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ABSTRACT
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Date: October 2015

Abstract

This technical report presents the results of detailed numeric modelling of the effects of glaciation
on a hypothetical deep geologic repository (DGR) for used fuels situated in a sedimentary
formation. The Nuclear Waste Management Organization (NWMO) has undertaken post-closure
safety assessments of hypothetical DGRs in both crystalline and sedimentary rock formations
(NWMO 2012; NWMO 2013). The safety assessment for a DGR in sedimentary formations
documented the behaviour of reference and sensitivity cases associated with the normal evolution
of the repository system under constant climate conditions, with a qualitative discussion of the
potential effects of glaciation on calculated impacts. However, a complete safety assessment
requires a quantitative assessment of the impact of glaciation events. Two scenarios are
considered in this report: (1) a glaciation only scenario, and (2) an erosion scenario, which
accounts for erosion occurring during glaciation events.

The base glaciation scenario first describes the evolution of the groundwater flow regime in a
three-dimensional domain at the sub-regional scale, extending several tens of kilometres
around the repository location, for eight glacial cycles over a one million year (1 Ma) period. A
performance metric is developed describing the time required for radionuclides to be
transported from the repository location by advective-dispersive and diffusive processes over
multiple glacial cycles with a transient groundwater flow regime. Multiple sensitivity cases are
conducted to quantify the effect of variations in geosphere parameters, assumed model initial
and boundary conditions, and transport process. Additional two-dimensional simulations assess
the impact of possible methane presence as a gas phase within the low-permeability host
formations. Subsequently, a 3D transport model is developed encompassing a limited local
domain immediately surrounding the repository. Model boundary conditions are extracted
directly from the 3D transient flow model results. The transport model discretization and
property assignment includes all repository features such tunnels, shafts, placement rooms and
engineered barrier system (EBS) components as well as excavation damaged zones (EDZ)
surrounding all mined features. A defective container provides a single radionuclide source (the
long-lived and radiotoxic isotope *?°lodine, or I1-129) and a water-supply well is the point of
biosphere impact. Performance metrics are activity transport rates through geologic formations
between the repository and the water supply aquifer and uptake at the water supply well.
Simulations are conducted for several source and well location combinations and for a limited
number of geosphere and numeric parameter sensitivity cases, including a disruptive event
case describing shaft-seal failure.

The erosion scenario extends the base glaciation scenario to incorporate removal of surface
geologic material during each glacial cycle. A total of 200m of overburden and bedrock are
removed over the 1 Ma performance period in two different manners: 1) uniform erosion (UE),
where an equal amount of material is removed over the entire surface of the domain, and 2)
valley erosion (VE), where glaciers incise a 100m deep and 15 km wide valley located directly
over the repository. Results from the sub-regional scale groundwater flow and the local scale
transport models were compared to the glaciation only case.



In all cases, the transport behaviour of the low-permeability sedimentary geosphere proved
extremely robust, with virtually no changes in performance metrics for glaciation or erosion
cases when compared to constant climate cases with steady-state groundwater flow.
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1. INTRODUCTION

The NWMO has undertaken post-closure safety assessments of hypothetical geologic
repositories for used fuels hosted in crystalline and sedimentary rock formations (NWMO 2012;
NWMO 2013). Initial reports documented the behaviour of reference and sensitivity cases
associated with the normal evolution of the repository system under constant climate conditions.
Since glaciation is considered as part of the normal evolution scenario, the initial reports also
include a qualitative discussion of the potential effects of glaciation on calculated impacts.
However, a complete safety assessment requires a quantitative assessment of the impact of
glaciation events during the normal evolution scenario. This technical report presents detailed
results for the effects of glaciation on a repository in a sedimentary formation. Two glaciations
scenarios are considered: (1) a base glaciation scenario, and (2) an erosion scenario, which
extends the base glaciation scenario to account for erosion occurring during glaciation events.

The Fifth Case Study (5CS) Glaciation scenario is derived from the nn9930 glaciation model
used for paleohydrogelogy simulations in in NWMO (2013) and originally described in Peltier
(2011). Glacial climate data provided for this scenario consists of ice sheet thickness and
permafrost depth at locations surrounding the repository as a function of time for a single glacial
cycle occurring over a period of 120 ka. This cycle is repeated eight times to provide an
approximately 1 Ma scenario.

This report describes the evolution of the groundwater flow regime during multiple glacial cycles
and the transport of a single radionuclide from a hypothetical repository to the surface.
Sensitivity cases are conducted to evaluate different parameterizations for geosphere
hydrogeologic and geomechanical properties.

A nested modelling approach is used wherein flow-only simulations are performed at the Sub-
Regional scale of several tens of kilometres surrounding the hypothetical repository location.
Head and loading boundary conditions are extracted from the Sub-Regional model and used as
input for the smaller Site-Scale transport simulations restricted to a domain of several kilometres
outside the repository footprint. The Site-Scale models include a representation of the
repository within the model grid.

This report is structured as follows:

e Code and Theory — describes the theory behind glacial loading and unloading, and the
modelling codes and approaches used to implement the theory.

e Geoscience Data Preparation — describes the approaches used to generate surfaces
used for geologic formation discretization, to extract glaciation data at the repository
location and to determine the direction of glacial advances and retreats.

e Glaciation Scenario — describes the Glaciation Sub-Regional Flow model construction
and flow model results for reference and sensitivity cases. The Site-Scale transport
model is described and results for reference and sensitivity case transport scenarios.
Two-dimensional simulations were also conducted using a two-phase flow model to
consider the impact of gas present in the geologic formations on the groundwater flow
regime during a glaciation event.



Erosion Scenario — extends the Glaciation scenario to include uniform and localized
erosion. The Erosion Sub-Regional Flow Model is described and results are compared
to those of the Glaciation Sub-Regional Flow Model. Modifications to the Site-Scale
transport model are described and transport results for four reference case scenarios

are presented and compared to corresponding Glaciation Scenario Site-Scale model
results.

Conclusions — summarizes the results of the modelling and the possible impacts of
glaciation and erosion as compared to the steady-state normal evolution results.
Provides an assessment of the modelling approaches.



2. CODE AND THEORY

2.1 Modelling Codes and Software Used

All single-phase flow and transport simulations are performed with the FRAC3DVS-OPG V1.30
code. FRAC3DVS-OPG is a 3D control volume finite-element / finite-difference code (Therrien
et al., 2010) for groundwater flow and solute transport. It includes the ability to represent
discrete fractures (not used here), variable density flow and glaciation using a 1D hydro-
mechanical model, assuming uniaxial strain. FRAC3DVS-OPG was used for all
paleohyrogeology and radionuclide transport simulations presented in NWMO (2013).

Two-phase flow simulations, conducted for the 2D Glaciation Sub-Regional scale flow modelling
described in Section 4.3, were performed with T2GGM v3.2 (Suckling et al., 2015). T2GGM is a
modified version of TOUGH2 v2.0 with an optional gas generation model. The gas generation
model (GGM) capabilities were not used. TOUGH2 is a general-purpose numerical simulation
program for multi-phase fluid and heat flow in porous and fractured media developed by
Lawrence Berkeley National Laboratory (Pruess et al. 1999). The EOS3 equation of state
module used in T2GGM simulates the transport of a single separate gas phase in water (note
that T2GGM allows for specification of alternative gases to air (in this case methane), the EOS3
default). Thermophysical properties of water are represented by steam-table equations, while
the gas is treated as ideal gas. Dissolution of gas in water is modeled with Henry's law. The
phase relationship between gas and liquid is based on a local thermodynamic equilibrium
assumption. EOS3 models the transport of dissolved gas in water by diffusion and advection.
Dispersive processes are not modelled. T2GGM also includes a 1D hydro-mechanical model.

mView version 4.21, developed by Geofirma Engineering, is used for all model pre- and post-
processing. paCalc version 1.7, also developed by Geofirma Engineering, is used as an
execution framework for generating Mean Life Expectancy (MLE) time series.

2.2 Theory: 1D Hydro-Mechanical Loading and Unloading

External stresses arising from transient ice-sheet mechanical loading and elevated sub-glacial
hydraulic head can potentially influence groundwater system dynamics and solute migration.
The presence of gas in formations is expected to reduce the magnitude of hydro-mechanical
coupling. Fully coupled 3D hydro-mechanical (HM) models, such as TOUGH-FLAC (Rutqvist
and Tsang, 2003) are demanding to use at the repository scale, in terms of computational and
human effort, and may require some approximation in accounting for markedly increased fluid
compressibility in a gas-water system. An approximate 1D solution to the coupled hydro-
mechanical processes, relying on the simplifying assumptions of horizontally bedded formations
and vertical uniaxial strain, is reasonable for a relatively homogeneous and extensive vertical
load, such as occurs during continental glaciations or laterally extensive erosion/deposition
events. The 1D assumption may not be not valid where vertical loads vary significantly across
the model domain, such as would occur at the toe of a glacier during the early stages of a
glacial advance when the ice margin is within the model domain. In these cases, horizontal
stresses may cause additional hydro-mechanical effects. The interval during which the ice
margin crosses the domain is typically short relative to the entire glaciation period, and the 1D
HM model is reasonably accurate for the majority of the simulation time. The 1D approach is
described for single phase flow in Wang (2000) and Neuzil (2003), and two-phase flow in Walsh



et al. (2012), and is implemented in both FRAC3DVS-OPG (single phase only) and T2GGM
(two-phase).

One-dimensional HM coupling, assuming uniaxial vertical strain, is analogous to the addition or
subtraction of water from storage in single-phase codes. In the FRAC3DVS-OPG single-phase
code, 1D hydro-mechanical coupling is included as an additional term in the governing equation
(the second term on the right hand side):

1 doy,,
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Where parameters are:
Se_1p 1D (uniaxial) specific storage (m™);

1D loading efficiency (-);

" vertical load (Pa);
hydraulic conductivity tensor (m/s);
hydraulic head (m);
time (s);
density of water (kg/m3);
gravitational acceleration (m/s?); and
sink or source term.

QQE D = FXRAN

In the two-phase code T2GGM, the change in porosity as a function of the pressure is
analogous to the storage term in single-phase flow mass balance equations, and is included
within the mass accumulation term (Equation 2-2) of the governing mass balance equation
(Equation 2-3). Porosity (¢) is not a constant material property, but is transient and updated at
the end of each time-step.

¥
d
- fM'den = fF"-nan + fq"an (2-3)
Vn Fn Vn

Where parameters are:
M mass accumulation term (kg/m?®) of component k (air or water);

¢ porosity (-);
Sy saturation (-) of phase y (liquid or gas);

Py density (kg/m?®) of phase ;
X{f, mass fraction of component k in phase y (kg/kg);

V, subdomain volume (m3);
Iy closed surface bounding volume ¥}, (m?);
n is a normal vector on suface element I, pointing inward into 1},;

F¥ mass flux of component k (kg/(m?s)); and
q* sink or source term of component k (kg/s).



Hydro-mechanical coupling is implemented as a change in porosity due to a change in the
vertical load. The total change in porosity at the end of each time step, including storage and
hydro-mechanical components, is described as follows:

¢ =1 + (pt—lcporedp + SS—lD(do-zz (2_4)

Where parameters are:
b porosity at time t;
¢:—1 porosity at time t-1;
Cpore POre compressibility (Pa™);

p pressure (Pa),
Se_1p. 1D (uniaxial) specific storage (Pa),
¢ one-dimensional loading efficiency (-), and

do,, change in vertical load during time step t-1 (Pa).

The input parameters common to the FRAC3DVS-OPG and T2GGM hydro-mechanical terms
are the one-dimensional loading efficiency (¢), and the vertical loading rate (dao,,).

The one-dimensional loading efficiency is defined for each material type. This parameter is
used to determine what percentage of the applied vertical stress is borne by the pore-fluids.
The equation used to calculate one-dimensional loading efficiency (¢) is (Neuzil 2003):

‘= B +v) (2-5)
3(1 —v) — 2aB(1 — 2v)
Where parameters are:
yij Skempton's coefficient (-);
a Biot-Willis coefficient (-); and

1% Poisson’s Ratio (-).



The one-dimensional specific storage is also defined for each material type, according to
Equations 2-6 through 2-10.

Ss—1p = (% - Kls) A-D+¢ (Kif - Kiqb) (2-6)
Kis :21(}_{i 2v) -
A= EREON (2-8)
D62

Where parameters are:
K drained bulk modulus (Pa), (1/K = ¢Cppre);

K unjacketed bulk modulus, often denoted solid phase bulk modulus (Pa);
K¢ effective fluid bulk modulus (Pa);

Sw water saturation (-);

Sg gas saturation (-);

Kw water bulk modulus, calculated by TOUGH2 (Pa);

Kg gas bulk modulus, calculated by TOUGH?2 (Pa); and

Ky unjacketed pore compressibility (Pa).

Within FRAC3DVS-OPG, Ss_,p is an input parameter for each material type. For T2GGM, the
storage term is not used directly, but inferred from the pore compressibility term (change in
porosity with pressure). As implemented in TOUGH?2, the pore compressibility term assumes
incompressible grains (a = 1), equivalent to a storage coefficient defined as follows:

1
Ss—1p = X + I% (2-11)

In order for the pressure effects of externally applied loads and changes in pore pressure to be
expressed in a consistent fashion, it is necessary to use this simplified form of the storage
coefficient equation (Equation 2-11) in the T2GGM hydro-mechanical coupling term. The value
of the T2GGM input parameter Cpore (1/K = ¢Cpore) Should account for uniaxial rather than
triaxial mechanical constraints.

At first glance, it appears that the 1D hydro-mechanical term is a function of fluid
compressibility, and thereby gas saturation; however, the term Sg_,, ¢ reduces to:

= Kis) (1+v) (2-12)
Ss—1p § = 3(1—v)

Thus, this formulation is a function of material parameters which we assume, in a linear
poroelastic model, do not change significantly (i.e. Sg_;p { is a constant). In a two-phase flow
model such as T2GGM, the effects of the gas phase on reducing the magnitude of hydro-



mechanical coupling are realized in the effects of the change in porosity on gas pressure,
compared to liquid pressure, rather than the hydro-mechanical term itself.

The vertical loading rate is provided as a time-variable input for each element or node column
(FRAC3DVS uses elements, T2GGM nodes). An element or node column refers to a group of
elements or nodes with a single X and Y coordinate, and different depth or Z coordinates. The
method of calculating the vertical loading rate for the glaciations and erosion models in this
report is described in the following section.

2.3 1D Glacial Boundary Conditions

Two boundary conditions are required to simulate glaciation using the 1D hydro-mechanical
models in FRAC3DVS and T2GGM: (1) hydraulic head at ground surface, and (2) vertical
loading rate. These boundaries are spatially variable to represent glacial advance and retreat.

The hydraulic head at ground surface due to glaciation is developed based on the approach
described in Walsh and Avis (2010). During periods of ice cover, an assumed glacial profile
traverses the site at rates that reproduce the ice thickness calculated by glacial climate data
(described in Section 3.2). An analytic equation for the glacial surface profile as a function of
the strength and density of the ice was developed by Oerlemans (2001):

(0 = 21, . (2-13)
~ pe(1+9)

where:
i(X) glacial ice thickness profile, as a function of distance from terminus (m);
X distance from glacial terminus (m);

To yield stress (Pa);
p ice density (kg m); and
) isostatic depression parameter.

Oerlemans (2001) suggests values of 50 kPa to 300 kPa for yield stress and 0.33 for the
isostatic depression parameter. A value of 50 kPa was specified for yield stress and ice density
was assumed to be 900 kg m.

The ice thickness profile is converted to hydraulic head by multiplying the thickness by an
assumed ice-sheet density of 900 kg/m?3. Water pressures below the glacier are therefore
assumed to be close to the pressure required to float the glacier. Glacial advance and retreat
rates are inferred by calculating ice profile movement required to match predicted ice
thicknesses. This approach and calculated boundary conditions are further described in Section
4.1.1.3.

For glacial advance and retreat only, the vertical loading rate is calculated as the derivative of
the surface hydraulic head with respect to time. Inclusion of erosion requires additional stress
changes caused by material removal, as further described in Section 5.1.2.3.

The effects of crustal deformation due to ice load is ignored in the current formulation.



3. GEOSCIENCE DATA PREPARATION

The 5CS study geosphere is described in detail in NWMO (2013). The hypothetical site is
consistent with the Michigan Basin in Southern Ontario. Information describing the site is
largely derived from regional and site-specific investigations for Ontario Power Generation’s
Deep Geological Repository for Low & Intermediate Level Waste (INTERA 2011, AECOM and
Itasca 2011). For the purposes of the 5CS the repository was assumed to be located in the
middle of the Cobourg formation at an approximate depth of 500 mBGS.

3.1 Geologic Surfaces

Formation topography is required for three dimensional grid discretization and property
assignment. Digital elevation models (DEMs) of geologic formation tops were provided by the
NWMO in the triangular irregular network (TIN) format used for the Regional Geologic
Framework Model (GFM) (AECOM and Itasca, 2011). The TIN node points were used as
known elevation points and interpolated onto regular 500 m grids encompassing the maximum
potential model domain using a minimum curvature algorithm. The actual Sub-Regional model
domains for both the Glaciation and Erosion scenarios are defined within this larger potential
area, with the repository located near the middle of the domain. TIN points were pre-processed
to reduce density and delete anomalous points prior to interpolation. Reef structures were also
removed from all formations above the Guelph to ensure maximum surface smoothness. In
addition to previously identified structures, the presence of some additional reefs was inferred
from point elevations. Note that areas containing reef structures are well outside of the actual
Sub-Regional model domains (Section 4.1 and Section 5.1). Figure 3-1 shows the Cobourg
formation GFM input data and the reduction and interpolation grid extents. The original GFM
domain is approximately 170 km (Easting) by 200 km (Northing), while the Sub-Regional
interpolation domain is approximately 90 km by 100 km.
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Figure 3-1: Geologic Framework Model (GFM) Data for the Cobourg Formation and Pre-
Processing Grid Extents

The Paleozoic sedimentary bedrock formations dip to the south-west and are overlain by
Quaternary deposits. The area where a given bedrock unit is present directly below the
Quaternary deposits is termed its sub-crop area. In the absence of overburden (Quaternary
deposits), the bedrock would outcrop. For formations which sub-crop below the upper drift unit
within the possible 5CS Sub-Regional domain, the sub-cropping region was manually
delineated and only those points not associated with sub-crop zones used in the formation
surface interpolation. Figure 3-2 shows the interpolated surface and input data for the Guelph
formation. Sub-crop regions are clearly defined with increased GFM data density.
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Figure 3-2: Guelph Formation Interpolated Formation Top and GFM Input Data

A total of 27 surfaces were created ranging from the Pre-Cambrian to the Detroit River group.
An additional surface describing top of bedrock was created from the combined sub-crop data.
Ground surface was interpolated from DEM data provided on a 475 m grid spacing. Figure 3-3
shows interpolated formation tops.
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Figure 3-3: Three-Dimensional Visualization of Geologic Surfaces

3.2 Glacial Climate Data

Glacial climate data used in the 5CS simulations are derived from the Glacial Systems Model
(GSM) nn9930 glaciation scenario referenced in NWMO (2013) and described in Peltier (2011).
Of the eight models presented in Peltier (2011), the nn9930 scenario was one of two models
with the best fit to observational constraints. The nn9930 model had warm-based glaciers while
the other best fit model (hn9921) was cold based. Warm based glaciers were thought to have a
greater impact on flow system behaviour due to large transients in surface hydraulic head
boundary conditions as well as ice-sheet loading. Cold-based glaciers provide ice-sheet loading
only.

Continent wide data are available on a 1 degree longitude and 0.5 degree latitude spacing at
500 year intervals from 120 ka before present day to present day. At the 5CS site there are two
periods of glacial advance and retreat at approximate times of -60 ka and -20 ka. Figure 3-4
and Figure 3-5 show simulated ice thicknesses at the time of peak local ice thickness on a
continent wide scale and 5CS local scale respectively. Data were interpolated at the site
location from the surrounding GSM model grid points (see Figure 3-5). Resulting time series
data for glacial thickness and permafrost depth at the 5CS site location are shown in Figure 3-6
and Figure 3-7.
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Figure 3-7: Source Data and 5CS Site Interpolated Permafrost Depth

The data indicate that there is no or little overlap between periods of permafrost and ice cover.
As a consequence, all glaciation events are assumed to correspond to warm based glaciers
where both hydraulic head and stress loading boundary conditions are applied at ground
surface during periods of ice cover.

