from within the MP38 casing -2m above the pumping port (pumping port open). Depth reading: 854.89m. Run #5 used to collect 3H/2H/18O and metals samples. Sample water is black and turbid.
2022-12-13 12:42	IG_BH05_INT_ T_005	6	x	×	x	×	33	x	na	7658.79	na	na	x	147	na	x	na	7648.08	14:30	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port open). Depth reading: 854.92m. Run #6 used to collect 3H/2H/18O and DOC samples. Sample water is black and turbid.
2022-12-13 14:44	IG_BH05_INT_ T_005	7	x	×	x	x	16	x	na	7659.48	na	na	x	146	na	x	na	7649.30	16:22	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port open). Depth reading: 854.93m. Run #7 used to collect gen chem and nutrient samples. Sample water is black and turbid.
2022-12-13 16:38	IG_BH05_INT_ T_005	8	x	×	x	×	13	x	na	7660.86	na	na	x	138	na	x	na	7650.47	18:15	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port open). Depth reading: 854.89m. Run #8 used to collect archive and sulphide samples. Sample water is black and turbid.
2022-12-14 9:10	IG_BH05_INT_ T_005	9	x	×	×	×	13	x	na	7664.36	na	na	x	85	na	x	na	7659.30	10:44	Mag collar at 855 93m, Installed Mag collar 857.8m. Target Zm above Pumping Port: 854.95m, Actual dept neading 284.94m. Sample was collected from within the MP38 casing -2m above the pumping port (pumping port open). Run #9 used to collect noble gas (38) and 36-Cl/1/29- L Sample water is black and turbid.
2022-12-14 10:55	IG_BH05_INT_ T_005	10	x	x	x	x	16	x	na	7660.33	na	na	x	76	na	x	na	7655.48	12:25	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port open). Depth reading: 854.92m. Run #10 used to collect noble gas (6/8) and 36-Cl/129 I. Sample water is black and turbid.
2022-12-14 0:40	IG_BH05_INT_ T_005	11	x	x	x	x	11	x	na	7660.17	na	na	x	63	na	x	na	7655.65	14:11	Sample was collected from within the MP38 casing ~2m above the pumping port (pumping port open). Depth reading: 854.94m. Run #11 used to collect noble gas (8/8) and 36-Cl/129 I. Sample water is black and turbid.

 Completed by:
 KBT, AMSC
 Verified by:
 MdK

 Date:
 14-Dec-22
 Date:
 13-Jan-23

Well ID: Date(s): Operator(s):		Dec	IG_B⊦ 04 - 0 MSC,	5, 2022		Multiparame Fluorometer Colorimeter:	:		Ad	quaFluor (S	SN. 21214) SN.807511) 0660001027)				Other Notes/Co 05-Dec-22: Advise			W001 - Prima		iple Is were above 100ppb.
	σ				-	Multipa	rameter P	robe			Fluoromete	r Hydromete	r		Colorimetric		Alka	linity	cted	
Port ID	Cumulative Purge/Samplec Volume (L)	Measurement Date and Time	Calibrated	рН	Temp (°C)	EC (mS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	TDS (g/L)	Call brated (ddd) (ddd)	in Specific Gravity	Calibrated	Dissolved Oxygen (mg/L)	Dissolved Ferrous Iron Fe ²⁺ (mg/L)	Total Dissolved Sulphide S ²⁻ (mg/L)	Phenol. (mg/L)	Total as CaCO ₃	le Colle (Y/N)	Comments (sampling run #, sample ID, water colour or odour, etc.)
IG_BH06_IN T_T_008	N/A	2022-12-04 17:45	-							1	Y 108.83				-				Y	
IG_BH06_IN T_T_008	N/A	2022-12-05 12:00	Y	9.51	8.7	0.713	42	0.00	32.0		Y 110.90	1.007								Parameters collected from run #2, horiba measurements collected from running sample through flow-through cell.
IG_BH06_IN T_T_008	N/A	2022-12-05 14:00	Y	8.34	9.03	0.873	96	0.71	25.7	0.559			Y	0.960	0.00	0.04	0	59		Parameters collected from run #3, horiba measurements collected from sample in the sample cup after 10 mins.
Completed by Date:		AMSC 05-Dec-22		Verified by Date:	:		MdK 13-Jan-23													