The GSM simulation describes a glacial cycle of 120 ka duration. This cycle assumed to restart
at the present day and then repeat eight times to cover a 960 ka performance period for
simulations.
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4. GLACIATION SCENARIO

The implementation and results of the base Glaciation Scenario are described in the following
subsections:

e Glaciation Sub-Regional Flow Model — model definition (discretization, property
assignment, boundary conditions) and results of variable density and glacial climate flow
modelling at the Sub-Regional scale. Sensitivity cases assess the impact of geosphere
properties, boundary and initial conditions, and simulated processes on advective
velocities in the vicinity of the repository.

e Site-Scale Transport Model- model definition, including repository and engineered
barrier system (EBS) description, and results for combined glacial climate groundwater
flow and radionuclide transport modelling for reference cases and limited sensitivity
cases.

e Sub-Regional Two-Phase Flow Model — based on the Glaciation Sub-Regional Flow
model, 2D simulations were conducted to consider the impact of gas in the Ordovician
units on the groundwater flow regime during glacial climate cycles.

4.1 Glaciation Sub-Regional Scale Flow Modelling

The Glaciation Sub-Regional scale flow modelling provides boundary conditions for Site-Scale
transport modelling and assesses the impact of variable density groundwater and other defined
sensitivity cases. The repository location is indicated in figures in this section for reference
only. There are no discretization adjustments or property assignments reflecting the presence
of a repository in the Glaciation Sub-Regional Flow Model.

4.1.1 Model Description

41.11 Model Domain and Discretization

The Glaciation Sub-Regional flow model domain shown in Figure 4-1 was determined from the
repository location and an assumed North-South direction of glacial advance and retreat
(NWMO, personal communication). A domain of 25 km by 50 km is adequate to capture
regional groundwater flow processes in the vicinity of the repository without excessive boundary
effects. The origin was set at 47600E, 485860N in the UTM coordinate system, the lower-left
corner of the Sub-Regional model domain. The domain was centred on the repository in the X
direction but shifted 10 km southwards to ensure that flow from glacial advances was captured.
The Northern grid limit includes an area of Guelph formation sub-crop to the North-East of the
repository. The model was discretized with 500 m square elements in the plan section.
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Figure 4-1: Glaciation Sub-Regional Model Domain

Vertical discretization was based on the geologic surfaces described in Section 3.1 and
illustrated in Figure 4-2 and Figure 4-3. Not all formation tops are indicated in the figure;
however, all were used in the discretization. Upper layers were modified so that a minimum of
50 m thickness weathered bedrock/overburden zone could be assigned. A minimum grid layer
thickness of 0.1 m was enforced in the northern end of the grid where sub-cropping layers were
merged into the drift/weathered bedrock zone.
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Figure 4-3: Glaciation Sub-Regional Model Discretization on Vertical Slice Through
Y = 35000 m

The resulting model domain consists of 51 nodes in the X direction, 101 in the Y direction and
59 node layers, for a total of 303,909 nodes and 290,000 elements.
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4.1.1.2 Property Assignment

Properties were assigned based on element position relative to geologic surfaces (Figure 4-4).
Figure 4-5 details pinch outs (Al Evaporite, A2 Evaporite and B Anhydrite) and sub-crops.
Guelph formation properties are assigned across the full thickness of the Niagaran group, which
also includes other, thinner formations, such as the Goat Island, Gasport and Lions Head
formations. Reference case values for flow and hydro-mechanical model parameters are

tabulated in Appendix A.
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Figure 4-4: Glaciation Sub-Regional Model Property Assignment
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Figure 4-5: Glaciation Sub-Regional Model Property Assignment on Vertical Slice
Through X =8500 m

Many of the figures in this report are presented with substantial vertical exaggerations to allow
formations to be clearly represented. It is worth noting that the model domain is much more
extensive laterally than vertically. In a true perspective figure with no vertical exaggeration,
Figure 4-4 appears as shown in Figure 4-6.
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Figure 4-6: Glaciation Sub-Regional Model Property Assignment (no vertical
exaggeration)

4.1.1.3 Boundary Conditions

Two sets of surface boundary conditions are used: 1) constant head at ground surface elevation
for steady-state flow (required for model verification and comparison simulations) and
preparatory variable density simulations, and 2) varying head and stress-loading rate at ground
surface for glacial climate simulations. For steady-state flow and variable density simulations,
zero flow boundary conditions are applied at bottom of the model and on all vertical model
sides. This is not strictly accurate as it eliminates the possibility of regional flow within the
model domain. However, experience has shown that the formations are of sufficiently low
permeability to preclude virtually any regional flow in the aquitard units. Regional modelling
results (Sykes et al., 2011) show horizontal gradients which are essentially zero within the
Ordovician units. Flow directions within the more permeable Guelph are not well known on the
regional scale and thus would not benefit from specification with fixed heads. For glacial climate
cases time variable fixed head boundary conditions are applied at the North and South end of
the model. The time varying glacial heads at surface are propagated downwards over the full
vertical extent of the North and South grid nodes, as shown in Figure 4-7. This has the effect of
forcing a gradient in the permeable units that would be consistent with expectations during a
glacial advance/retreat, and allows flow into and out of the domain. The boundary conditions
have only a very limited impact on flow in the impermeable units. Implications of this choice in
boundary conditions are addressed with a sensitivity case.
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Figure 4-7: Glaciation Sub-Regional Model Fixed Head Boundary Condition Nodes

251 vertical exaggerati

Glacial boundary conditions for the model surface and the North and South vertical boundaries
are developed based on the approach described in Section 2.3, using the ice thickness
calculated by the GSM model described in Section 3.2 above. Time-varying hydraulic head and
loading stress rate applied at ground surface directly above the repository are shown for a
single glacial cycle in Figure 4-8.
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Figure 4-8: Glaciation Sub-Regional Model Glacial Surface Boundary Conditions

Figure 4-9 presents specified surface boundary conditions at four times associated with the first
glacial event at 60 ka. The upper left quadrant figure is at ground surface elevation and reflects
surface topography before the ice-sheet intercepts the model grid. The toe of the ice-sheet has
advanced approximately 15 km across the domain in the upper right figure. The lower left figure
is at Glacial Peak where the upper ice sheet surface is an attenuated reflection of the underlying
topography. The ice sheet is retreating in the lower right figure.
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Figure 4-9: Glaciation Sub-Regional Model Surface Hydraulic Head Boundary Conditions
at Selected Times (Pre-Glacial, Glacial Onset, Glacial Peak, Glacial Retreat)

Unlike Walsh and Avis (2010), where each glacial cycle was subdivided into multiple simulations
connected with simulation restarts, the Glaciation Sub-Regional Flow model described here
includes continuous boundary conditions for a full 960 ka simulation period.
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41.1.4 Permafrost

Permafrost is implemented using the available FRAC3DVS-OPG facility where the hydraulic
conductivity of elements is set to specified permafrost values during time periods when the
specified permafrost depth exceeds the depth of the element centroid. Affected elements are
those for which the element centroid is shallower than the permafrost depth. The reference
case hydraulic conductivity for permafrost is specified as 5 x10** m/s (McCauley et al. 2002).
Other material properties (porosity, effective diffusion for transport) are not modified. The
maximum depth of permafrost is 55 metres, which limits permafrost primarily to the otherwise
relatively permeable overburden/weathered bedrock zone, as shown in Figure 4-10. Reference
case permeability in this zone in the absence of permafrost is 107 m/s.
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Overburden®Veathered Bedrock zone an0
Repastory

300+

200+

100 4

-100 4

Elevation (mASL)

-200 4

-300 1
-400 1 F
-500 ~ I

0 10000 20000 30000 40000 50000
Grid Y (m)

10 Oct 2014

2501 verical exagyeration Sub ReaPermatrost midew

Figure 4-10: Glaciation Sub-Regional Model Maximum Permafrost Depth on Vertical Slice
Through X =12500 m

4.1.15 Well Operation

A single water supply well is assumed to be present and operating during all periods where
neither permafrost nor ice cover occurs. The well abstraction rate is set to the reference rate of
1307 m3/a when operating. Figure 4-11 illustrates well abstraction over the first glacial cycle.
The well operates for 60,500 a, or for just over 50% of the glacial cycle. The same abstraction
rates and timings are used for all eight simulated glacial cycles. Three cases with different well
locations are defined: a reference and main shaft well location, as described in NWMO (2013),
and a well located approximately at the centre of the facility. As shown in Figure 4-12, the
coarseness of the Glaciation Sub-Regional Flow model discretization creates minor
discrepancies between simulated well locations and specified well locations. Wells are
implemented as line elements across the entire Guelph formation at each location, an interval of

approximately 70 m, with the top of the pumping interval at a depth of approximately 140
mBGS.
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Figure 4-11: Water Supply Well Operation during a 120 ka Glacial Cycle
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4.1.2 Steady-State Flow Simulations

Constant density steady-state (constant climate) flow simulations were conducted to provide
initial heads for variable density simulations and to provide a reference flow system for
comparison to transient variable density and glacial climate simulations. Selected results for
reference case properties with no water supply well are given in Figure 4-13 through Figure
4-16. The figures also define a 6.5 km x 5 km area surrounding the repository. This area,
within the vertical limits of the Cobourg formation, defines a “repository volume” which is used to
provide comparative statistics such as maximum velocity and minimum Mean Life Expectancy
(MLE) for assessing sensitivity case results. Within this report, the term “Repository MLE”
refers to the minimum MLE within this volume. MLE simulations determine the mean travel time
to discharge for groundwater from any point within the model domain. MLE calculations include
the effects of diffusion, advection, and dispersion. With FRAC3DVS-OPG, MLE simulations can
only be performed for steady-state flow simulations.

As expected, the extreme low permeabilities of the deep geosphere, when coupled with very
low hydraulic head gradients result in stagnant flow systems below the permeable Guelph
formation. Advective velocities are less than 10 m/a while Repository MLE is greater than 200
million years. Note that advective velocity arrows shown in Figure 4-14 indicate areas where
flow velocity is greater than 10 m/a (i.e., greater than 100 m transport in 1 Ma). This
convention is used for all other figures presented in this report that illustrate advective velocities.
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The very long MLEs are reflective of a diffusion dominated transport system. The nature of
transport in the system can be seen by examining sensitivity cases showing the impact of
increases in hydraulic conductivity. Two cases, KHigh and KHigh100, increase hydraulic
conductivities for all geologic formations by a factor of 10 and 100 respectively. Given no other
changes in boundary conditions these cases should yield corresponding increases in advective
velocity. In an advective transport dominated system these increases in velocity would translate
into identical decreases in MLE. As shown in Figure 4-17, there are decreases in MLE in
formations above and including the Guelph. However, MLE decreases in the stagnant
Ordovician (Queenston formation and below) flow system in the vicinity of the repository are
only a factor of 1.25 (for K x 10) and 6.25 (for K x 100). As noted for analogous
paleohydrogeological simulations presented in NWMO (2013), “this highly nonlinear relationship
between MLE and hydraulic conductivities indicates the dominance of molecular diffusion in the
transport mechanism.”
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Figure 4-17: Steady State Reference Flow: Comparison of Mean Life Expectancy on

Vertical Slice Through Repository — Khigh and Khigh100 Cases

Additional simulations with constant water supply well operation were performed to provide
boundary conditions for Site-Scale steady state flow simulations. As shown in Figure 4-18, the
presence of the well primarily affects flow in the Guelph formation in the immediate vicinity of

the well.
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Figure 4-18: Steady State Reference Flow: Advective Velocity and Hydraulic Head
Distribution on Vertical Slice Through Repository With Centre Well

Figure 4-19 and Figure 4-20 compare MLE on a vertical slice through the repository for the no-
well and centre well cases respectively. The water supply well can be seen to have only minor
impact on the age distribution in the deeper Middle Ordovician formations, with MLE in the
vicinity of the repository decreasing from 210 Ma to 180 Ma. In this case, the 30 Ma reduction
in the MLE relates mainly to the shortened distance for diffusive transport from the repository to
discharge (i.e., surface or well), and relates less importantly to the small impact of slight
increases in advective velocity induced by well operation.
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4.1.3 Variable Density Simulations

Variable density simulations were conducted to determine the impact of porewater salinity on
transport processes. These simulations require a description of the distribution of variable
density fluids in the geosphere. Initially, this profile was specified on a formation basis from
measured data (INTERA, 2011) as shown in Figure 4-21 and Figure 4-22. Appendix A contains
formation fluid densities used as initial conditions for the simulations.
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Figure 4-22: Initial Fluid Density in Model Domain

It should be noted that the salinity profile is based on measurements taken at the Bruce site
(INTERA, 2011), where formation depths are much greater and where all formations to the
Detroit River group are present. At the Bruce site, the permeable Guelph and Salina A-1 Upper
Carbonate formations are highly saline and are not considered potable water supplies. In
contrast, salinities in the shallow groundwater zone within the larger Glacial Sub-Regional Flow
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model domain are much reduced in areas where the Guelph formation sub-crops and where the
Guelph is a potable water supply aquifer.

As described in NWMO (2013), variable density simulations require an initial spatial distribution
of fluid density consistent with both measured values and characteristics of the flow system. To
obtain a reasonable set of initial conditions, variable density simulations followed the general
methodology described for regional density dependent flow modelling NWMO (2013):

1. Initial fluid head is determined from steady-state constant density simulations.

2. Fluid density is initialized on a formation basis as specified. The steady-state head from
1) is converted to an initial freshwater head based on the density profile.

3. Fluid flow simulations are conducted with the density profile set as fixed concentrations
to determine a consistent freshwater head profile. Calculated freshwater heads from 2)
are used as initial conditions. The flow system is allowed to evolve until steady-state
conditions are attained.

4. The steady state freshwater head profile is used as initial freshwater head to a variable
density simulation. This simulation is run forward to 1 Ma at which point “pseudo-
steady-state” conditions are obtained. Freshwater head and brine concentration at 1 Ma
are used as initial conditions for variable density glacial simulations.

For all steps, surface hydraulic boundary conditions are constant fixed heads at elevation on the
upper surface of the model. Third-type transport, or Cauchy, boundary conditions with 0.0
concentration are applied at surface. This allows free outflow of saline discharge while ensuring
that recharge is freshwater. The bottom boundary condition is a fixed concentration at a density
consistent with the Shadow Lake formation.

Initial simulations indicated that the salinity in the Guelph formation would substantially dissipate
throughout the entire formation during step 4). Although salinity was expected to be reduced in
areas where the Guelph formation sub-crops and freshwater recharge or mixing occurs, high
fluid densities should persist in deeper portions of the formation, consistent with the measured
densities used in the initial profile. Consequently, fixed concentration nodes were specified in
deeper portions of the Guelph, corresponding approximately to the extents of non-potable water
in the formation as shown in Figure 4-23.
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Figure 4-23: Fixed Concentration Nodes in Guelph Formation (Red Elements Above Cut-
Away)

The 1 Ma results do not represent an actual steady-state condition as the brine system
continues to evolve, albeit at a very slow rate, driven by diffusion processes from the saline
Middle Ordovician into the fresher water above. This primarily affects the potable water zones
where the Guelph is diluted by inflowing fresh water. Variations in the salinity profile (Figure
4-24) clearly show this effect.
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Figure 4-24: Variable Density Reference Flow: Evolution of Fluid Density Profiles at
Locations Under the Fixed Concentration (Y = 10,000 m) and Freshening (Y = 35,000 m)
Guelph Formation on a Slice at X = 12,500 m.

MLE simulation results are defined only for steady-state flow systems. However, FRAC3DVS-
OPG has a capability where results from a transient flow system can be used to define a
constant velocity field that can then be used for MLE simulations. MLE results can thus

represent a “snapshot” of system behaviour and are used in this report to provide a metric for

comparing model results.

“Snapshot” MLE results (Figure 4-25) at 1 Ma and 5 Ma show that freshening in the Guelph has
virtually no impact on transport processes in the vicinity of the repository.
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Figure 4-25: Variable Density Reference Flow: Comparison of Mean Life Expectancy on
Vertical Slice Through Repository at 1 Ma and 5 Ma.

It is interesting to note that both variable density flow fields (1 Ma or 5 Ma) are quite similar to
the steady-state constant density flow system described in Section 4.1.2. Within the Ordovician
sediments the advective velocities of the constant density case are generally slower than for the
1 Ma variable density case while the MLEs are virtually identical (Figure 4-26). As MLEs are
reflective of an advective flow regime, this is consistent with the diffusion dominated
characterization of transport within the repository host rock and adjacent sedimentary units.
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Figure 4-26: Comparison of Constant and Variable Density Reference Flow: Ratio of

Constant to 1 Ma Variable Density Advective Velocity and MLE

Execution time is one area where the simulations for the two approaches are not similar. The
variable density simulations are extremely time-consuming. The reference case variable
density simulation required 12 days to reach 1 Ma, 65 days to reach 5 Ma, and 118 days to
reach 10 Ma, even with relatively relaxed convergence criteria. Execution times are further
increased when coupled with glacial cycle boundary conditions (as described in Section 4.1.5.4
below). Given the great similarity between variable density and constant density flow fields, and
the prohibitive computational cost of variable density simulations, most sensitivity cases and all

transport simulations were conducted with constant density flow.

4.1.4 Reference Case Glacial Climate Simulations

The glacial surface boundary conditions, glacial hydro-mechanical loading, permafrost
specification and water supply well operation schedule described in Section 2 and Section 4.1.1
were applied to the constant density flow model. Model results include transient hydraulic head
and advective velocity over the 960 ka simulation period. Time series results below present
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simulated hydraulic head at the repository centre (Figure 4-27) and maximum advective
velocities in the vicinity of the repository (Figure 4-28) through a selection of formations.
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Figure 4-27: Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic Head at
Repository Location (X = 12,500 m, Y = 35,000 m) and Selected Formations
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Figure 4-28: Glaciation Sub-Regional Glacial Cycle Simulations: Maximum Advective
Velocity in Repository Vicinity and Selected Formations
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The results clearly indicate the timing of glacial advance and retreat, and also show that there is
very little cumulative impact, with heads and velocities generally repeating for each cycle. The
initial cycle is slightly different as initial head conditions at t = 0 are extracted from a steady-
state flow model representing present day climate.

Glacially induced upwards velocities are of most interest from a transport perspective. Figure
4-29 and Figure 4-30 show maximum vertical velocities during the first (lower X axis) and fifth
(upper X axis) glacial cycle in the repository vicinity within selected Ordovician formations. The
figure is also labeled with the times of five events:
1. maximum well operation - the end of the longest period of continual well operation
(43,500 a);
2. maximum permafrost — the time of maximum permafrost depth (93,000 a);
3. peak Cobourg velocity — maximum vertical velocity in the repository formation (98,500
a);
4. peak ice load — the time of maximum ice thickness over the repository (100,500 a); and
5. maximum retreat — the time of maximum downward velocities (106,000 a).

Responses are similar for both first and fifth cycle with the exception of velocity at maximum
well operation time. In the first cycle, the only influence on the flow system is the well, which
affects velocities in the Queenston, but not the Cobourg or Kirkfield. In the fifth cycle, the
formation is still responding to the glacial event at the end of the third cycle, with higher
upwards velocities in the Queenston and Kirkfield and downward velocities in the Cobourg.
Note that downward (negative) velocities that occur during glacial retreat are not shown on
Figure 4-29 due to the log scale on the Y axis. The vertical direction of groundwater velocities
is driven by vertical head gradients. Relative pressures are largely a function of different
loading efficiencies (Sherman Fall 0.88, Cobourg 0.80), with higher values causing greater
responses. At maximum glacial load, the hydraulic head in the Sherman Fall formation (below
the Cobourg formation) is higher than in the Cobourg formation; at maximum retreat it is lower.
It remains lower over most of the assessment period (Figure 4-31) resulting in prevailing
downward advective velocities, albeit of extremely small magnitude.
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Figure 4-29: Glaciation Sub-Regional Glacial Cycle Simulations: Maximum Vertical
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Figure 4-31: Glaciation Sub-Regional Glacial Cycle Simulations: Detail of Hydraulic Head
in Cobourg and Sherman Fall Formations in Repository Vicinity

Figure 4-32 through Figure 4-38 present velocity magnitude and head contours on a vertical
slice through the repository at the simulation start (t = 0) and at each of the first cycle events
designated in Figure 4-29. Peak well operation in the fifth cycle is also presented (Figure 4-34).
Note that the vertical slice for Figure 4-33 and Figure 4-34 (peak well operation in first and fifth
cycle) is through the reference well location (see Figure 4-12) rather than the centre of the
repository.

The head contours in Figure 4-32 differ from those in Figure 4-14 due to the difference in
boundary conditions at the North and South ends of the model. The steady state flow results
(Figure 4-14) use zero flow BC, while the glacial climate cases use time-varying fixed head BC
at the North and South ends of the grid, as described in Section 4.1.1.3. This does not
significantly impact velocity or MLE at the repository location.

Water well operation (Figure 4-33 and Figure 4-34) has a minimal impact with velocity vectors
and head contours in the Guelph affected only within the immediate vicinity of the well.
Maximum permafrost depth (Figure 4-35) substantially reduces velocities in the upper 50 m but
has little impact on velocities elsewhere. Differences in head at depth are due to continuing
effects of the previous glacial loading rather than the permafrost. The two events with ice-
sheets over the repository (Figure 4-36 and Figure 4-37) are similar in that the head profiles are
markedly changed due to hydro-mechanical loading. At the time of the retreat (Figure 4-38),
residual overpressures remain in the upper Salina units to the south of the repository, although
under pressurization is apparent in the Sherman Fall formation below the repository.
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Figure 4-32: Glaciation Sub-Regional Glacial Cycle Simulations: Advective Velocity and
Hydraulic Head at Simulation Start (T =0 a)
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Figure 4-33: Glaciation Sub-Regional Glacial Cycle Simulations: Advective Velocity and
Hydraulic Head at Time of First Cycle Peak Well Operation (T = 43,000 a)
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Figure 4-34: Glaciation Sub-Regional Glacial Cycle Simulations: Advective Velocity and
Hydraulic Head at Time of Fifth Cycle Peak Well Operation (T = 523,000 a)
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Figure 4-35: Glaciation Sub-Regional Glacial Cycle Simulations: Advective Velocity and
Hydraulic Head at Time of Maximum Permafrost (T = 93,000 a)
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Figure 4-36: Glaciation Sub-Regional Glacial Cycle Simulations: Advective Velocity and
Hydraulic Head at Time of Peak Upward Velocities in Cobourg Formation at Repository
(T =98,500 a)
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Figure 4-37: Glaciation Sub-Regional Glacial Cycle Simulations: Advective Velocity and
Hydraulic Head at Time of Maximum Glacial Load at Repository (T = 100,500 a)
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Figure 4-38: Glaciation Sub-Regional Glacial Cycle Simulations: Advective Velocity and
Hydraulic Head at Time of Maximum Glacial Retreat at Repository (T = 106,000 a)

Hydraulic head profiles at the water supply well location at the selected event times (Figure 4-39
and Figure 4-40) show the wide range of heads propagated through the flow system over the
cycle. The second figure provides greater resolution for the events without ice loading,
including the presence of the underpressured zone in the Sherman Fall formation at the time of
maximum retreat. The head profiles are useful for explaining the direction of vertical
groundwater flow at various times. Advective flow will always be in the direction of positive
gradient; from high head to relatively lower heads. For example, the Cobourg formation shows
upwards flow at Peak Cobourg and Peak Ice load times in Figure 4-39, while velocities are
downward during Maximum Retreat and Peak Well (Cycle 5) in Figure 4-40.



47

a0 L L L L
Ground Surface Initial
Peak Well
500 E'daxli(mgmb Permafrost |
eak Cobour
A2 Carbanate Peak lce Logd |
Upper A1 Carbonate Waximum Fetreat
Guelph
100 1 -
Fossil Hill
-+ 04 Queenston (_/ |
L))
é GEEBM
c -100 4 -
2
W
=
o
w - ] L
20 Cobourg
Sherman Fall \
-300 1 Kirkfield J L
-400 1 l Shadow Lake r [
Grid X location 11500 (m)
Grid ¥ location 35500 (m)
-500 T T T T T
0 500 1000 1500 2000 20 3000

Hydraulic Head {m) 2014

22 Oct
SubRegGlacialRC.mfiewn

Figure 4-39: Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic Head Profiles
at Water-Supply Well Location
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Figure 4-40: Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic Head Profiles
at Water-Supply Well Location (Detail)

However, in spite of significant hydraulic stresses, the advective velocity in the Ordovician units
near the repository remains very low over the duration of the glacial cycle (Figure 4-41). The
snapshot MLE using the peak Cobourg velocity (Figure 4-42) still maintains an MLE of nearly 80
Ma in the vicinity of the repository. The ratios of advective velocities and “snapshot” MLE at
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initial and at peak Cobourg velocity (Figure 4-43) show that even though velocities have
increased significantly, MLE has not decreased significantly. Even if the peak velocities were to
persist, overall MLE would be reduced by only a factor of 2.5 over the constant climate MLE of

185 Ma.
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Figure 4-41: Glaciation Sub-Regional Glacial Cycle Simulations: Velocity Magnitude
Profiles at Water-Supply Well Location
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Figure 4-42: Glaciation Sub-Regional Glacial Cycle Simulations: Snapshot MLE at Peak

Cobourg Velocity Magnitude



49

-200 1

Elewation [maASL)

-300 1

-400 4

-500 4

Advective Velocity

Repository “elocity Ratio  0.010

0 10000 20000

30000 40000

Slice location 12800 (m) 25:1 Yerical exaggeration

400 L L .

50000

Elevation (mASL)

-200 1

-300 1

-400

-500 4

Repository MLE Ratio  2.403

0 10000 20000

30000 40000

Grid Y (m)

50000

100

dd

Initial/Peak Cobourg Ratio

0.1

26 Jan 2015
SubReg&lacialRC. mfiew

Figure 4-43: Glaciation Sub-Regional Glacial Cycle Simulations: Comparison of Initial

and Peak Cobourg Velocity Snapshot MLE

All results show the resiliency of the reference case flow system and its relative insensitivity to
glacial events. As mentioned previously, velocity time series show no evidence of significant
cumulative impacts. This is not to say that the system returns to a common head profile at any
point. The time of maximum well operation in each cycle after Cycle 1 occurs at the longest
time period without a glacial stress, at which time the system will have reverted closer to a
steady-state than at any other time. Figure 4-44 shows head profiles at this time within each
cycle. There is a steady accumulation of glacial overpressure, although the rate of increase

diminishes with each cycle.
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Figure 4-44: Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic Head Profiles
at Water-Supply Well Location at Time of Maximum Well Impact for All Cycles

Velocity profiles at the same times (Figure 4-45) show little variation after the initial glacial cycle.
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Figure 4-45: Glaciation Sub-Regional Glacial Cycle Simulations: Velocity Magnitude
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4.1.5 Sensitivity Assessment

Sensitivity cases are specified to determine the variation in system response to changes in
parameters, boundary conditions, initial conditions or modelling processes. The reference case
flow model, RC, is defined as having constant density, glacial climate, reference case
parameters, reference water supply well location and abstraction rates, and initial conditions
from steady-state fixed head boundary conditions at model surface and North and South sides.
Defined sensitivity cases are assessed in terms of velocity and head response in the repository
volume and profiles of velocity and head at the time of maximum Cobourg velocity and
maximum ice thickness events.

4151

Sensitivity Cases

Table 1 provides a description of the cases evaluated.

Table 1 - Sensitivity Cases for Glaciation Sub-Regional Flow Model

Type Case Description
Parameter KHigh High range hydraulic conductivity — hydraulic conductivity values
for all formations increased by factor of 10
KHigh 100 Hydraulic conductivity values for all formations increased by factor
of 100.
KHigh 1000 Hydraulic conductivity values for all formations increased by factor
of 1000
SHigh High range storativity — specific storage for all formations
increased by factor of 10
LEHigh High range loading efficiency — loading efficiency for all formations
increased by factor of 1.5 to a maximum of 1.0
LELow Low range loading efficiency — loading efficiency for all formations
decreased by factor of 0.5
Boundary and | DPF Discontinuous or “patchy” permafrost - permafrost coverage
Initial reduced to half the domain in a patchwork pattern
Condition No PF No permafrost
Surface BC Time-varying fixed head boundary conditions applied at surface
only. North and South model extents are zero-flow.
NoLoad No Loading — hydro-mechanical processes not included, only the
glacially-induced increase in hydraulic head.
Load Only No surface hydraulic head BC associated with glaciation.
Corresponds to cold based glacier.
HUnder Underpressured hydraulic head — underpressures consistent with
DGR-4 (INTERA, 2011) applied as initial conditions for Ordovician
formations
HOver Overpressured hydraulic head on lower boundary. Overpressures
consistent with measured Cambrian DGR-4 (INTERA, 2011)
applied as lower boundary condition.
Process ConstDens - Constant density, constant climate - previously described in
CC Section 4.1.2
VarDens-CC Variable density, constant climate - previously described in Section
4.1.3
VarDens-Glac Variable density, glaciation
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Note that the KHigh100 and KHigh1000 cases do not represent physically likely parameter sets,
and that the No Load case ignores processes that are almost certainly occurring. These cases
are presented to gather insight on overall system performance rather than to represent
physically possible performance. Additional details of specific cases are provided in the
following subsections.

4.15.1.1 Discontinuous Permafrost (DPF) Case Description

The reference case model assumes that permafrost is applied continuously over the surface of
the model at time intervals and depths as shown in Figure 4-11. The DPF sensitivity case
restricts permafrost to a 5 km by 5 km checkerboard pattern as shown in Figure 4-46 and Figure
4-47.
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Figure 4-46: Glaciation Sub-Regional Glacial Cycle Simulations: DPF Case Specification
— Hydraulic Conductivity of Top Model Layer at Time of Maximum Permafrost Depth
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Figure 4-47: Glaciation Sub-Regional Glacial Cycle Simulations: DPF Case Specification
— Hydraulic Conductivity of Vertical Slice Through Repository at Time of Maximum
Permafrost Depth

4.1.5.1.2 HUnder Case Description

Anomalous formation pressures were measured at the OPG DGR Site Characterization
boreholes (INTERA, 2011). Significant underpressures were found in the Ordovician shales and
limestones while overpressures were measured in the permeable Cambrian sandstone
underlying the site. It is possible that underpressures are present throughout the model domain.
An underpressure profile, defined in terms of difference in hydraulic head from steady-state on a
formation basis, approximated the measured underpressure at DGR-4, as shown in Figure 4-48.
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Figure 4-48: Glaciation Sub-Regional Glacial Cycle Simulations: HUnder Case

Specification — Defined Underpressure Profile

The profile was used to modify the calculated steady-state hydraulic head distribution from the
constant density model described in Section 4.1.2 with a resulting initial head distribution as

shown in Figure 4-49.
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This head distribution was used as initial head in a transient flow, constant climate simulation to
both smooth the rather coarsely specified initial head and to examine the evolution of the
underpressure. As shown in Figure 4-50, the underpressure at the repository location
dissipates over a 5 Ma period. The hydraulic head distribution at 10 ka was assumed to be
reflective of possible underpressure conditions and is used as the initial head for the HUnder
sensitivity case. These underpressures are not compatible with the reference case glacial head
boundary conditions where varying fixed heads are applied at the North and South vertical ends
of the model. Consequently, only surface boundary conditions are applied for the HUnder case,
with zero flow specified on all vertical sides of the model.
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Figure 4-50: Glaciation Sub-Regional Glacial Cycle Simulations: HUnder Case
Specification — Underpressure Evolution

4.1.5.1.3 HOver Case Description

The Cambrian formation is discontinuous and does not appear within the domain of the
Glaciation Sub-Regional flow model, however, excess pressures present at the OPG DGR Site
and shown at the top of the Shadow Lake formation in Figure 4-48 may propagate along a
possible permeable weathered zone at the top of the Pre-Cambrian. The HOver case assumes
150 m of hydraulic head is imposed on the lower boundary of the reference case constant
climate head profile. For a constant climate case, these boundary conditions result in the
steady-state head distribution shown in Figure 4-51 and compared to the reference case profile
in Figure 4-52.
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Figure 4-51: Glaciation Sub-Regional Glacial Cycle Simulations: HOver Case
Specification — Constant Climate Head Distribution
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Figure 4-52: Glaciation Sub-Regional Glacial Cycle Simulations: HOver Case
Specification — Head Profile Comparison to Constant Climate Reference Case
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4152 Parameter Sensitivity Case Results

Figure 4-53 through Figure 4-57 present a selection of results which, in aggregate, provide a
characterization of flow system sensitivity to the selected parameter cases when compared to
the RC glacial climate and RC constant climate results. Figure 4-53 indicates that the general
system response remains non cumulative over the 8 glacial cycles simulated, and that any
particular cycle is relatively representative of other cycle behaviours.

The increase in KHigh case velocities is expected; for a given gradient, velocity will be
proportional to conductivity. This is true for overall magnitude (Figure 4-53) which clearly shows
order of magnitude increases in the periods between glacial advances and retreats. Detailed
vertical velocities in the fifth cycle (Figure 4-54) show that the various KHigh cases provide the
biggest increase in vertical velocities although the increases are not proportional to K increase
as for total velocity (approximately a factor of 4, 15 and 40 for KHigh, KHigh100 and KHigh1000
respectively). Figure 4-57 provides an explanation for this result; as hydraulic conductivities
increase, vertical head gradients decrease, so velocities increase less than would be the case if
the gradients were sustained. For a similar reason, vertical velocities for the LEHigh case are
much reduced, being near constant and approximately a factor of two higher than the steady
state constant climate case. The velocity relationships are consistent over the Ordovician
formations at the time of peak Cobourg velocity (Figure 4-56).

Peak hydraulic head in the Cobourg is dependent on loading efficiency as clearly shown in
Figure 4-55. The relatively flat hydraulic profile of the LEHigh case in Figure 4-57 results in a
very small vertical hydraulic gradient, which corresponds to the very low velocity in the case.
Somewhat counter intuitively, the LELow case also has a relatively flat gradient and a vertical
velocity lower than the RC, although much higher at peak than the LEHigh case. This is
explained by the fact that gradients are induced based on the difference in loading efficiency
between formations. For the LEHigh case most formations have a loading efficiency of 1.0, the
maximum possible. This results in all formations having a similar response to applied load, and
consequently low vertical gradient between formations. For the LELow case the difference in
loading efficiency between formations is reduced because of the constant 0.5 multiplier
specified in the case.

SHigh case results show that overall response is relatively insensitive to storativity.
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Figure 4-53: Glaciation Sub-Regional Flow — Parameter Sensitivity: Maximum Advective
Velocity Magnitude in Vicinity of Repository in Cobourg Formation
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Figure 4-54: Glaciation Sub-Regional Flow — Parameter Sensitivity Detail: Maximum
Vertical Advective Velocity Magnitude in Vicinity of Repository in Cobourg Formation
Over Fifth Glacial Cycle
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Figure 4-56: Glaciation Sub-Regional Flow — Parameter Sensitivity: Velocity Profile
Through Reference Well Location at Time of Maximum Cobourg Velocity in First Glacial

Cycle
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Figure 4-57: Glaciation Sub-Regional Flow — Parameter Sensitivity: Hydraulic Head
Profile Through Reference Well Location at Time of Maximum Ice Thickness in First
Glacial Cycle

4,153 Boundary and Initial Condition Sensitivity Case Results

Figure 4-58 through Figure 4-64 present a selection of results for the boundary and initial
condition sensitivity cases. The DPF, No PF, and Surface BC cases are very similar to the RC
for nearly all results, indicating that the model is not sensitive to either permafrost or the vertical
fixed head boundary conditions at the North and South ends. In most figures the RC results
mask those of the other cases.

The HUnder, NoLoad, and Load Only cases show some differences between cycles over the
simulation duration (Figure 4-60). The underpressures that characterize the HUnder case
dissipate over the time frame and Cobourg head responses converge on the RC head
response. The NoLoad case shows a gradual increase in Cobourg head, the rate of which
flattens towards the end of the simulation, while the Load Only case shows an opposing trend,
with a steady decline in Cobourg head.

The largest impact on vertical velocities is seen with the NoLoad case which reduces maximum
vertical velocities by a factor of 20 (Figure 4-59). All other cases have similar peak vertical
velocities, although overall velocity magnitude is on average slightly higher for the HOver and
HUnder cases (Figure 4-58).

Head profiles (Figure 4-63) clearly show differences between the Load Only and No Load
cases. The response in the Silurian and Devonian formations is driven by the surface head
boundary condition, while the Ordovician response is clearly due to glacial loading.
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For the HUnder case, the initial underpressures in the Ordovician (Figure 4-64) dissipate at a

rate similar to the constant climate HUnder case (Figure 4-50).
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Figure 4-58: Glaciation Sub-Regional Flow — BC Sensitivity: Maximum Advective Velocity

Magnitude in Vicinity of Repository in Cobourg Formation
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Figure 4-59: Glaciation Sub-Regional Flow — BC Sensitivity Detail: Maximum Vertical
Advective Velocity Magnitude in Vicinity of Repository in Cobourg Formation Over Fifth

Glacial Cycle
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Figure 4-60: Glaciation Sub-Regional Flow — BC Sensitivity Detail: Hydraulic Head in
Centre of Repository
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Figure 4-62: Glaciation Sub-Regional Flow — BC Sensitivity: Velocity Profile Through
Reference Well Location at Time of Maximum Cobourg Velocity in First Glacial Cycle
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Figure 4-63: Glaciation Sub-Regional Flow — BC Sensitivity: Hydraulic Head Profile
Through Reference Well Location at Time of Maximum Ice Thickness in First Glacial

Cycle



300
Cycle 1 Ground Surface
—
200 < i
gycle g A2 Carbonate
—_— Cycle g Upper A1 Carbonate
yole
Cycle 7 Guelph
100 — Cycle 8§
Fossil Hill ——
—_ i ] Queenston
d 0
E ) GBBM
= -100 /
=
s / /
3
o 200 4
200 \\ / / / £ Cobourg
/ / / Sherman Fall
-300 4 W\é / Kirkfield
-400 - ! \k Shadow Lake
Grid X location 11500 (m
o0 Grid ¥ location 35500 (m

0 a0 100 150 200 250 300 380

Hydraulic Head (m) 02 Dec 2016
SubRegBCSens. mbfiewn

Figure 4-64: Glaciation Sub-Regional Flow — HUnder Sensitivity Case: Hydraulic Head
Profile Through Reference Well Location at Time of Maximum Well Operation in Each
Glacial Cycle

4154 Process Sensitivity Case Results

Figure 4-65 through Figure 4-70 present results for the process sensitivity cases. The two
glacial climate cases are very similar in all respects, having virtually identical vertical advective
velocities. Differences between the variable-density and constant-density constant climate head
profiles (Figure 4-70) are due to the differences in the head formulation used in the model. The
variable density freshwater head includes a pressure component from the higher density saline
porewater in the deeper geosphere, while the constant density constant climate (steady-state)
head does not.