Well ID: MP38 Water Leve MP38 Water Leve Probe Serial #/Ra Date:	el After Samplir	0					81			m BTOC m BTOC	End S	Time ng Ambient Press Sampling Time g Ambient Pressu		15:00 17:57 95.67 4 75	kPa kPa degrees C		Other N	lotes/Comments:	IG_BH06_G\	W001 - Primary Sample
			F	unctio			paratio							Sampling Sequence						
Sampling Run Start Date/Time	Port #	Run #	Shoe-Out	Close Valve	Vaccum Check	Open Valve	Evacuate Bottles (<35 kPa)	Close Valve	Landed Port	Landed Westbay MP38 Pressure (pre- sample, kPa)	Shoe-Out	Zone Pressure (pre-sample, kPa)	Open-Valve	Stablization Time (sec)	Zone Pressure (post-sample kPa)	Close Valve	Shoe-In	Landed Westbay MP38 Pressure (post- sample, kPa)	Sampling Run End Time	Comments (volume recovered, parameters measured, samples collected, etc)
2022-12-04 15:30	IG_BH06_INT _T_008	1	x	x	x	x	31	x	na (724.70m)	6270.08	na	na	x	327	na	x	na	6261.38	16:16	Sample was collected from within the MP38 casing ~2m above the INT008 pumping por (pumping port open) Run #1 was used for NaFI measurements a to collect Gen Chem, SiO2, Ammonia, Nutrients and Ru samples.
2022-12-05 9:00	IG_BH06_INT _T_008	2	x	x	x	x	33	x	na (724.76m)	6258.36	na	na	x	290	na	x	na	6249.87	10:56	Sample was collected from within the MP38 casing ~2m above the INT008 pumping por (pumping port open). Run #2 was used to collect NaFI
2022-12-05 12:19	IG_BH06_INT _T_008	3	x	x	x	x	34	x	na (724.71m)	6251.89	na	na	x	246	na	x	na	6243.31		Sample was collected from within the MP38 casing ~2m above the INT008 pumping por (pumping port open). Run #3 was used to collect in-field
2022-12-05 14:14	IG_BH06_INT _T_008	4	x	x	x	x	33	x	na (724.70m)	6245.40	na	na	x	233	na	x	na	6237.13	2:58	Sample was collected from within the MP36 casing ~2m above the INT008 pumping por (pumping port open). Run #4 was used to collect 36-Cl/129-I. Notified by NWMO to stop sampling.

Note: Record field parameter measurements on 20-203-01: Field Parameter Measurement/Testing - Field Data Sheet

Completed by:	KBT, AMSC	Verified by:	MdK
Date:	05-Dec-22	Date:	13-Jan-23

					Shipping Info	ormation			Receiving	Informatio	on	
COC Number/ID	Sample ID(s)	Shipped Date	Shipped Time	Temp. Shipped (deg C)	COC Signed by Geofirma (Y/N)	Shipping Address	Shipping Method	Received Date	Received Time	Temp Received (deg C)	COC Signed By Receiving Lab (Y/N)	
GFIM_BVL_0011	IG_BH05_GW009	06-Dec-22	7:00	4	Y	Bureau Veritas Labs 946 Cobalt Crescent Thunder Bay, ON	Courier (Purolator)	07-Dec-22	14:10	-2		Geofirma followed up with lab to confirm the temperature of samples received (-2) and confirmed that this had no impact on the samples.
GFIM_BVL_0012	IG_BH01_GW036	12-Dec-22	7:00	<10 (on ice)	Y	Bureau Veritas Labs 946 Cobalt Crescent Thunder Bay, ON	Courier (Purolator)	13-Dec-22	14:19	1	Y	
GFIM_BVL_0013	IG_BH05_GW011 IG_BH05_GW012	14-Dec-22	7:00	<10 (on ice)	Y	Bureau Veritas Labs 946 Cobalt Crescent Thunder Bay, ON	Courier (Purolator)	15-Dec-22	14:13	3	Y	
GFIM_NWMO_0007	IG_BH06_GW001 IG_BH03_GW019 IG_BH01_GW036 IG_BH05_GW011 IG_BH05_GW012	14-Dec-22	7:00	<10 (on ice)	Y	NWMO Office - Ignace 304 Main St Ignace ON P0T 1T0	Hand delivered	14-Dec-22	7:20	<10 (from cooler with ice)	Y	Archive Samples
GFIM_IT2_0007	IG_BH01_GW036 IG_BH05_GW010 IG_BH05_GW011 IG_BH05_GW012	14-Dec-22	7:00	<10 (on ice)	Y	Isotope Tracer Technologies 608 Weber St. N Unit3, Waterloo, ON N2V 1K4	Courier (Purolator)	16-Dec-22		n/a	Y	
GFIM_UofO_0007	IG_BH01_GW028 (noble gas re-sample) IG_BH01_GW036 IG_BH05_GW011 IG_BH05_GW012	20-Dec-22	9:00	<10 (ice packs)	Y	University of Ottawa 25 Templeton St., Ottawa ON K1N 6N5	Hand delivered	20-Dec-22	10:15	n/a	Y	