The most significant difference in the results is not visible in the figures: model execution time.
The RC (constant density, glacial climate) simulation completed in 7.5 days, while the variable
density, glacial climate sensitivity case was terminated at approximately 650 ka after 128 days
of simulation. Estimated time to complete the simulation was over 200 days.
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Figure 4-65: Glaciation Sub-Regional Flow — Process Sensitivity: Maximum Advective
Velocity Magnitude in Vicinity of Repository in Cobourg Formation
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Figure 4-66: Glaciation Sub-Regional Flow — Process Sensitivity Detail: Maximum
Upwards Vertical Advective Velocity Magnitude in Vicinity of Repository in Cobourg

Formation Over Fifth Glacial Cycle
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Figure 4-67: Glaciation Sub-Regional Flow — Process Sensitivity Detail: Hydraulic Head

in Centre of Repository
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Figure 4-68: Glaciation Sub-Regional Flow — Process Sensitivity Detail: Hydraulic Head

in Centre of Repository Over Fifth Glacial Cycles
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Figure 4-69: Glaciation Sub-Regional Flow — Process Sensitivity: Velocity Profile
Through Reference Well Location at Time of Maximum Cobourg Velocity (Glacial Climate

Cases) in First Glacial Cycle
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Figure 4-70: Glaciation Sub-Regional Flow — Process Sensitivity: Hydraulic Head Profile
Through Reference Well Location at Time of Maximum Ice Thickness (Glacial Climate

Cases) in First Glacial Cycle
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4.1.6 Significance of Glacial Climate to Safety Assessment

From the perspective of post-closure safety assessment, the possible negative impact of the
glacial climate conditions is to increase velocities within the Ordovician host rock to such an
extent that transport is no longer diffusion dominated. Assessments of steady-state flow
velocities (Figure 4-17) have shown that increases in advective velocity of two orders of
magnitude within the Ordovician formations are generally insufficient to meet this threshold.

This leads to the larger question of “what is diffusion dominant?” Qualitatively, and by definition,
diffusion dominant systems are those in which mechanisms not related to groundwater
movement are responsible for the majority of transport. Quantitatively, attempts have been
made to relate dimensionless Péclet numbers to this behaviour. Bear (1979) refers to Péclet
numbers of less than 0.4 being representative of diffusion dominated transport. Huysmans and
Dassargues (2004) review this approach and find no less than 10 different approaches to
calculating Péclet number, with a wide variation in results. The analysis is further confused with
differing diffusion nomenclature. Diffusion properties used in transport modelling in this report
are calculated from effective diffusion coefficients (D), which are directly measured using the
through diffusion method (INTERA, 2011). Typical effective diffusion coefficients for 1-129 in the
formations of interest range from 4.4E-13 m?/s to 2.0E-12 m?/s (see Appendix A, Table A-2). De
is related to the free-water, or molecular diffusion coefficient (Dn) by:

D, =D,,70 (4-1)
where:
Dm molecular, or free water, diffusion coefficient [L2/T]
T tortuosity [
¢} porosity []

In other references, the effective diffusion coefficient does not include the porosity term, a
coefficient we refer to as apparent, or pore-water diffusion:

D,,=D,r=—¢% (4-2)

In equations below, we have substituted D¢/6 where appropriate.
The general form of the Péclet equation is:

VX

Pe=-= (4-3)
D
where :
Pe Péclet number [1
\% advective velocity [L/T]
X characteristic length [L]
D hydrodynamic dispersion (and diffusion) coefficient [L%/T]
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The hydrodynamic dispersion coefficient considers both dispersion and diffusion, and is typically
defined as:

D=aV +D, (4-4)

where:
a dispersivity coefficient [L]

Differences in the approaches to calculating the Péclet number are manifested by the choice of
values for characteristic length and the processes to include in D. The earliest approach (Ogata
and Banks, 1961) uses a characteristic distance from the contaminant source to the receptor. A
modification of this approach (Remenda et al, 1996) replaces x with VT, where T is the time
scale of interest. Note that this is in effect a variable characteristic distance as x = VT will
increase with increasing V. Other approaches (Freeze and Cherry, 1979; Bear, 1979) ignore
the contribution from dispersion and set D to Dyw. The analysis presented in Bear (1979) is
discussed in the context of flow through a sand column and the characteristic length is
suggested to be on the order of the particle size. Freeze and Cherry (1979) also suggest
particle size as characteristic length. Sykes et al. (2011) use the Freeze and Cherry (1979)
approach but select a characteristic length of unity (1 m). Sykes et al. (2011) describe the
selection as conservative in comparison to Bear (1979) recommendation of particle size.

The characteristics of a specific transport scenario will guide selection of appropriate parameter
values for characteristic length and diffusion coefficient. Péclet numbers can compare the
relative dominance of diffusive transport across a system or between systems; however, Péclet
numbers do not provide an unambiguous measure of diffusion-dominance.

Freeze and Cherry (1979) suggest the ratio of dispersive to diffusive flux as an alternative
metric for evaluating importance of diffusion at low velocities. Walsh and Avis (2010) applied
this approach and developed a “Figure of Merit”, or FOM, calculated as:

Fom =2 (4-5)
D

pw

In this approach, FOM less than 0.1 are diffusion dominant; greater than 10 are advective
dominated, while values between 0.1 and 10 represent a transition region. Reference case
results presented in Figure 4-71 show diffusion dominated transport for non ice cover periods,
with transition region transport during glacial advance and retreat.
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Figure 4-71: FOM Calculations for Reference Case Cobourg Velocities in the Vicinity of
the Repository

Another approach to evaluating the impact of glacial climate induced increases in velocity is to
ignore the process implications (diffusion or advection dominant) and instead concentrate on an
easily understood measure of transport: the cumulative distance a particle would move with
groundwater over the performance period. This measure, travel distance, is a simple integration
of the maximum velocity, as shown in Figure 4-72. The integration conservatively ignores the
direction of travel. Note that the distance to the nearest permeable formation (i.e. the distance
to potential biosphere exposure) is on the order 280 m.
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Figure 4-72: Cumulative Travel Distance for Reference Case Cobourg Velocities in the
Vicinity of the Repository
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A better approach may be to incorporate all transport processes in a conservative sense by
creating time series of “snapshot” MLE for the repository volume. As with the previous
methods, this approach will not determine advective or diffusive dominance, but focuses on a
measure of transport. Calculations are performed using head fields extracted at 500 year
intervals over the entire performance period. MLE are extracted for all nodes in the vicinity of
the repository within the Cobourg formation (see Figure 4-15), and the minimum MLE value
selected as the representative Repository MLE for the time period. This approach is
computationally costly (1921 separate MLE calculations for each case) but removes all of the
conjecture and uncertainty associated with Péclet comparisons while still incorporating the
results of all transport processes. Furthermore, the metric is conceptually easily understood —
the aggregate best estimate of time to surface (or well) discharge from the repository. Figure
4-73 presents MLE calculations for the RC and parameter sensitivity cases, while Figure 4-74
presents similar results for other sensitivity cases. The variability in the other cases is much
less than for parameter sensitivity and is displayed on a more limited Y axis range.
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Figure 4-73: Repository MLE Time Series for Reference and Parameter Sensitivity
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Figure 4-74: Repository MLE Time Series for Reference and Process and Boundary
Condition Sensitivity

Repository MLE time series for selected cases during glacial cycle 5 (Figure 4-75) clearly show
that even for the implausibly high conductivity case (KHigh100) transport is extremely slow, with
snapshot MLE of over 20 Ma except for periods of glacial advance and retreat. It is also clear
that the higher velocities associated with the peak glaciation events do not persist for any
significant period and therefore the mean Repository MLE is likely a reasonable estimate of the
actual transport times to discharge under glacial climate conditions.
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Figure 4-75: Glaciation Sub-Regional Glacial Cycle Simulations: Repository MLE for Fifth
Glacial Cycle — Reference Case and Selected Sensitivity Cases

Mean, maximum, and minimum repository MLE over the full 960 ka period for all cases are
listed in Table 2 and plotted in Figure 4-76.

Table 2 - Repository MLE for Reference and Sensitivity Cases

Repository MLE (a)

Case Mean Minimum Maximum
RC 1.13E+08 5.04E+07 1.85E+08
KHigh 4.45E+07 1.28E+07 8.97E+07
KHigh 100 2.71E+07 1.43E+06 3.94E+07
KHigh1000 7.42E+06 4.08E+05 1.21E+07
SHigh 9.86E+07 7.63E+07 1.86E+08
LEHigh 1.58E+08 8.71E+07 1.85E+08
LELow 8.91E+07 4.06E+07 1.85E+08
HUnder 1.36E+08 6.90E+07 2.16E+08
Hover 1.25E+08 6.55E+07 1.83E+08
NoLoad 7.80E+07 3.45E+07 1.85E+08
LoadOnly 1.07E+08 5.09E+07 2.09E+08
NoPF 1.12E+08 5.04E+07 1.85E+08
DPF 1.12E+08 5.04E+07 1.85E+08
Surface BC 1.30E+08 6.73E+07 2.08E+08
Saline (to 640 ka) 1.31E+08 6.77E+07 1.90E+08
RC (Constant Climate) 2.08E+08
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These results have additional conservatism due to a relatively high value of longitudinal
dispersivity (250 m) used for numeric reasons. MLE estimates with smaller dispersivities are
slightly greater. By contrast, increased diffusion coefficients will result in shorter Repository
MLE. Sensitivity to decreased dispersivity (reduced from 250 to 100 m) and increased diffusion
(De x 2) are shown in Figure 4-77. There is less uncertainty in diffusion coefficients as data are
based on laboratory measurements.
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Figure 4-77: Glaciation Sub-Regional Glacial Cycle Simulations: Repository MLE Time
Series Sensitivity to Dispersivity and Diffusion for Reference Case and KHigh Sensitivity
Case

4.2 Site-Scale Transport Modelling

Site-Scale transport modelling simulates the transport of a single radionuclide (lodine-129) from
release locations associated with hypothetical defective containers. Release locations and
source terms are consistent with those presented in NWMO (2013) for the shaft and reference
case simulations, with an additional case representing release from the centre of the repository
to a centrally located well. Constant climate and glacial climate boundary conditions are used.
Constant climate cases are compared to NWMO (2013) releases to confirm consistent results.
Glacial climate results are compared to those for constant climate for the three source term
location/well location cases, as well as for selected sensitivity cases.

4.2.1 Model Description

421.1 Model Domain and Discretization

Constant climate radionuclide transport modelling presented in NWMO (2013) used a detailed
model of the repository that included nearly all repository features with high fidelity to the actual
design and geosphere conceptual model. However, the model was extremely large (nearly 12M
nodes) with attendant large memory requirements and long execution times. Given that the
current modelling incorporates time varying boundary conditions and transient flow with
additional resource requirements, some effort was made to reduce the complexity of the
discretization while still retaining essential repository features which dominate transport
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response. The main simplifications include the following: combining inner and outer repository
EDZ into a single composite EDZ with equivalent transmissivity (conductivity x area); limiting
EDZ to above and below rooms and tunnels only, reducing the number of elements used in
seals, and using a common height for all repository room, drifts, and tunnels.

The Site-Scale model domain includes the repository foot print plus a portion of surrounding
geosphere extending approximately 1 km in each direction. Vertically, the model includes all
formations from the bottom of the Shadow Lake to the top of the Salina A2 Carbonate. As
boundary conditions for the glacial climate transport model are extracted directly from Glaciation
Sub-Regional model results, it is not necessary to extend the model all the way to ground
surface. The Salina A2 was selected as the upper boundary for the model as it is sufficiently
distant from the Guelph formation containing the well, and its low permeability will minimize any
local boundary effects.

The model coordinate system is defined consistently with the Site-Scale model in NWMO
(2013), with the origin located at the intersection of the main tunnel and first cross cut drift and
cardinal directions aligned with the tunnel and cross-cut drifts. Note that this coordinate system
is rotated approximately 160 degrees compared to the Glaciation Sub-Regional local and UTM
coordinate systems. In this case, positive X increases approximately from East to West and
positive Y from North to South. The horizontal model domain and coordinate system are
presented with the Glaciation Sub-Regional model extents for context in Figure 4-78 and Figure
4-79.
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Figure 4-78: Site-Scale Model Domain — Plan View
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Figure 4-79: Site-Scale Model Domain — Vertical Section Through Site Y =0

Model layers were discretized and geosphere properties assigned using the approach described
in Section 4.1.1.1 and 4.1.1.2, except that model layers within the Cobourg formation were
defined as flat over the portion of the X axes domain containing the repository footprint. The
Site-Scale model geosphere is shown within the surrounding Glaciation Sub-Regional
geosphere in Figure 4-80. Cross-section A-A’ from Figure 4-79 is also shown to assist in
orienting the viewpoint.
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Figure 4-80: Site-Scale and Glaciation Sub-Regional Model Domains and Assigned
Geosphere Hydraulic Conductivities

Vertical discretization consisted of 58 model layers, compared to 40 layers used in the
Glaciation Sub-Regional model to the top of the Salina A2 Carbonate. Horizontal discretization
was markedly increased to support property assignment for most repository features. Each
layer was discretized with 301 nodes in the X direction and 223 in Y for a total of 3.89M nodes
and 3.79M elements. Although still very large, this is significantly reduced compared to the
NWMO (2013) site model, which contained 11.95M nodes for a similar size domain. The
vertical domain of the current model is slightly smaller, as the NWMO (2013) model extended to
ground surface with 80 layers. Model discretization is shown in Figure 4-81 through Figure
4-83.
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Figure 4-81: Site-Scale Model Plan Discretization
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Figure 4-82: Site-Scale Model Discretization in XZ Plane Through Centre of Grid
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Figure 4-83: Site Model Discretization in YZ Plane Through Centre of Grid

4.2.1.2 Property Assignment

Formation properties were assigned based on element elevations using the same approach as
for the Glaciation Sub-Regional model. Subsequently, repository EBS and EDZ parameters
were assigned. As discussed above, the grid discretization was simplified by using a constant
height of 5m for all placement rooms, tunnels and drifts. To compensate for differences from
defined heights (specifically 4m for cross-cut drifts, and 2.5m for emplacement rooms), hydraulic
conductivities were adjusted to maintain conductivity x area equivalency with the design. Inner
and outer EDZ are combined into 1m layers above and below the repository with similar
conductivity adjustments. The EDZ surrounding room and tunnel seals was handled separately
to reflect the reduced inner EDZ present. Both inner and outer EDZ are implemented for the
shaft and shaft seals. Values for all RC parameters are tabulated in Appendix A.

Property assignments are illustrated in Figure 4-84 through Figure 4-89. Shaft and shaft EDZ
discretization was set so that the plan section areas of the rectangular discretized shafts and
EDZs are identical to the circular areas of the designed shaft and shaft EDZ. Shaft sealing
(Figure 4-85) consists of bentonite/sand mixture through most of the shaft extents, with concrete
at the shaft base and through the entire Fossil Hill, Guelph and Al Evaporite. The Guelph
concrete seal is also assumed to replace the inner EDZ to approximate grout injected for water
control during operational phases. A 40m long asphalt seal is placed in the middle of the
Georgian Bay/Blue Mountain formation over an interval from 80m to 120m above the top of the
Cobourg formation.
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Figure 4-84: Site Model Property Assignment in XZ Plane Through Centre of Grid
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Figure 4-86: Site Model Property Assignment in XZ Plane — Room Detail
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Figure 4-87: Site Model Property Assignment — Plan Detail Near Vent Shaft
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Figure 4-88: Site Model Property Assignment — Plan Detail Near Main Shaft
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Figure 4-89: Site Model Property Assignment — 3D View of Repository and Surrounding
Geosphere
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4.2.1.3 Boundary Conditions

Boundary conditions were applied as fixed head on all faces of the model except for the bottom,
which was defined as zero flow. Surface loading was applied at the top of the model only.
Heads and loading data were extracted from Glaciation Sub-Regional model glacial climate and
constant climate simulation results. Figure 4-90 illustrates head boundary conditions at first
cycle times associated with maximum well operation, peak Cobourg velocity, maximum ice load
and maximum retreat velocities. Capturing the changes in glacial climate boundary conditions
requires a time series of hydraulic heads at each node with 109 values for each glacial cycle.
Time series for the fifth glacial cycle for selected nodes indicated in Figure 4-90 (middle of top
and bottom faces, at Guelph and Cobourg on South face) are shown in Figure 4-91.
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Figure 4-90: Site-Scale Model Boundary Conditions — Specified Heads At Selected Times
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Figure 4-91: Site-Scale Model Boundary Conditions — Time Series at Selected Locations

Although the boundary condition input data is available over all eight cycles simulated with the
Glaciation Sub-Regional Flow model, it was necessary for computational performance reasons
to subdivide the transport simulation into a series of separate simulations. There were two
primary factors: 1) including time series with 872 entries at each 126,631 nodes requires 2.6 GB
of RAM for boundary condition and surface loading storage, and 2) the inefficient
implementation of head boundary conditions and surface loading within FRAC3DVS-OPG
causes exponential increases in execution time with increasing number of values in the
boundary condition/HM loading time series. Glacial climate transport simulations were therefore
divided into eight sequences, corresponding to each glacial cycle. Each cycle had boundary
condition heads and surface loading data extracted from the corresponding period of the
Glaciation Sub-Regional Flow glacial climate model. Final heads and radionuclide
concentrations for one sequence form the initial heads and concentrations for the succeeding
sequence. This provided a reasonable trade-off between increased operational and pre-/post-
processing complexity and reduced memory and execution time requirements.

4214 Permafrost

The selection of the A2 Carbonate as the upper boundary for the site-scale grid eliminates
nearly all possible permafrost elements. As shown in Figure 4-82, only a small portion of the
Salina A2 Carbonate sub-crops within the model domain and is shallower than the maximum
permafrost depth. Figure 4-92 shows the extent of permafrost penetration in the site model grid
at the time of maximum permafrost depth. Permafrost was implemented using the same
approach as for the Glaciation Sub-Regional model. As mentioned in Section 4.1.1.4, other
material properties were not modified. This is a limitation of the FRAC3DVS-OPG code that
could have implications for transport as diffusion coefficients are significantly decreased in
permafrost. Note that the effects of continuous permafrost are included, as surface boundary
heads are extracted from the Glaciation Sub-Regional model.
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Figure 4-92: Site Model Permafrost — Specified Permafrost Elements at Time of Maximum
Permafrost Depth

42.15 Well and Source Node Location

As described in Section 4.1.1.5, simulations are performed using three well locations.
Previously shown in Figure 4-12, the locations are shown again relative to the site model
discretization and associated source term node locations in Figure 4-93. Wells nodes are
placed across the entire Guelph formation while source nodes are placed at the top corner
nodes of elements in the release location. Note that the centre source does not correspond to a

placement room, but is a synthetic case used as an example to show impact of enhanced
diffusion in EBS components.
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Figure 4-93: Site Model — Well and Source Term Nodes

4.2.1.6 Source Term

The lodine-129 source term is identical to that used in NWMO (2013) and describes a pinhole
release from a single defective container, starting at 10,000 a. The single container release is
scaled by a factor of three to simulate three co-located failed containers (Figure 4-94).
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Figure 4-94: Site Model — lodine-129 Source Term

4.2.2 Modelling Cases

Reference case simulations were undertaken for each of the three well/source term
combinations. As discussed in Section 4.1.6, the sensitivity cases performed with the Glaciation
Sub-Regional Flow model indicated virtually no impact on transport related processes.
Consequently, only one of the prior geosphere sensitivity case (KHigh) was carried forward to
transport simulations. Additional transport parameter sensitivity cases were added to assess
the impact of dispersivity (High Dispersivity - RC Dispersivity x 10) and diffusion (High
Diffusion — RC Diffusion x 2). A shatft fail (SF) case was defined based on the RC geosphere
with increased inner and outer shaft EDZ multipliers (1000 and 100 respectively): all shaft
sealing materials were replaced with a single material with hydraulic conductivity of 10° m/s,
and the shaft well/source location was used.

All cases were simulated for both constant climate and glacial climate boundary conditions.

4.2.3 Steady State Flow (Constant Climate) Transport Simulations

42.3.1 Flow System Verification

Correct implementation of boundary conditions and formation property assignment was verified
by comparing simulated hydraulic heads and advective velocities from the Site-Scale model to
the corresponding Glaciation Sub-Regional model. Figure 4-95 shows a good match between
simulated heads with some minor discrepancy near the well, due to slight differences in
pumping well location (see Figure 4-12). The ratio of advective velocities (Figure 4-96) is
generally close to one, except in the vicinity of the repository where the higher conductivity of
the EBS and EDZ results in higher velocities
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Figure 4-95: Site-Scale Model: Reference Well — Comparison of Heads to Glaciation Sub-
Regional Model

Advective Velocity Ratio (Site/Sub Regional)
0.1 091.1

Slice ¥ location 35 im)

200 4

-200 4

Elevation (mASL)

400

-1000 1] 1000 2000 3000 4000
Site Scale Grid ¥ (m)

20 Qct 2014
SteHe adComo.miiew

Figure 4-96: Site-Scale Model: Reference Well — Comparison of Advective Velocity to
Glaciation Sub-Regional Model
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4232 Transport Results

Transport model results for all well/source cases at 500 ka and 1 Ma are shown in Figure 4-97
through Figure 4-106. The contour plots are on a logarithmic scale. The outer concentration
contour, 1 Bg/m?, corresponds to an effective 1-129 drinking water dose of about 0.1 uSv/a
based on a water consumption rate of 0.84 m3a per person.

Results are consistent for each case with transport being dominated by diffusion through the
repository EBS. Mass flux results (Figure 4-105) show significantly higher mass flux at 1 Ma for
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the shaft well, although still extremely low in absolute terms. Mass flux into the wells is nearly
coincident with the corresponding Guelph formation flux, indicating almost complete capture of
the plume by the wells (Figure 4-106).
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Figure 4-97: Site-Scale Model: Reference Well — 1-129 Transport at 500 ka
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Figure 4-98: Site-Scale Model: Shaft Well —1-129 Transport at 500 ka
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Figure 4-100: Site-Scale Model: Reference Well — 1-129 Transport at 1 Ma
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Figure 4-101: Site-Scale Model: Shaft Well —1-129 Transport at 1 Ma
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Figure 4-102: Site-Scale Model: Centre Well —1-129 Transport at 1 Ma
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Figure 4-103: Site-Scale Model: All Results — 1 Bg/m?® Isovolumes of 1-129 at 500 ka
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Figure 4-104: Site-Scale Model: All Results — 1 Bg/m?® Isovolumes of I-129 at 1 Ma
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Figure 4-106: Site-Scale Model: All Results —1-129 Integrated Transport at Well and Into
Guelph Formations

4.2.3.3

Comparison to 5CS

Transport model spatial results for the reference well case at 1 Ma are compared to the
corresponding 5CS results in Figure 4-107. Mass flux at the well for reference and shaft case
wells are compared in Figure 4-108. Results correspond very well with the current model
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showing slightly less well transport than the 5CS model. In general, the results are sufficient to
verify that the current model represents the overall flow and transport system with good fidelity
to previous results.
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Figure 4-107: Site-Scale Model: Reference Well Plan Section Results at 1 Ma Compared
to NWMO (2013)
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Figure 4-108: Site-Scale Model: 1-129 Transport at Well Compared to NWMO (2013)
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4.2.4 Glacial Climate Transport Simulations

4241 Flow System Verification

Correct implementation of transient glacial boundary conditions is verified by comparing
simulated heads and advective velocities. For the site-scale model, heads and velocities were
extracted at a grid location some distance from the repository, where Site-Scale and Glaciation
Sub-Regional grids were coincident (Figure 4-109). Simulated heads and velocity magnitude in
the fifth glacial cycle are shown in Figure 4-110 and Figure 4-111. A spatial comparison of
heads along a vertical slice at the time of maximum well operation in the fifth glacial cycle is
presented in Figure 4-112. Site-Scale velocities in the Guelph are lower at the selected location
during well operations as a result of the differences in model plan discretization. Peak glacial
velocities at initial ice advance are higher for the Glaciation Sub-Regional model as the regular
time discretization of the head boundary condition extraction used for the site scale model does
not capture exactly the start time of the advance and retreat. Otherwise, results compare very
well, providing confidence that the glacial climate Sub-Regional flow system is adequately
represented within the Site-Scale transport model.
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Figure 4-109: Site-Scale to Glaciation Sub-Regional Model Comparison Location
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Figure 4-111: Site-Scale — Advective Velocity Comparison with Glaciation Sub-Regional
Model
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Figure 4-112: Site-Scale — Head Comparison with Glaciation Sub-Regional Model on
Vertical Slice

42472 Results

Spatial representations of transport model results at 1 Ma for the reference and shaft well glacial
climate cases are shown in Figure 4-113 and Figure 4-114, and compared to results from the
constant climate cases. The figures indicate very minor differences in transport, providing
further evidence of the diffusion dominated nature of transport from the repository.
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Figure 4-113: Site-Scale Model: Reference Well - Comparison of Constant and Glacial
Climate 1-129 Transport at 950 ka
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Figure 4-114: Site-Scale Model: Shaft Well — Comparison of Constant and Glacial Climate
I-129 Transport at 950 ka

For the shaft well case, the glacial climate results in a very small increase in transport up the
shaft relative to the constant climate case. This is shown in Figure 4-114 and below in Figure
4-115 where transport up the vent shaft is also shown to slightly increase (note slight blue cone
at shafts where glacial isovolume is above the constant climate isovolume).
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Figure 4-115: Site-Scale Model: Shaft Well — 3D Comparison of Constant and Glacial
Climate 1-129 Transport at 950 ka

Transport to the well is an important metric for evaluating system performance. In previous
studies (NWMO, 2013) and for steady-state flow transport simulations in the current study, well
mass flux calculations have been numerically stable. However, for initial transport simulations
with the transient glacial climate, concentrations in the immediate vicinity of the pumping well
were subject to oscillations each time the pumping well started operation. While the oscillations
declined over the duration of the pumping period they were not completely eliminated. All
previous transport simulations (NWMO, 2013; steady-state flow in the current report) have used
centred-in-time (CIT) temporal discretization, a method that minimizes errors due to numeric
dispersion. However, CIT is known to increase instability in strongly advective portions of the
grid. Consequently, all glacial-climate site-scale transport cases were simulated with fully
implicit time weighting. This eliminated the well oscillations with no other discernible impact. A
comparison of CIT and fully implicit results is provided later in this sub-section.

Figure 4-116 compares glacial and constant climate 1-129 mass flows into various formations for
the reference well case. The glacial well results (solid line in figure) are intermittent, reflecting
the time period that the well is operating. The high initial mass flux as the well is turned on is
the capture of transport into the Guelph over the previous period of no well operation. After the
initial peak, the well mass flux is virtually identical to the transport rate into the Guelph. Figure
4-117 compares glacial climate and constant climate 1-129 mass flows into the Guelph and the
well for the reference and shaft well cases. Calculated peak ratios of glacial climate to constant
climate well flow for the last glacial period are approximately 140 and 155 for reference and
shaft well cases respectively during the initial well uptake period, diminishing to a ratio of
approximately five for both cases.
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Figure 4-116: Site-Scale Model: Reference Well Results — 1-129 Transport Into Well and
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Figure 4-117: Site-Scale Model: Reference and Shaft Well Results —1-129 Well Transport
for Constant and Glacial Climate Cases

Figure 4-118 shows the integrated flux into the Guelph and the well for the reference well and
shaft well cases for the final three glacial cycles. Cumulative well flux closely follows the
transport into the Guelph, showing that even intermittent well operation effectively captures all

transport.
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Figure 4-118: Site-Scale Model: Reference and Shaft Well Results — Integrated 1-129 Well
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4.2.4.3 Shaft Failure Sensitivity Case

Well and geosphere transport results for the shaft failure sensitivity case are compared to the
shaft well results in Figure 4-119 and Figure 4-120 respectively. The effect of shaft failure
parameters is clear, with significantly increased maximum well transport (factor of 90) compared
to the shaft well case.
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Figure 4-120: Site-Scale Model: Shaft Failure Sensitivity Case — Geosphere Transport for
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Figure 4-121 shows the clear increase in concentrations near the shafts for the Shaft Fail case
with higher concentrations in the shaft extending down into the Ordovician formations.
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Figure 4-121: Site-Scale Model: Shaft Well — 3D Comparison of Shaft Well Reference
Case and Shaft Fail Case Results at 1 Ma.

4244 Geosphere and Transport Parameter Sensitivity Cases

Geosphere and transport parameters sensitivity results are compared to the reference well
results in Figure 4-122 and Figure 4-123. Increased diffusion has the greatest impact with a
factor of 2000 increase in peak well transport relative to the reference case. Increased
hydraulic conductivity results in a factor of 7 increase, while increased dispersivity leads to a
factor of 14 increase. The increased dispersivity and increased hydraulic conductivity cases are
very similar to each other, which is to be expected as each parameter has a similar impact on
the advective/dispersive term of the transport equation. Both cases also show some early-time
oscillations in results at the well and into the Guelph. As shown in section 4.2.4.5, this can be
ameliorated with reduced time steps, but does not affect results beyond the second glacial
cycle.
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Figure 4-122: Site-Scale Model: Geosphere and Transport Parameters Sensitivity Cases

— Well Transport for Glacial Climate Sensitivity Cases
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The increased transport for the High Diffusion case is primarily due to the extremely low
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concentrations at the edge of the radionuclide plume. A small increase in diffusion rate causes
a large relative increase at the far edges of the plume, where well transport occurs.
Concentrations closer to the source do not increase to as great an extent (Figure 4-124). The
relative difference decreases over the duration of the simulation.

1000 L L L L L L 1 L L L L L L

750 -

500 1 -
£ 20 E ] L :
= g =
= . \J
(0] 04 [ [ I -l I
] 3
) - i
%] == |
L
£ 80 / :

-500 — /= & { -

— &
-750 1 B
-1000 T T T T T T T T T T T T T
-250 0 250 500 750 1000 1250 1500 1750 2000 2280 2500 2750 3000 3250
Bydraulic_ Cond1chtivity x 10
[ EFSIVIT)" X £
Difftsios .2 Contours at log cycle intervals Tirme 960000 (3)
Reference Case
Y location  -B03.5 (m)

200 I
1004 -
7]

g 0 '
100 4 -
=
= 2009 -
=
L300 4 -
w

-400 3

-500 T T T T T T T T T T T T T

-250 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

Figure 4-124:

Site Scale Grid X (m)

— Comparison of 1-129 Transport at 960 ka
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Two numerical sensitivity cases were simulated: reduced maximum time step; and the
previously mentioned comparison of CIT and fully implicit results.

Site-Scale Model: Geosphere and Transport Parameters Sensitivity Cases
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Time step sensitivity was assessed by limiting the maximum time step size to 100a, compared
to the 500a used for all other transport simulations, for the Shaft Well Reference Case and the
High Dispersivity Case (Figure 4-125 and Figure 4-126). An additional simulation with 1000 a
maximum time step was simulated for the High Dispersivity Case. Results show that there are
no significant differences for the reference case, but the minor early time oscillations previously
noted for the High-Dispersivity case are eliminated with the smaller time steps.

As would be expected, there is an impact on execution time, with the Shaft Well Reference
Case 100 a time step case taking 42 days, compared to 13 days for the 500 a maximum time
step case. A hybrid approach with 100 a maximum for the first two glacial cycles and 500 a for
the remainder would offer a good trade-off between accuracy and execution time.
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Figure 4-125: Site-Scale Model: Numeric Sensitivity Cases — Maximum Time Step - RC
Shaft Case
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Figure 4-126: Site-Scale Model: Numeric Sensitivity Cases — Maximum Time Step — High
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Temporal discretization sensitivity simulations (CIT or fully implicit) showed significantly

differences only in the well response (see Figure 4-127), with improved stability in the well
response for the fully-implicit temporal discretization. Figure 4-128 shows the oscillating nature
of the well mass flux during the final well operation period.
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Figure 4-127: Site-Scale Model: Reference Well — Comparison between Centred-in-Time
and Fully-Implicit Temporal Transport Discretization Geosphere and Well Transport
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4.3 Glaciation Sub-Regional Two-Phase Flow Model

Although not currently considered in the postclosure safety assessment cases, there is
evidence of residual gases in the Ordovician rock formations (INTERA, 2011). During a glacial
cycle, the greater compressibility of gas, relative to water, would moderate head increases due
to glacial loading. Two-phase flow models were generated at the Sub-Regional scale to
evaluate the impact of gas on groundwater flow during glacial climate cycles.

The two-phase model is a 2D slice of the Glaciation Sub-Regional Model and uses the code
T2GGM. Compared to the 3D FRAC3DVS-OPG model presented in Section 4.1, some
differences are expected due to model dimensionality, model code and modelling approach. To
minimize and understand these differences due to model implementation, a stepped approach
was taken to generate the 2D T2GGM model:

1. a 2D FRAC3DVS-OPG model was generated from the 3D FRAC3DVS model;

2. afully water saturated 2D T2GGM model was developed from the 2D FRAC3DVS slice;
and

3. initial gases were introduced to the Ordovician formations to produce the 2D T2GGM
two-phase flow model.

Section 4.3.1 describes the 2D FRAC3DVS-OPG model and Section 4.3.2 describes the fully
water saturated 2D T2GGM models. Section 4.3.3 provides results for the two-phase flow 2D
T2GGM model with an initial gas saturation of 10%. Section 4.3.4 examines the sensitivity of
results to the initial gas saturation, comparing the 10% initial gas saturation results to different
initial gas saturations of 5% and 1%.

It should be emphasized that the model results presented in this section are extracted at the
same times and location as results for the 3D single phase models presented in previous
sections of this report. The location is selected based on the well location and some of these
times are chosen and labelled based on effects of the well and permafrost, despite the fact that
the well and permafrost are NOT present in any of the 2D models presented here. The names
of these reporting times and location were not changed, for consistency and comparison with
other sections of this report.

4.3.1 2D FRAC3DVS Model: Single Water-Phase

The 2D FRAC3DVS model is a 2D slice of the 3D Glaciation Sub-Regional Model at X = 12500
m, as shown in Figure 4-129, with the same discretization and boundary conditions as the 3D
model. Property assignment for the 2D slice is illustrated in Figure 4-130. The resulting model
has 11,918 nodes and 5,800 elements. The model does not include the well and permafrost
was ignored, which should have minimal impact on results based on the 3D model results
described above.
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Figure 4-130: 2D Glaciation Sub-Regional Model Property Assignment
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A comparison of results between the 2D and 3D FRACDVS-OPG model are provided in Figure
4-131 through Figure 4-136. For consistency, locations in space and time are the same as
shown for the Reference Case Glacial Climate Simulation in Section 4.1.4, even though the 2D
model does not include the well or consider permafrost. These results show that the 2D vertical
slice provides a good representation of the 3D model. While there are minor differences
between results, the general trends are the same for both models. It also confirms previous
conclusions that the well and permafrost included in the 3D model have only minor and local
impacts on the groundwater flow regime.
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Figure 4-132: 2D and 3D Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic
Head Profiles at Water-Supply Well Location (Detail) for the First Cycle
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Figure 4-133: 2D and 3D Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic
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Figure 4-134: 2D and 3D Glaciation Sub-Regional Glacial Cycle Simulations: Maximum
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Figure 4-136: 2D and 3D Glaciation Sub-Regional Glacial Cycle Simulations: Velocity
Magnitude Profiles at Water-Supply Well Location at Time of Maximum Well Impact for All
Cycles

As a final test, MLE calculations were performed using the 2D model. Steady-state MLE are
compared in Figure 4-137, while snapshot MLE for the fifth glacial cycle are compared in Figure
4-138. Results are very similar, leading to the conclusion that the 2D representation of the 5CS
flow system captures the essential flow attributes of the much more computationally demanding
3D model. The largest differences in Repository MLE are due to well operation in the 3D model.
There is no pumping well in the 2D model.
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Figure 4-137: 2D Sub-Regional Flow: Comparison of Mean Life Expectancy to 3D model

at time of Peak Glacial Load
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4.3.2 2D TGGM Model: Single Water-Phase

The 2D T2GGM model is based directly on the 2D FRAC3DVS-OPG model. Some differences
in discretization occur due to differences in approach between T2GGM and FRAC3DVS-OPG.
T2GGM is a node-centered integral finite difference model, and the element centres of the
FRAC3DVS model are defined as the nodes for the T2GGM model. FRAC3DVS elements are
roughly equivalent to the T2GGM blocks, the main difference being that all T2GGM block
surfaces are flat whereas some FRAC3DVS element surfaces are sloped, following the the
surfaces defining the geologic formations. Boundary conditions are time-variable fixed pressure
and fully water saturated at the top and sides of the model.. The resulting grid has 5,916 nodes.

Results for the T2GGM and FRAC3DVS 2D Glaciation Sub-Regional models are very similar,
as shown in Figure 4-139 though Figure 4-144.
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Figure 4-139: 2D Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic Head

Profiles at Water-Supply Well Location for the First Cycle
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Figure 4-140: 2D Glaciation Sub-Regional Glacial Cycle Simulations: Hydraulic Head
Profiles at Water-Supply Well Location (Detail) for the First Cycle
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Figure 4-141: 2D Sub-Regional Glacial Cycle Simulations: Hydraulic Head Profiles at
Water-Supply Well Location at Time of Maximum Well Impact for all Cycles
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Figure 4-142: 2D Glaciation Sub-Regional Glacial Cycle Simulations: Maximum Vertical
Velocity in Repository Vicinity and Selected Formations for the First and Fifth Cycles
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Figure 4-143: 2D Glaciation Sub-Regional Glacial Cycle Simulations: Velocity Magnitude
Profiles at Water-Supply Well Location for the First Cycle
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Figure 4-144: 2D Glaciation Sub-Regional Glacial Cycle Simulations: Velocity Magnitude
Profiles at Water-Supply Well Location at Time of Maximum Well Impact for All Cycles
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4.3.3 Two-Phase Flow with 10% Gas in the Ordovician

The two-phase flow model takes the 2D T2GGM model described in Section 4.3.2 and adds
initial gases in the Ordovician units at a gas saturation of 10%. Sensitivity cases exploring
different initial gas saturations are presented in the following section. The gas in the Ordovician
is assumed to be methane, with a Henry’s coefficient of 7.2 x 101! Pa?! (Quintessa and
Geofirma, 2011). Two-phase formation parameters are detailed in Appendix A.

As expected, the greater compressibility of gas significantly moderates the increase in head
during glacial loading, as shown in Figure 4-145 for the first glacial cycle, where the times
coinciding with glacial loading are the time of Peak Cobourg (orange) and Peak Ice load (grey).
Gas saturations during glacial loading also decrease, as shown in Figure 4-146, due to the
greater compression of gas relative to water during loading, resulting in a smaller volumetric
ratio of gas (gas saturation is a volumetric ratio of gas to pore volume). Gas saturations begin
to vary between formations, due to different capillary pressures in each zone, with gas
preferring formations with lower capillary pressure.