Completed by:	AMSC	Verified by:	MdK
Date:	20-Dec-22	Date:	13-Jan-23

Laboratory Report Date	[2022/12/21] [2022/12/29] [2023/01/16]		
Laboratory Name	ame Bureau Veritas		
Laboratory Report ID (If applicable)	able) [C2AA404] [C2AI573] [C2AJ973]		
Analyses Completed	Major and Trace Elements and Metals; Total dissolved sulphur; Total dissolved iron; Reactive silica; Sulphide; Anions; pH; Alkalinity; Fluoride; TIC; TOC; DOC; TKN; Total Phosphorus; Total Ammonia; Total Nitrogen; Carbonate, Bicarbonate and Hydroxide		
Associated COC #(s)	[GFIM_BVL_0011] [GFIM_BVL_0012] [GFIM_BVL_0013]		

Samples Included in Laboratory Report

[IG_BH05_GW009] [IG_BH01_GW036] [IG_BH05_GW011] [IG_BH05_GW012]

Quality Check and Verification	Verified By (Initials)	Comments
Results received from laboratory	AMSC	
All samples were tested or accounted for. Justification provided for any untested samples (e.g. spare sample)	AMSC	
aboratory data report provided with results	AMSC	
aboratory testing methods/techniques included in data report	AMSC	
aboratory QA procedures and equipment calibration included in data report	AMSC	
aboratory results are within reasonable/expected range	AMSC	

Other Comments/Notes:	

Completed by:	AMSC	Verified by:	MdK
Date:	18-Jan-23	Date:	23-Jan-23

Laboratory Report Date	2023-03-15				
Laboratory Name	Isotope Tracer Technologies Inc. (IT2)				
Laboratory Report ID (If applicable)		221105			
Analyses Completed	18-O, 2-	H, 3-H, 87-Sr/86-Sr, 37-0	Cl, 13-C, 14-C		
Associated COC #(s)		GFIM_IT2_0007			
Samples Included in Laboratory Repo	rt				
	[IG_BH01_GW036] [IG_BH05_GW010] [IG_BH05_GW011] [IG_BH05_GW012]				
Quality Check and Verification		Verified By (Initials)	Comments		
Results received from laboratory		AMSC			
All samples were tested or accounted fo (e.g. spare sample)	r. Justification provided for any untested samples	AMSC			
Laboratory data report provided with results		AMSC			
Laboratory testing methods/techniques included in data report		AMSC			
Laboratory QA procedures and equipment calibration included in data report		AMSC			
Laboratory results are within reasonable	/expected range	AMSC			

Other Comments/Notes:	

Completed by:	AMSC	Verified by:	MEOR
Date:	20-Mar-23	Date:	31-Jul-23

Laboratory Report Date	2023-04-27 / 2023-06-19 / 2023-07-18				
Laboratory Name	University of Ottawa (Radiohalides Laboratory)				
Laboratory Report ID (If applicable)	n/a				
Analyses Completed		129-I, 36-Cl, noble ga	ases		
Associated COC #(s)	GFIM_UofO_0007				
Samples Included in Laboratory Repo	rt				
[IG_BH01_GW036] [IG_BH05_GW011] [IG_BH05_GW012]					
Quality Check and Verification		Verified By (Initials)	Comments		
Results received from laboratory		AMSC			
All samples were tested or accounted for (e.g. spare sample)	. Justification provided for any untested samples	AMSC			
Laboratory data report provided with results		AMSC			
Laboratory testing methods/techniques included in data report		AMSC			
Laboratory QA procedures and equipment calibration included in data report		AMSC			
Laboratory results are within reasonable/expected range		AMSC			

Other Co	mments/Notes:
Noble gas	noble gas and 129-I results [2023-05-04] s results received, still missing 129-I results [2023-06-19] lits received [2023-07-19]

Completed by:	AMSC	Verified by:	MEOR
Date:	2023-05-04 / 2023-07-20	Date:	31-Jul-23