300
Ground Surface Initial
Peak el |
200 4 — Maximum Permafrost
A2 Carbonate —————————— Peak Cobourg
Upper A1 Carbonate — Peak lce Load
Guelph Maximurm Retreat
100 4 — — 2D T2GGEM A
. — 2D T2GGM with Gas |
Fossil Hill ——————
Queenston — -
- q —_
ﬁ ( (
E \\GEIEIM
c -100 A\
2 ‘
B [ |
E
L -200 4 % \
Sherman Fall— b <
-300 Kirkfield
= /
I'i ~
-400 = Siaitw Care ——
Grid ¥ location 12800 (m
Grid ¥ location 35500 (m
-500 T T T T T
500 1000 1500 2000 2500 3000

Hydraulic Head (m)

08 Dec 2016
20 SubReg@lacialRC.mfiew

Figure 4-145: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Hydraulic Head Profiles at Water-Supply Well Location for the First Cycle
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Figure 4-146: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Gas Saturation Profiles at Water-Supply Well Location for the First Cycle

Moderation of heads during glacial cycles does not translate to a moderation of vertical
velocities. Upward vertical velocities are of interest from a transport perspective. Figure 4-147
provides the maximum vertical velocities in three Ordovician formations during the first and fifth
cycles. The pattern in velocity is similar between the first and fifth cycles, excepting differences
prior to the first glacial cycle, attributed to the effects of initial conditions. Upward vertical
velocities are increased in the Cobourg and Kirkfield formations, due to differences in the
vertical head profile, such as an increase in head gradient during glacial loadings seen in Figure
4-145. Upward velocities are also greater in the Queenston, except during glacial loading when
upward velocities are actually decreased.
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Figure 4-147: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Maximum Vertical Velocity in Repository Vicinity and Selected Formations
for the First and Fifth Cycles

Figure 4-148 through Figure 4-152 show the velocity field at event times within the first glacial
cycle. Figure 4-153 provides the velocity profile at the well location during the first cycle at the
same event times and compares it to the results from the fully water saturated case. As with
maximum vertical velocities shown above, compared to the fully water saturated case velocities
are increased in many formations, including the Cobourg formation.
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Figure 4-148: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Advective Velocity and Hydraulic Head at Time of First Cycle Peak Well
Operation (T = 43,000 a)
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Figure 4-149: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Advective Velocity and Hydraulic Head at Time of Maximum Permafrost
(T =93,000 a).
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Figure 4-150: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Advective Velocity and Hydraulic Head at Time of Peak Upward Velocities in
Cobourg Formation at Repository (T = 98,500 a)
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Figure 4-151: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Advective Velocity and Hydraulic Head at Time of Maximum Glacial Load at
Repository (T = 100,500 a)
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Figure 4-152: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Advective Velocity and Hydraulic Head at Time of Maximum Glacial Retreat
at Repository (T = 106,000 a)
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Figure 4-153: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician Compared to Water-Saturated Case: Velocity Magnitude Profiles at Water-
Supply Well Location for the First Cycle

Two-phase flow not only impacts the groundwater flow regime, but adds an additional potential
pathway for transport through the flow of the gas phase. Figure 4-154 shows upward gas flow
at the Cobourg and Queenston formation tops. Gas flows steadily decrease during the course of
the simulation, with additional reductions in gas flow during glacial loading events. In the
Queenston formation, gas flow direction reverses for a short time during the second glacial
loading of each cycle, flowing downward during this time. Gas flow in the Kirkfield formation is
not shown as the flow is effectively zero.
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Figure 4-154: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Maximum Vertical Gas Flow in Repository Vicinity and Selected Formations
for the First and Fifth Cycles

Cumulative effects of glacial loading on hydraulic head are slightly greater with gas present, but
are still small relative to the fluctuations in head due to glacial loading. After the first cycle,
heads do not return to values near the initial heads, as in the case with no gas present, and
there is a small increase in head with each cycle. Figure 4-155 shows the heads at various
depths with time. Figure 4-156 shows the head profile at the time of maximum well operation
for each glacial cycle. There is no well in the 2D model, but the time of maximum well operation
occurs during the longest period of recovery between glacial loadings, and is used for
consistency with previous results. Figure 4-156 shows the cumulative head change which
follows a similar pattern to the fully water saturated case, but with greater overpressures
generated by the successive glacial cycles. The cumulative head change in the Cobourg
formation is approximately 65 m, compared to 30 m in the fully water saturated case.
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Figure 4-155: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Hydraulic Head at Repository Location (X = 12,500.5 m, Y = 35,000 m) and
Selected Formations
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Figure 4-156: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Hydraulic Head Profiles at Water-Supply Well Location at Time of Maximum
Well Impact for All Cycles

There is little cumulative impact of glacial cycles on gas saturation, with the gas saturation in
most formations remaining near 10% at the time of maximum well operation in each cycle, as
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illustrated in Figure 4-157. The biggest cumulative change in gas saturation occurs in the
formations with the greatest or lowest capillary pressures. Formations with greater gas
saturations have relatively low capillary pressures, and similarly, formations with low gas
saturations have relatively high capillary pressures. For example, at the time of maximum well
operation in Cycle 8, the Coboconk formation has a gas saturation of 0.18, and a capillary
pressure of 20 MPa. The Kirkfield formation above the Coboconk has a capillary pressure of
24 MPa and gas saturation of 0.1, and the Gull River Formation below has a capillary pressure
of 26 MPa and a gas saturation of 0.09. Some of the formations have variable gas saturations,
with the gas saturation at the transition between formations having a higher or lower gas
saturation, depending on the differences in capillary pressure between formations. For
example, the Cobourg formation has a gas saturation of 0.09 in the middle two layers, and a
gas saturation of 0.075 at the top and bottom of the formation.
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Figure 4-157: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Gas Saturation Profiles at Water-Supply Well Location at Time of Maximum
Well Impact for All Cycles

There is also little cumulative impact on velocities, as shown in Figure 4-158. Particularly in the
Georgian Bay and Blue Mountain Formation, there is an increase in velocity between the first
and third cycles, after which the velocity change is small. Within the Cobourg, the velocity
profile changes between each cycle, making changes in magnitude more difficult to discern;
However, there is a five-fold increase in velocity in the middle of the Cobourg between the first
and eighth cycle. In the fully-water saturated case, the velocity in the middle of the Cobourg
increases by approximately 2.5 between the first and eighth cycle (see Figure 4-144).
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Figure 4-158: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10% Gas in the
Ordovician: Velocity Magnitude Profiles at Water-Supply Well Location at Time of
Maximum Well Impact for All Cycles

4.3.4 Two-Phase Flow Sensitivity Cases

The sensitivity of the groundwater flow regime to initial gas saturations in the Ordovician units
was investigated by applying initial gas saturations of 15%, 5% and 2%.

Figure 4-159 provides the head in the middle of the repository during the fifth glacial cycle for all
four initial gas saturation cases and the fully-water saturated case. Figure 4-160 and Figure
4-161 provide the head profile for the fifth cycle, and Figure 4-162 provides the gas saturation
profile for the fifth cycle, for all four initial gas saturations (15%, 10%, 5% and 2%). As
expected, the 2% and 5% gas saturation cases moderate glacially induced heads less than the
10% gas saturation case, whereas the 15% case moderates the heads even further. In all
cases, gas moves between formations, with final gas saturations greatest in formations with low
capillary pressures. The differences in gas saturation are most marked at the bottom of the
model in the 15% initial gas saturation case where the post-glacial retreat gas saturation in the
Coboconk (the formation below the Kirkfield formation) is almost 30%, twice the initial gas
saturation, and gas saturation in the Gull River (between Shadow Lake and Coboconk)
decreased to 11%.
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Figure 4-159: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 15%, 10%, 5%
and 2% Gas in the Ordovician — Parameter Sensitivity Detail: Hydraulic Head in Centre of

Repository Over Fifth Glacial Cycle
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Figure 4-161: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10%, 5% and
2% Gas in the Ordovician: Hydraulic Head Profiles at Water-Supply Well Location (Detail)
for the Fifth Cycle
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Figure 4-162: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10%, 5% and
2% Gas in the Ordovician: Gas Saturation Profiles at Water-Supply Well Location for the
Fifth Cycle

Figure 4-163 shows the maximum advective velocity in the repository for the three gas
saturation cases compared to the fully-water saturated cases, and Figure 4-164 shows the
maximum upward vertical advective velocity in the repository for the fifth glacial cycle. The
presence of gas causes an increase in velocity, due to the head gradients induced by



138

differences in gas saturation and capillary pressure, with similar peak velocities regardless of
the initial gas saturation. Peak velocities occur during periods of glacial loading. The reduction
in velocity during non-glacial loading periods approaches the same value with each passing
cycle, with the exception of the 15% initial gas saturation case. Maximum vertical velocities
during non-glacial loading periods are downwards, and are therefore not shown in the log scale
of Figure 4-164 where only upwards velocities are positive.
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Figure 4-163: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 15%, 10%, 5%
and 2% Gas in the Ordovician: Maximum Advective Velocity Magnitude in Vicinity of
Repository in Cobourg Formation
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Figure 4-164: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10%, 5% and
2% Gas in the Ordovician: Maximum Vertical Advective Velocity Magnitude in Vicinity of
Repository in Cobourg Formation Over Fifth Glacial Cycle

The cumulative impacts of glacial cycles on head, gas saturation and velocity are illustrated in
Figure 4-165, Figure 4-166 and Figure 4-167, respectively. The cumulative head impact of the
glacial cycles is similar for the four initial gas saturation cases, with the exception of the early
cycles of the 15% case which show significant underpressures that dissipate after three cycles.
These underpressures can be attributed to the movement of gas between formations to align
with the capillary properties of each formation. The cumulative impacts on gas saturation are
also similar for each case, with the magnitude of change during each cycle increasing with
increasing gas saturation. Velocity profiles are more variable for cases with higher gas
saturation, with the greatest changes occurring in the first few cycles.
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Figure 4-165: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10%, 5% and
2% Gas in the Ordovician: Hydraulic Head Profiles at Water-Supply Well Location at Time
of Maximum Well Impact for Select Cycles
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Figure 4-166: 2D Glaciation Sub-Regional Glacial Cycle Simulations with 10%, 5% and
2% Gas in the Ordovician: Gas Saturation Profiles at Water-Supply Well Location at Time
of Maximum Well Impact for All Cycles



141

300 x . . . . . x Il"round Surface —
200 4 Gas Saturation 15% 5 |
6 el
T 1004 - ] B ebh
0 - Fossil Hil—]
D - I
E GBEM—]
g -100 B
' 2004 Cobourg—
Z h Fall —]
o -300 — Kikcfield —
1Grid ¥ lacation 125005 (m) 1
-400 ‘{Grid ¥ location 35250 Emh Shadow Lake
-500 T T T T T T T T
10° 10% 107 10% 0% 10 10% 102 1071 1
300 L ) L L L L L )
d Surf, —
1 Gas Saturation 10% c — g |
200 A2 %Eona*e:
- —= 3 e telh—
%] Fossil Hill—]
¢ i,
= Cycle 1 GEEM —]
= Cycle 2 -
= Cycle 4
[ Cycle B Cobourg—
& Cycle 8 Fall —
m Kitkfield —~

Shadow Lake —f

109 108 107 108 105 1074 103 10 107! 1

3 Ground Surface —

1 Gas Saturation 5% . |

200 A2 Sgrgonﬂe:

= 1004 —— 3 T T ?féfpﬁ—_

W0 - Fossil Hil —]

D - N

E’ GEEM—]

= -1004 -
=2

5 2 neman Fai—

i -300 Kiktield —

_A00 Shadow Lake —T

-500 T T T T T T T T

109 108 107 108 105 1074 103 10 107! 1

00 : : : : : : : Il"round Surface —

-on 4_Gas Saturation 2% — L

A2 Larl ona*e:

— PP

@ — Fossil Hill—]

z e

= GEEM —]

= - L
=

g - Cobaurg—

K Fall—

w Kinefield —

Shadow Lake —°

-500 . r . . . . . r
109 108 107 1078 105 i 103 102 107" 1
Yelocity (mfa) 09 Dec 2016

2DSubRealacialRC SensCases. mbfier
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5. EROSION SCENARIO

The erosion scenario expands the glaciation scenario to account for 100 m of erosion occurring
over the 1 Ma performance period. This scenario assumes glacial cycles every 120 ka, with
approximately 12.5 m of upper bedrock being removed each cycle. This will reduce the
thickness of confining material isolating the repository from surface and will cause additional
hydro-mechanical unloading due to overburden material removal. Two cases are assessed:
uniform erosion, and valley erosion. Uniform erosion assumes each glacial retreat removes a
constant thickness of material over the entire model domain. Valley erosion limits erosion by
locally increased glacial scouring and creation of a valley directly above the repository due to
channeling of the ice flow through local topographic variability. Assumptions for the erosion
scenario were based on possible erosion phenomena applied conservatively for the purposes of
this study.

The scenario is implemented similarly to the base glaciation scenario with two scales of
modelling:

1. Erosion Sub-Regional Flow Model — the domain of the Erosion Sub-Regional Flow
model differs from the Glaciation Sub-Regional Flow model in grid orientation and
domain area, and has an increased number of layers to support adequate resolution of
erosion processes. The model definition (discretization, property assignment, boundary
conditions) and results are described in Section 5.1

2. Erosion Site-Scale Transport Model — the Site-Scale Model domain and initial properties
are identical to the Glaciation Site Scale Transport model described in Section 4.2.
Properties, boundary conditions, and execution sequencing are modified to implement
the erosion processes. These maodifications and results are described in Section 5.2.

Four reference cases were simulated: all permutations of the reference and shaft well with
uniform and valley erosion.

5.1 Erosion Sub-Regional Scale Flow Model

The Erosion Sub-Regional flow models expand upon the Glaciation Sub-Regional flow
modelling by accounting for erosion occurring over the 1 Ma performance period. The effects of
erosion on the flow domain are expected to be driven by two factors: 1) the reduced elevation of
ground surface will result in lower elevations for the fixed head surface boundary conditions,
possibly resulting in overpressures at depth, and 2) the additional hydro-mechanical unloading
due to the removal of surface sediments, possibly resulting in underpressures at depth.

Erosion is incorporated as an additional process, added to the Glaciation Sub-Regional
modelling previously described in Section 4.1. Initial property assignments are identical to the
previously described glaciation model. Erosion is assumed to occur at each glacial retreat, at
which time model properties are modified. A new ground surface elevation is calculated as the
initial ground surface minus the total erosion to that time. All model elements located above the
revised ground surface are set to inactive. A new weathered zone is calculated as extending to
50 m below the revised ground surface. All elements in the revised weathered zone are set to
the “Drift” material property type (see Appendix A).
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In extreme erosion cases, the removal of the low-permeability Ordovician units will reduce the
thickness of the diffusion dominated barrier formations, enhancing mass flux into the newly
formed weathered zone with biosphere access. However, the scenarios evaluated in this report
have a total erosion of 100 metres, which does not reach the Ordovician units in the vicinity of
the repository.

Two variant cases were evaluated: 1) uniform erosion (UE) occurs over the entire model
domain; while 2) valley erosion (VE) considers ice flow channeling through local topographic
variability, resulting in locally increased glacial scouring and creation of a 15 km wide valley
directly above the repository.

The Erosion Sub-Regional Scale Flow modelling provides boundary conditions for the Erosion
Site-Scale Transport modelling, discussed in Section 5.2.

5.1.1 Modelling Approach

The general approach can be described as follows:

1. Material is removed incrementally, temporally coincident with glacial retreats. For UE,
the 100 m total depth was removed across the entire model domain. For VE, erosion
describes a “V” shaped valley 15 km wide and a total depth of 100 m, with the centre of
the valley located directly above the repository. The valley traverses the full length of
the model in the Y direction with the “V” centred on the model domain in the X direction.

2. The same base model grid was used for both cases. Compared to the glaciation only
model, the grid is more finely discretized in the upper layers to more accurately resolve
each material removal event. To effectively model the VE case, the grid also has
increased harizontal resolution perpendicular to the valley. The grid orientation is
modified from the glaciation only model for improved consistency of valley erosion
processes with topographic features.

3. The eight glacial cycles each contain two erosion events, each of which results in
removal of material from the entire domain (UE) or from the floor of the valley (VE) at the
end of each event. For VE, removal rates vary linearly from a maximum at the valley
centre to zero at the full width.

4. After each erosion event, the grid properties were redefined with “null” or inactive
elements replacing the eroded material. The weathered surface zone was also
redefined based on the new surface location. Head and loading boundary conditions
were calculated for the next event using the new surface.

5. Simulations for each event were linked by way of head restart files.

6. Responses from each event simulation were combined.
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5.1.2 Model Description

5.1.2.1 Model Domain and Discretization

The Erosion Sub-Regional flow model domain was determined from the repository location and
the local topography. Glacial steering by existing topography is assumed to cause valley
erosion, with the advance/retreat direction orthogonal to prevailing topography, as shown in
Figure 5-1. The grid roughly parallels the Lake Huron shoreline at a rotation of 35 degrees
clockwise from North-South. At 35 km wide (X direction) by 40 km long (Y direction), the grid is
wider than the Glaciation Sub-Regional grid to extend boundaries beyond the valley edges for
the VE case. Glacial advance and retreat is parallel to the Y axis. The grid is centred on the
repository to simplify the grid rotation. An area of Guelph formation sub-crop extends across
nearly the entire grid to the North-East of the repository.
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Figure 5-1: Erosion Sub-Regional Model Domain

Figure 5-2 illustrates the plan discretization, with constant 500 m element lengths in the Y
direction. X direction discretization varies to support the VE case, with a higher resolution (250
to 100 m) in the 15 km wide valley region.
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Figure 5-2: Erosion Sub-Regional Horizontal Discretization

Vertical discretization was based on the geological surfaces described in Section 3.1 and
illustrated in Figure 5-3 and Figure 5-4. Upper layer discretization was modified so that a
minimum of 50 m thickness weathered bedrock/overburden zone could be assigned for each
erosion event. A minimum grid layer thickness of 0.1 m was enforced in the northern end of the
grid where sub-cropping layers were merged into the drift/weathered bedrock zone.
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Figure 5-4: Erosion Sub-Regional Model

The resulting model domain consists of 149

ErosionDiscretization. m\fiew

Discretization on Vertical Slice Through Y =0m

nodes in the X direction, 81 in the Y direction and

105 node layers, for a total of 1,267,245 nodes and 1,231,360 elements, or approximately a

factor of four larger than the Glaciation Sub

Regional Flow model.
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5.1.2.2 Property Assignment

Initial model properties were assigned based on element position relative to geological surfaces
(Figure 5-5 with vertical exaggeration, Figure 5-6 with no vertical exaggeration). Figure 5-7

details pinch outs (Al Evaporite, A2 Evaporite and B Anhydrite) and sub-cropping.
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Figure 5-5: Erosion Sub-Regional Model Property Assignment
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Figure 5-6: Erosion Sub-Regional Model Property Assignment— no vertical exaggeration
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Figure 5-7: Erosion Sub-Regional Model Property Assignment on Vertical Slice Through
X=0
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Modification of properties to implement erosion is illustrated in Figure 5-8 and Figure 5-9. In
Figure 5-8, the eroded material has been removed, but the revised weathered zone has not
been applied. Figure 5-9 is a cross-section through the repository centre showing erosion and

weathering.
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Figure 5-8: Erosion Sub-Regional Model Property Assignment Before Weathered Zone
Reassignment
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Figure 5-9: Erosion Sub-Regional Model Property Assignment on Vertical Slice Through
Y=0

Separate property assignments are required for each erosion event and each case (UE or VE).
The 100 m total erosion is applied equally to each glacial cycle at 12.5 metres per cycle. Within
each cycle, erosion is applied at the end of each of the two full retreats. Allocation of the total
cycle erosion between the two retreats is 35:65 based on the differences in peak ice load for
each advance, resulting in 4.375 m removed at the end of the first retreat, and 8.125 m at the
end of the second. These are the nominal values; the actual value at any location depends on
the vertical resolution of the grid at that location.

Erosion periods were designated using the cycle number and “A” or “B” for first and second
retreat in each cycle respectively (see Figure 5-10). For implementation convenience, each
cycle ends at the second full retreat. This results in a shorter duration for the 1A period and the
requirement of a 9A period from the end of the last retreat to 960 ka, for a total of 17 simulation
periods. Each period was simulated separately, with initial head conditions copied from the final
simulated head of the previous period. Initial conditions for the first period were based on the
no-well, steady-state flow simulation results.
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Figure 5-10: Erosion Sub-Regional Model Erosion Events for Single Cycle

Ground surface elevations at the repository and approximately half-way up the valley side to the
South-East of the repository are shown in Figure 5-11 for both uniform and valley erosion cases.
Note that the total difference in elevation at the repository is 97 m, rather than the 100 m
specified, reflecting discretization related adjustments. The uniform erosion case at the valley
side mid-point is also approximately 100 m, while the valley erosion case at the same point has
a total removal of just under 50 m, as expected. Note that for the valley case at the valley side

mid-point, a number of erosion events show no change in elevation (e.g. 3A, 4A, 6A, 7A) due to
discretization related effects.
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Figure 5-11: Erosion Sub-Regional Model — Ground Surface Elevation at Repository and
Valley Mid-Point Location
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Discretization related spatial variation from the nominal 100 m total erosion at 960 ka for the UE

and VE cases are shown in Figure 5-12 and Figure 5-13, respectively.
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Figure 5-13: Erosion Sub-Regional Model — VE Case Total Erosion at 960 ka
5.1.2.3 Boundary Conditions

The fixed head glacial boundary conditions were calculated for each erosion period to reflect the
different ground surface node elevations (see Figure 5-14). Boundary conditions were applied
at ground surface only, with zero flow boundaries on all sides. This simplification reduced
computational effort required for boundary condition calculations and was justified given results
from the glacial boundary condition sensitivity case (Surface BC in Section 4.1.5.3) which
showed no significant differences between reference case and Surface BC results.
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Figure 5-14: Erosion Sub-Regional Model - Glacial Surface Boundary Condition

The hydraulic head change of the final retreat portion of each period was increased to
incorporate the calculated erosion (4.375 m for period A, 8.125 m for period B). As a result of
the change, the head at the glacier toe is lower at the end of the retreat than at the start of each
period. This ensures continuity of surface fixed head boundary conditions. For valley erosion,
the head change was scaled according to position within the valley, with a multiplier of 1.0 at the
valley centre and 0.0 at the valley edges, and varying linearly from the edge to centre, with no
change applied outside of the valley.

The hydro-mechanical loading rate boundary condition is calculated from the head boundary
condition (change in head divided by time step equals loading rate). A separate hydraulic head
profile was used in calculating the hydro-mechanical boundary conditions to include the weight
of eroded material in the unloading. The hydraulic head change at the end of the retreat portion
of the profile was increased by a factor of 2.5 (10.9375 m for period A, 20.3125 m for period B),
assuming an average density of 2500 kg/m? for eroded material. This increases the hydro-
mechanical unloading in the retreat beyond that applied in the advance to account for removal
of eroded material. As with the head boundary condition, the loading increase for valley erosion
was scaled according to position within the valley, with a multiplier of 1.0 at the valley centre
and 0.0 at the valley edges and outside the valley, and varying linearly from the edge to centre.

51.2.4 Permafrost

Permafrost was calculated separately for each erosion period, using the same approach as
described in Section 4.1.1.4. Maximum permafrost depths in selected erosion periods are
shown in Figure 5-15.
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Figure 5-15: Erosion Sub-Regional Model - maximum Permafrost Depth on Vertical Slice
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5.1.25 Well Locations

Reference and shaft wells are used in the erosion simulations, as shown in Figure 5-16. Well
locations were selected to be as close as possible to the corresponding Site-Scale model wells.
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Figure 5-16: Erosion Sub-Regional Model: Well Locations

5.1.3 Steady-State Flow Simulations

Constant density steady-state (constant climate) flow simulations with reference properties
(period 1A) were performed to provide initial conditions for the transient erosion cases. Results
were also compared to glaciation model steady-state simulations with zero flow vertical
boundary conditions to determine model sensitivity to differences in grid orientation and
discretization. Hydraulic head, repository velocity and MLE results for the no-well case are
compared in Figure 5-17 through Figure 5-19. Results are comparable, indicating no significant
impact from the discretization differences.
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Figure 5-17: Steady-State Sub-Regional Flow: Comparison of Erosion and Glaciation
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Figure 5-19: Steady-State Sub-Regional Flow: Comparison of Erosion and Glaciation
Model MLE on Vertical Slice Through Repository



159

Additional steady-state simulations with constant water supply well operation were compared to
the corresponding glaciation model results to further verify correct model implementation, as
shown in Figure 5-20.
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Figure 5-20: Steady State Flow: Comparison of Erosion and Glaciation Model Hydraulic
Head Distribution on Vertical Slice Through Repository With Reference Well

5.1.4 Glacial Climate Flow Simulations

As a final comparison to verify model implementation, the 17 period erosion model was
simulated with transient glacial boundary conditions, permafrost specification and water supply
well operation schedule but without erosion. Head and velocity results from this simulation are
compared to the SurfaceBC case glaciation only model. Time series results below present
simulated hydraulic head at the reference well location (Figure 5-21) and maximum advective
velocities in the plan vicinity of the repository (Figure 5-22) through a selection of formations.
Results are very consistent across both models, providing further confidence in correct
implementation of the model structure. Velocities in the Guelph during periods of well operation
are slightly higher due to discretization effects. The smaller element sizes lead to higher
velocities in elements near the well.
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Hydraulic head profiles for glaciation and erosion models are compared at selected times in the
first cycle (Figure 5-23) and at the time of maximum well operation in all cycles (Figure 5-24).
The minor discrepancies in the latter figure are due to differences between the grids in ground
surface elevation caused by the finer discretization of the erosion model. Head profiles
correspond very well if the glaciation model results are shifted by 2.13 m to account for the
difference in ground surface elevation, as shown in Figure 5-25.
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Figure 5-23: Glacial Climate Transient Sub-Regional Flow: Erosion Model With No
Erosion and Glaciation Model Comparison of Vertical Hydraulic Head Profiles at

Reference Well During First Glacial Cycle
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5.1.5 Erosion Flow Simulations

Uniform and Valley erosion flow simulations were conducted for shaft well and reference well
locations.

Velocity comparisons (reference well - no erosion compared to uniform erosion; reference well -
no erosion compared to valley erosion; uniform erosion — reference well compared to shaft well)
are presented below in Figure 5-26 to Figure 5-28. There are few significant differences in
velocities in any of the Ordovician formations between any of the erosion model or wells cases.
Kirkfield velocities are higher at the end of the valley erosion cases, but still very low. However,
velocities in the Guelph formation increase steadily for the erosion cases, as shown in detail in
Figure 5-29.
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Figure 5-26: Erosion Sub-Regional Flow: No Erosion to Uniform Erosion, Reference Well
— Comparison of Maximum Advective Velocity in Repository Vicinity and Selected
Formations
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Figure 5-29: Erosion Sub-Regional Flow: Guelph Formation - Comparison of Maximum
Advective Velocity in Repository Vicinity for No Erosion, Uniform Erosion and Valley
Erosion Cases (All Reference Well)

Velocities in the Guelph during periods of well operation are dominated by the well and are
relatively constant. Velocities associated with other periods are generally increased as greater
portions of the Guelph are converted into erosion weathered material. Figure 5-30 through
Figure 5-33 compare velocities on orthogonal vertical slices at a time between permafrost
periods after the “A” retreat in the third cycle and eighth cycle respectively (317,000 a and
917,000 a). Higher velocities in the drift material are communicated over a greater portion of
the Guelph as erosion advances, raising velocities above the repository. An interesting effect is
evident in Figure 5-33 where discharge above the repository is focussed in the centre of the
valley. This may have implications for terrestrial discharge dose calculations.
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Figure 5-30: Erosion Sub-Regional Flow: Comparison of Advective Velocities for No
Erosion, Uniform Erosion and Valley Erosion Cases on YZ Slice Through Repository at
317,000 a (Note: Revised Advective Velocity Scale)
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Figure 5-31: Erosion Sub-Regional Flow: Comparison of Advective Velocities for No
Erosion, Uniform Erosion and Shaft Erosion Cases on YZ Slice Through Repository at
917,000 a (Note: Revised Advective Velocity Scale)
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Figure 5-32: Erosion Sub-Regional Flow: Comparison of Advective Velocities for No
Erosion, Uniform Erosion and Shaft Erosion Cases on XZ Slice Through Repository at
317,000 a (Note: Revised Advective Velocity Scale)
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Figure 5-33: Erosion Sub-Regional Flow: Comparison of Advective Velocities for No
Erosion, Uniform Erosion and Shaft Erosion Cases on XZ Slice Through Repository at
917,000 a (Note: Revised Advective Velocity Scale)

Cobourg head time series are very similar for all cases. Figure 5-34 compares the No Erosion
and four erosion cases over the full glaciation time period. Glacial loading response is similar
with a cycle by cycle reduction corresponding to a combination of the eroded ground surface
elevation and removal of eroded sediments. A detailed portrayal of heads at the end of the final
period within the Cobourg formation (Figure 5-35) illustrates consistent differences between the
valley and uniform erosion during non loading periods. The uniform erosion head is
approximately 153 m lower than the no erosion head, while valley erosion is 105 m lower. This
is consistent with the general larger overall impact expected with uniform erosion.

Within the Guelph formation (Figure 5-36) valley erosion heads respond more strongly to
permafrost periods than either no erosion or uniform erosion, resulting in small variations in
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head. The difference between final erosion and no erosion heads is 97 m, reflecting the
difference in ground surface elevations.
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Figure 5-34: Erosion Sub-Regional Flow: Comparison of Cobourg Formation Hydraulic

Head Above Repository
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Figure 5-35: Erosion Sub-Regional Flow: Detail of Comparison of Cobourg Formation
Hydraulic Head Above Repository at End of Eighth Glacial Cycle
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Figure 5-36: Erosion Sub-Regional Flow: Detail of Comparison of Guelph Formation
Hydraulic Head Above Repository at End of Eighth Glacial Cycle

Figure 5-37 shows the evolution of head profiles with each glacial cycle at the time of maximum
well operation for uniform and valley erosion as compared to the no erosion case. For the no-
erosion case, peak heads within the Georgian Bay/Blue Mountain formation increase by
approximately 20 m from Cycle two to eight. In contrast, peak erosion heads within the same
formation decline relative to ground surface indicating a slight prevalence of erosion processes.
A particularly interesting result is the differences in head at the bottom of the model in the more
permeable Shadow Lake formation. For uniform erosion, head changes relative to ground
surface from being slightly overpressured at the start of the simulation to being underpressured,
again indicative of a slight cumulative impact of erosion processes. By contrast, valley erosion
Shadow Lake heads are significantly overpressured relative to eroded ground surface as they
reflect a combination of non-eroded and eroded behaviour. This overpressured lower formation
leads to a higher vertical gradient up to the Sherman Fall, explaining the previously noted higher
Kirkfield velocities for the valley case. Although the choice of zero-flow boundary conditions at
the vertical model extents may have impacted the permeable formation behaviour, it is still
evident that spatial variations in erosion can contribute to anomalous head distributions.
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Figure 5-37: Erosion Sub-Regional Flow: Evolution of Head Profiles at Time of Maximum
Well Operation Time for Each Cycle at Reference Well Location

5.1.6 Significance of Erosion Flow Systems to Safety Assessment

Repository MLE simulations as described in Section 4.1.6 were performed for Uniform and
Valley Erosion Cases. Results are compared to the No Erosion case in Figure 5-38. Erosion
MLE decrease steadily, but at a slow rate, due to the reduction in travel distance from the
repository to surface. There are no significant differences between the various cases.
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Figure 5-38: Repository MLE for No, Uniform and Valley Erosion

5.2 Erosion Site-Scale Transport Model

Site-Scale transport modelling for the erosion cases uses the grid and approach developed for
the Glaciation Site-Scale transport models in Section 4.2, modified slightly to use changing
erosion property sets as described in the previous section for erosion flow modelling.

Transport model domain, numeric grid, well and source locations, well operation schedule,
repository properties and initial geosphere property assignments are all as presented in Section
4.2.1 and will not be further described here. This section will describe the setting of the Site-
Scale model within the Erosion Sub-Regional Flow model, erosion property assignments,
boundary conditions, and transport model results.

5.2.1 Model Description

5.2.1.1 Model Setting with Erosion Sub-Regional Model

As described in Section 4.2.1.1, the Site-Scale model extends vertically from the Pre-Cambrian
to the top of the Salina A2. The Site-Scale model coordinate system is rotated approximately
123 degrees compared to the Erosion Sub-Regional local coordinate systems. The horizontal
model domain and coordinate system are presented with the Erosion Sub-Regional model
extents for context in Figure 5-39 and Figure 5-40.
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Figure 5-39: Site-Scale Model Domain — Plan View
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Figure 5-40: Site-Scale Model Domain — Vertical Section Through Site Y =0

The Site-Scale model geosphere is shown within the surrounding Erosion Sub-Regional
geosphere in Figure 5-41. Cross-section A-A’ from Figure 4-40 is also shown to assist in
orienting the viewpoint.
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Figure 5-41: Site-Scale and Erosion Sub-Regional Model Domain and Assigned Initial
Geosphere Hydraulic Conductivities

Vertical model discretization is shown in Figure 5-42 and Figure 5-43 with maximum extents of
erosion and erosion weathered zone indicated.
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Figure 5-42: Site-Scale Model Discretization in XZ Plane Through Centre of Grid
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Figure 5-43: Site-Scale Model Discretization in YZ Plane Through Centre of Grid
5.2.1.2 Property Assignment

Properties for each erosion period were calculated as described in Section 5.1.2.2. A new
ground surface position was determined based on erosion type (valley or uniform) and period
depth and all elements above the revised ground surface were set inactive. All elements less
than 50 m below the ground surface were set to a weathered zone, or Drift. Unlike the Erosion
Sub-Regional model, which extends to current ground surface, the Site-Scale model vertical
domain ends at the top of the Salina A2, which is 55 to 110 m below ground surface.
Consequently, the first 9 periods (up to and including 5A) only modify the depth and extent of
the weathered zone. The remaining 8 periods also remove material from the model (Figure
5-44 and Figure 5-45).
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Figure 5-44: Erosion Site-Scale Model Property Assignment Before Weathered Zone
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Figure 5-45: Erosion Site-Scale Model Property Assignment on Vertical Slice Through
Y=0

5.2.1.3 Boundary Conditions

Boundary conditions were applied as fixed head on all faces of the model except for the bottom,
which was defined as zero flow. Surface loading was applied at the top of the model only.
Heads were extracted from the Erosion Sub-Regional model simulation results, while loading
stresses were interpolated from Sub-Regional model input loading stresses.

5214 Permafrost

As the ground surface erodes, permafrost reaches deeper into the Site-Scale model domain.
Figure 5-46 shows the extent of permafrost penetration in the Site-Scale model grid at the time
of maximum permafrost depth in each of the first, fifth, and final glacial cycles.
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Figure 5-46: Site-Scale Model Permafrost —Specified Permafrost Elements at Time of
Maximum Permafrost Depth in the First, Fifth, and Eighth Glacial Cycles on Vertical Slice
Through Repository for Uniform Erosion Case
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5.2.2 Modelling Cases

Reference case simulations were undertaken for uniform and valley erosion for reference and
shaft well and source locations.

5.2.2.1 Flow System Verification

Correct implementation of head and loading boundary conditions was verified by comparing
simulated heads from flow and transport models in the final glacial cycle. Figure 5-47 and
Figure 5-48 show a clear correspondence of head contours at the Site-Scale model boundary
for the UE and VE case respectively. The figures also illustrate the impact of repository shafts
and tunnels on the Site-Scale model head distribution.
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Figure 5-47: Site-Scale Boundary Conditions — Uniform Erosion - Comparison of
Hydraulic Heads on Vertical Slice Through Repository at 883.5 ka.
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Figure 5-48: Site-Scale Boundary Conditions — Valley Erosion - Comparison of Hydraulic
Heads on Vertical Slice Through Repository at 883.5 ka.

5.2.2.2 Results

Spatial representations of transport model results at 1 Ma for the reference and shaft well cases
are shown in Figure 5-49 and Figure 5-50. Three-dimensional iso-volumes at 1 Bg/m? are
presented in Figure 5-51 and Figure 5-52. The figures indicate very minor differences in
transport between erosion and no-erosion cases, and virtually no difference between uniform
and valley erosion cases. The results further corroborate the evidence of the diffusion
dominated nature of transport from the repository.
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Figure 5-49: Site-Scale Model: Reference Well — Comparison of Erosion and Glaciation
Only I-129 Transport at 960 ka
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Figure 5-50: Site-Scale Model: Shaft Well — Comparison of Erosion and Glaciation Only I-
129 Transport at 960 ka
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Figure 5-51: Site-Scale Model: Reference Well — 3D Comparison of Erosion and
Glaciation Only 1-129 Transport at 960 ka
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Figure 5-52: Site-Scale Model: Shaft Well — 3D Comparison of Erosion and Glaciation
Only 1-129 Transport at 960 ka
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Transport into formations and uptake by the water supply well for uniform erosion are compared
to glaciation only results in Figure 5-53 and Figure 5-54, while valley and uniform erosion case
well transport are compared in Figure 5-55.
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Figure 5-53: Site-Scale Model: Reference Well Results — Mass Flux Into Formations and
Water-Supply Well for Uniform Erosion and Glaciation Only Cases
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Figure 5-54: Site-Scale Model: Shaft Well Results — Mass Flux Into Formations and
Water-Supply Well for Uniform Erosion and Glaciation Only Cases
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Figure 5-55: Site-Scale Model: Mass Flux Into Water-Supply Well for Uniform and Valley
Erosion for Reference and Shaft Well Cases and Compared to Glaciation Only Results

Results for both reference and shaft well cases show negligible impact on transport from either
erosion case when compared to the corresponding glaciation (no erosion) case. For the shaft
well models, average transport in the erosion model is slightly lower than the corresponding
glaciation only cases for the last four glacial cycles. This may be due to reduced well capture or
increased dilution by glacial waters because of increased permeability as portions of the Guelph
are incorporated in the weathered zone. Peak well transport at the start of each pumping period
is lower for the reference well erosion cases, likely for the similar reasons.
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6. CONCLUSIONS

A comprehensive 3D numerical modelling exercise has been undertaken to examine the
impacts of glacial climate and associated erosion processes on a hypothetical deep geologic
repository in the 5CS sedimentary geosphere. The glacial climate has been represented as
eight repeating glacial cycles of 120 ka duration, each of which contains two glacial advance
and retreat periods. Numerous reference and sensitivity case simulations have been conducted
to characterize the behaviour of the flow system using plausible scenarios - as well as some
implausible scenarios to improve understanding. The results overwhelmingly indicate that the
5CS geosphere remains a robust barrier with very slow transport under all likely conditions.

Geosphere performance is broadly characterized by advective velocities in the deep Ordovician
system and “snap shot” MLE simulations at various times. In these conclusions we use mean
MLE and advective velocity within the Cobourg formation in the vicinity of the repository as the
primary metrics for evaluating flow system performance. The advective velocity within the deep
Ordovician system will control if the flow system deviates from the diffusion dominated transport
regime present during constant climate simulations. We used 10° m/a as a threshold velocity
criterion to designate extremely slow, and likely diffusion dominated, transport. At velocities
below 10° m/a, a contaminant particle under advective control will travel 10 m in 1 Ma, less than
the thickness of Cobourg formation. Below 10 m/a, advective transport is under 1 metre in 1
Ma. These two velocities were used to evaluate the change in advective velocities that occur
during each glacial cycle.

Transport system performance was characterized by transport of 1-129 to the water supply well.

6.1 Glacial Climate Model: Flow

The Glaciation Sub-Regional Flow model was developed to characterize the effect on
performance of the 5CS geosphere in the near vicinity (10s of km) of the repository to various
reference and sensitivity case parameters, boundary conditions and processes. Surface head
boundary conditions and hydro-mechanical loading due to glacial advance and retreat were
simulated as were periods of permafrost. In general, sub-regional flow system behaviour was
consistent for each glacial cycle. Figure 6-1 and Figure 6-2 show Repository MLE for the
reference case and significant plausible sensitivity cases. Cases not supported by regional
geosphere data (KHigh100, KHigh1000) and cases with no perceptible impact (discontinuous
permafrost (DPF), no permafrost (NoPF), variable density, and Surface BC only) are not shown.
The figures show that mean Repository MLE for most cases is in excess of 100 Ma. The figure
also shows that all the glacial climate cases have slightly shorter MLE than the constant-climate
steady-state no well case.



188

10°
— —— Reference Steady-state
— Reference
—— KHigh
—— SHigh
——— LEHigh
— LELow
— HUnder
— HOwver
)
i)
4
=
=
=]
‘i
(=]
o
L)
o
£
=
=
=
=
107 r r r r r r r
] 120000 240000 380000 t_lE!DDDD 600000 720000 40000 960000
Tirme (a) ) 17 fpr 2015
Sub Reaional IMLEComo pahdew
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Head profiles at various times illustrate the total and cumulative impact of glacial climate on
geosphere pressures. As a reference time, 43 ka from the beginning of each cycle represents
the longest period since a previous retreat, and thus shows the most moderation of the glacially
induced overpressures. Figure 6-3 shows a steady increase in overpressures in the Ordovician
formations. Elevated heads are also present at the bottom of the model, although only on the
order of 30 metres above ground surface. Increased conductivity (KHigh case) allows most of
the overpressure to dissipate and reduces cumulative effects.
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Figure 6-3: Glacial Climate Flow: Head profiles at Time of Maximum Well Operation in
Cycles 2, 4, 6, and 8 for Reference and KHigh Cases.
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Additional modelling was performed to determine the extent to which the presence of a gas
phase will affect glacially induced changes to geosphere flow system behaviour. A simplified
2D model was prepared to simulate the numerically challenging two-phase flow behaviour.
Comparisons of 2D single-phase flow to the 3D flow model showed that the reduced
dimensionality of the model did not impair its ability to reproduce the 3D velocity field
magnitudes and MLEs. The 2D two-phase results (Figure 6-4) show gas saturations causing
slight increases in average velocity. However, these velocities are still well below any magnitude
of concern.
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Figure 6-4: Glacial Climate Flow: 2D Two-Phase Advective Velocity in the Vicinity of the
Repository for Simulated Gas Saturations.

6.2 Glacial Climate Model: Transport

The Site-Scale Transport model developed for this work is consistent with and compares well to
the model used in the Pre-Project report (NWMO, 2013). Transport simulations were conducted
for three reference case well and source locations, the KHigh geosphere sensitivity case, a high
dispersivity transport sensitivity case, and the Shaft Fail disruptive event case, with boundary
conditions extracted from the relevant Glaciation Sub-Regional Flow model.

Glacial climate conditions have only limited impact on well transport. The general development
of the plume at depth is almost entirely insensitive to glacial forcing, while glacial advance and
retreat cause slightly increased transport into the Guelph formation compared to steady state
results. Figure 6-5 shows that transport into the Guelph is very similar to the constant climate
results during permafrost periods, when neither well operation or glacial advance and retreat
affect the flow system. Transport rates into the Guelph formation increase during ice cover
periods. The average well transport during the period when the well is pumping is less than a
factor of 10 higher than the steady-state, constant climate results. However, an initial spike in
transport occurs when the well is turned on and radionuclides transported into the Guelph
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formation during the previous ice cover and permafrost periods are captured by the well.
Variations in transport into the Guelph occur during glacial loading and unloading.
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Figure 6-5: Site-Scale Transport: RC Reference Well Comparison of Constant Climate
and Glacial Climate Well Transport Results — Seventh Cycle Detail.

Figure 6-6 compares glacial and constant climate well transport for selected cases. The
transport during the initial well operation period is several orders of magnitude higher than for
the constant climate case, and is summarized for all cases in Table 3.
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Figure 6-6: Glaciation Site-Scale Transport: Comparison of Constant Climate and Glacial
Climate Well Transport Results for Reference and Shaft Fail Cases.
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Table 3 - Site Scale Well Transport - Glacial:Constant Climate Ratios

Case Transport (Bg/a) Ratio
Constant Glacial Climate Glacial:Constant
Climate
Maximum Peak Final Peak Final
(960 ka) (960 ka)
RC Reference Well 1.881E-07 2.933E-05 8.862E-07 155.9 4.7
RC Shaft Well 4.257E-04 5.985E-02 2.201E-03 140.6 5.2
ShaftFail 2.546E-02 5.563E+00 3.320E-01 218.5 13.0
KHigh 2.099E-07 2.023E-04 1.815E-05 963.8 86.5
High Disp 6.661E-07 6.615E-04 3.285E-05 993.1 49.3
High Diff 6.860E-04 5.804E-02 1.430E-03 84.6 2.08

6.3 Glacial Erosion Model: Flow

The Erosion Sub-Regional Flow model simulated the impacts of two cases of glacial erosion on
the 5CS sedimentary geosphere. Model construction was similar to the Glaciation Flow model
with some differences in grid orientation and discretization (horizontal and vertical). The uniform
erosion scenario (UE) removed a constant thickness over the entire model domain, while the
valley erosion (VE) case spatially focussed the erosion in the form of a valley centred over the
repository. Both cases removed 100 m of material over eight glacial cycles, with an equal
amount removed each cycle. Within the cycles, removal was allocated between the two glacial
advance/retreat events (A and B) on the basis of peak ice-thickness. The simulated ground
surface erosion profile above the repository (Figure 6-7) varies slightly from the specification
due to variations in discretization.
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Figure 6-7: Erosion Model Flow: Ground Surface Elevation at the Repository Location
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Surface head boundary conditions were adjusted to account for reduced surface elevations after
each erosion stage (the end of the glacial retreat). Hydro-mechanical loading rates were also
modified to incorporate the removal of overburden and/or weathered bedrock at the end of each
retreat.

Groundwater velocities in the Cobourg formation show only minor increases during non ice-
cover periods in the final glacial cycles. The simulated erosion has no significant impact on the
deep groundwater velocities or on the Repository MLE (Figure 6-8).
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Figure 6-8: Erosion Model Flow: Repository MLE for Uniform and Valley Erosion Cases
Compared to Glacial Climate Only Cases.

The head profiles (Figure 6-9) are significantly altered from the no erosion results. Uniform
erosion results in significant underpressures at depth, while valley erosion results in an 80 m
overpressure at the bottom of the model. The differences between these two illustrate the
potential impacts of spatial variation in erosion. Without a detailed (and practically
unobtainable) knowledge of past erosion patterns, it is unlikely that anomalous heads, such as
those noted at the Bruce DGR, will ever be fully reconstructed.
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Figure 6-9: Erosion Flow: Head profiles at Time of Maximum Well Operation in Cycles 2,
4, 6, and 8 for Uniform and Valley Erosion.

6.4 Glacial Erosion Model: Transport

Radionuclide transport for the erosion cases was calculated using the same basic Site-Scale
Transport model as was used for the glacial climate only 1-129 transport model. Modifications to
the model were limited to separate property sets for each simulated period, and modified hydro-
mechanical loading rates to reflect material removal. Head boundary conditions were extracted
from the Erosion Sub-Regional Flow model. Erosion transport results (Figure 6-10) are
consistent with the erosion vs. glaciation only MLE comparison (Figure 6-8) and show very
similar transport rates to the glacial climate only (no-erosion) case, with slightly reduced
transport for the shaft well and release location. Differences between uniform and valley
erosion are minimal.
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Figure 6-10: Erosion Site-Scale Transport: Comparison of Erosion and Glacial Climate
Only Cases.

6.5 Modelling Approach

The overall modelling approach drew upon the experiences gained in previous glaciation
modelling (Walsh and Avis, 2010) and transport modelling for the 5CS geosphere and
repository (NWMO, 2013). The simulations were extremely data and time intensive, each using
hundreds of megabytes to tens of gigabytes of boundary condition and loading files, while
generating hundreds of gigabytes of output. Post-processed output files for all reported
simulations amounted to over 3TB.

Model execution times varied widely (Table 4). Itis obvious that steady-state constant density
simulations are much faster than transient simulations incorporating glacial climate. Steady-
state (constant density) flow execution time is negligible, while steady-state flow transport
execution time is at least a factor of twelve faster than for glacial climate (transient flow)
transport, and also requires much less effort to set up and post-process. Glacial climate and
erosion site-scale transport results show only minimal differences to constant climate results,
supporting the use of constant climate simulations for most Post-Closure Safety Assessment
purposes.

The Glacial Sub-Regional Flow model included all eight glacial cycles within a single simulation.
This approach exposed inefficiencies in the implementation of variable head boundary
conditions, permafrost, and loading rate specifications. The actual degree of inefficiency is
difficult to determine strictly from sensitivity results as changes in head response also affect the
matrix solution time. Tests were conducted on a synthetic case with minimal transient effects
(i.e., constant head, zero loading, well operation only) where the time required to execute the
final glacial cycle was a factor of 13 greater than required for the first glacial cycle. In an
efficient implementation they should be of similar length. Comparison of the Glaciation and
Erosion Sub-Regional flow model timings also illustrates this point. The Erosion models are on
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average a factor of 3 faster (2.4 versus 7.4 days), in spite of being four times the size. This is
due to the smaller time series required for the shorter duration subdivided time periods in the
Erosion model.

Variable density flow and transport calculations in FRAC3DVS-OPG are extremely time
consuming and result in no significant difference in flow system results for the 5CS geosphere.

A somewhat surprising result was the degree to which the 2D Sub Regional Flow models could
reproduce the essential features of the larger 3D model at much reduced execution times. This
result opens up the possibility of a full probabilistic assessment of 5CS geosphere performance
using 2D models and appropriate performance metrics.

The Repository MLE time series metrics described in Section 4.1.6 provide an easily
understood metric for system performance under glacial climate conditions. Currently, creation
of the time series requires multiple MLE model executions that can only be accomplished under
control of an execution framework. However, it would be a relatively simple enhancement to the
FRAC3DVS-OPG code to perform MLE calculations at specified times within a transient flow
simulation.

Some constant climate and variable climate transport model results (specifically early time mass
flux into the Guelph) were susceptible to early-time oscillations, which could only be ameliorated
by selecting very small time step sizes. The effect was of visual concern only as the oscillations
were eliminated within several glacial cycles. Transport results beyond the third glacial cycle
were virtually identical for 100a and 500a time steps. Adding a capability to modify maximum
time step size as a function of simulation time would be helpful in reducing the execution cost
associated with removing the oscillations.

All variable climate Site-Scale transport models showed extreme oscillations in well transport

calculations when conducted using the default centred-in-time time discretization. Applying
fully-implicit time discretization eliminated this error, with no other obvious impacts.

Table 4 - Model Execution Times

Model Case Execution Time
(days unless noted as
sec or min)
Glaciation Sub-Regional Flow - Constant Climate (Constant Density unless noted)
RC 30 sec
RC - Reference Well 32 sec
RC- Shaft Well 30 sec
KHigh 28 sec
KHigh100 30 sec
KHigh1000 31 sec
RC Variable Density (to 10 Ma) 118
Glaciation Sub-Regional Flow — Glacial Climate (Constant Density unless noted)
RC 7.4
RC-Reference Well 6.9
RC-Shaft 7.2
RC-Centre 6.0

RC-Reference Well-Variable Density 127.9 (to 650 ka)
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Model Case Execution Time
(days unless noted as
sec or min)
DPF 4.3
HUnder 7.0
HOver 9.5
KHigh 7.7
KHigh100 7.5
KHigh1000 10.2
LEHigh 6.5
LELow 7.5
Load Only 6.7
NoLoad 1.0
NoPF 3.5
SHigh 4.8
SurfaceBC 6.8

2D Glaciation Sub-Regional Flow — Glacial Climate

FRAC3DVS-OPG 31 min
T2GGM - fully water saturated 16 min
T2GGM -10% Gas 0.41
T2GGM -5% Gas 0.39
T2GGM -1% Gas 0.63

Site Scale Transport — Constant Climate (to 1 Ma)

RC - Reference Well 0.77
RC - Shaft Well 0.90
RC — Centre Well 0.90

Site Scale Transport — Glacial Climate (500 a maximum time step unless noted)

RC — Reference Well 12

RC — Reference Well — 100 a maximum time step 43.2
RC - Shaft Well 13.1
RC - Shaft Well — 100 a maximum time step 42.1
RC - Centre Well — 1000 a maximum time step 5.0
High Dispersivity 12

High Dispersivity — 100 a maximum time step 48.4
High Diffusion 10.3
KHigh 13.1
ShaftFail 134

Erosion Sub-Regional Flow — Glacial Climate — Constant Density

Uniform Erosion — Reference Well 2.4
Uniform Erosion — Shaft Well 2.6
Valley Erosion — Reference Well 2.5
Valley Erosion — Shaft Well 2.6
Erosion Site Scale Transport
Uniform Erosion — Reference Well 27.8
Uniform Erosion — Shaft Well 28.3
Valley Erosion — Reference Well 25.8

Valley Erosion — Shaft Well 25.7
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APPENDIX A: MODEL PARAMETERS

All model parameters are consistent with those reported in NWMO, 2013, Adaptive Phased
Management Postclosure Safety Assessment of a Used Fuel Repository in Sedimentary Rock
Pre-Project Report, NWMO TR-2013-07, Toronto, Canada.

Table A-1: Formation Flow Parameters

OO I e e e
(m/s) (m/s) - (m™) (kg/m?)
Drift 1.0E-07 | 5.0E-08 0.200 1.0E-04 0.99 2000
Detroit R 6.0E-07 | 2.0E-08 0.077 1.0E-06 0.84 2620
Bois Blanc 1.0E-07 | 1.0E-08 0.077 1.0E-06 0.84 2620
Bass Islands 5.0E-05 | 2.0E-06 0.056 2.0E-06 0.92 2710
Unit G 1.0E-11 | 1.0E-12 0.172 1.0E-06 0.55 2320
Unit F 5.0E-14 | 5.0E-15 0.100 1.0E-06 0.68 2380
Unit E 2.0E-13 | 2.0E-14 0.100 7.0E-07 0.51 2490
Unit D 2.0E-13 | 2.0E-14 0.089 6.0E-07 0.53 2730
Unit B and C 4.0E-13 | 4.0E-14 0.165 1.0E-06 0.38 2280
B Anhydrite 3.0E-13 | 3.0E-14 0.089 7.0E-07 0.53 2730
Unit A-2 Carbonate 3.0E-10 | 3.0E-11 0.120 7.0E-07 0.46 2420
Unit A-2 Evaporite 3.0E-13 | 3.0E-14 0.089 6.0E-07 0.53 2870
Unit A-1 Upper Carbonate 2.0E-07 | 2.0E-07 0.070 5.0E-07 0.59 2740
Unit A-1 Carbonate 9.0E-12 | 9.0E-13 0.019 4.0E-07 0.84 2600
Unit A-1 Evaporite 3.0E-13 | 3.0E-14 0.007 4.0E-07 0.94 2870
Unit AO 3.0E-13 | 3.0E-14 0.032 5.0E-07 0.76 2710
Guelph 3.0E-08 | 3.0E-08 0.057 4.0E-07 0.47 2580
Fossil Hill 5.0E-12 | 5.0E-13 0.031 3.0E-07 0.62 2720
Cabot Head 9.0E-14 | 9.0E-15 0.116 1.0E-06 0.60 2520
Manitoulin 9.0E-14 | 9.0E-15 0.028 8.0E-07 0.86 2650
Queenston 2.0E-14 | 2.0E-15 0.073 9.0E-07 0.71 2570
Georgian Bay / Blue Mountain 4.0E-14 | 3.1E-15 0.070 1.0E-06 0.79 2580
Cobourg 2.0E-14 | 2.0E-15 0.015 3.0E-07 0.80 2660
Sherman Fall 1.0E-14 | 1.0E-15 0.016 5.0E-07 0.88 2660
Kirkfield 8.0E-15 | 8.0E-16 0.021 5.0E-07 0.85 2630
Cobokonk 4.0E-12 | 4.0E-15 0.009 5.0E-07 0.93 2670
GullRiver 7.0E-13 | 7.0E-16 0.022 5.0E-07 0.85 2670
Shadow Lake 1.0E-09 | 1.0E-12 0.097 7.0E-07 0.56 2580
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Table A-2: Formation Transport Parameters

Sub-RegiQnaI Resglijgr-nal Site'-Sca_lIe Site-Scale

Longitudinal Longitudinal | Transverse
Formation Dispersivity T.ransve'rge Dispersivity | Dispersivity Dev Deh:Dev

(MLE D'S'(ﬁfé‘“ty (1-129 (1-129 (Nal)
calculation) calculation) transport) Transport)
(m) (m) (m) (m) (m?/s)

Drift 250 25 50 5 1.2E-09 1
Detroit R 250 25 50 5 1.0E-11 1
Bois Blanc 250 25 50 5 1.0E-11 1
Bass Islands 250 25 50 5 5.0E-12 1
Unit G 250 25 50 5 8.6E-13 2
Unit F 250 25 50 5 8.2E-12 2
Unit E 250 25 50 5 9.4E-12 2
Unit D 250 25 50 5 9.4E-12 2
Unit B and C 250 25 50 5 2.3E-11 2
B Anhydrite 250 25 50 5 1.5E-13 2
Unit A-2 Carbonate 250 25 50 5 2.4E-12 2
Unit A-2 Evaporite 250 25 50 5 1.5E-13 2
gg'rtb/g;]ttlépper 250 25 50 5 1.4E-11 1
Unit A-1 Carbonate 250 25 50 5 3.6E-13 2
Unit A-1 Evaporite 250 25 50 5 6.0E-14 2
Unit AO 250 25 50 5 6.0E-14 2
Guelph 250 25 50 5 5.8E-11 1
Fossil Hill 250 25 50 5 8.6E-14 2
Cabot Head 250 25 50 5 6.2E-12 2
Manitoulin 250 25 50 5 3.0E-13 2
Queenston 250 25 50 5 2.0E-12 2
oeorgian Bay / Blue 250 25 50 5 16612 | 2
Cobourg 250 25 50 5 7.4E-13 2
Sherman Fall 250 25 50 5 44E-13 2
Kirkfield 250 25 50 5 8.4E-13 2
Cobokonk 250 25 50 5 5.4E-13 2
GullRiver 250 25 50 5 5.2E-13 2
Shadow Lake 250 25 50 5 2.6E-12 2
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Table A-3: Formation Variable Density Initial Conditions

Formation Fluiq Initial
Density TDS
(kg/m®) | (g/L)
Drift 1000 0
Detroit R 1001 1.4
Bois Blanc 1002 3.2
Bass Islands 1004 6
Unit G 1010 14.8
Unit F 1040 59.6
Unit E 1083 124
Unit D 1133 200
Unit Band C 1198 296.7
B Anhydrite 1214 321
Unit A-2 Carbonate 1091 136
Unit A-2 Evaporite 1030 45.6
Unit A-1 Upper Carbonate 1019 28.6
Unit A-1 Carbonate 1128 192
Unit A-1 Evaporite 1217 325
Unit AO 1240 360
Guelph 1247 370
Fossil Hill 1200 300
Cabot Head 1204 306
Manitoulin 1233 350
Queenston 1207 310
Georgian Bay / Blue Mountain 1200 299.4
Cobourg 1181 272
Sherman Fall 1180 270
Kirkfield 1156 234
Cobokonk 1170 255
GullRiver 1135 203
Shadow Lake 1133 200
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Table A-4: Formation Two-Phase Flow Parameters

Formation Sir Sgr 1/a. n m
(MPa)

Drift 0.000 | 0.100 0.117 3.87 0.818
Detroit R 0.000 | 0.100 0.115 3.87 0.818
Bois Blanc 0.000 | 0.100 0.163 3.87 0.818
Bass Islands 0.000 | 0.100 0.010 3.87 0.818
Unit G 0.000 | 0.100 24.3 3.87 0.818
Unit F 0.000 | 0.100 24.3 3.87 0.818
Unit E 0.010 | 0.150 0.588 4.31 0.046
Unit D 0.010 | 0.150 0.588 4.31 0.046
Unit B and C 0.550 | 0.000 0.310 4,22 0.350
B Anhydrite 0.010 | 0.100 2.06 2.28 0.990
Unit A-2 Carbonate 0.000 | 0.000 0.758 3.06 0.500
Unit A-2 Evaporite 0.010 | 0.100 2.06 2.28 0.990
Unit A-1 Upper Carbonate 0.000 | 0.000 38.9 241 0.990
Unit A-1 Carbonate 0.000 | 0.000 38.9 2.41 0.990
Unit A-1 Evaporite 0.010 | 0.100 2.06 2.28 0.990
Unit AO 0.010 | 0.100 2.06 2.28 0.990
Guelph 0.248 | 0.000 0.037 4.89 0.145
Fossil Hill 0.025 | 0.000 27.9 6.11 0.684
Cabot Head 0.000 | 0.050 14.6 6.82 0.243
Manitoulin 0.106 | 0.050 40.8 3.65 1.305
Queenston 0.086 | 0.056 35.6 4.45 1.133
Georgian Bay / Blue Mountain 0.166 | 0.037 30.1 3.82 1.096
Cobourg 0.060 | 0.025 61.7 3.13 1.689
Sherman Fall 0.170 | 0.110 28.2 2.33 0.999
Kirkfield 0.000 | 0.150 173 2.17 7.220
Cobokonk 0.000 | 0.025 66.2 1.82 1.732
GullRiver 0.210 | 0.110 40.0 4.06 0.775
Shadow Lake 0.040 | 0.000 0.227 1.20 0.583
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Table A-5: Shaft and EBS Flow Parameters

cDzreBs D o | [rorosy [ et [ foadhe T OB

(m/s) (m/s) - (m™) (kg/m?3)
BAnhydSI 3.0E-12 | 3.0E-12 0.178 7.0E-07 0.53 2730
A2CarbSI 3.0E-09 | 3.0E-09 0.240 7.0E-07 0.46 2420
A2EvapSiI 3.0E-12 | 3.0E-12 0.178 6.0E-07 0.53 2870
AlUCarbsSI 2.0E-05 | 2.0E-05 0.140 5.0E-07 0.59 2740
AlCarbsSlI 9.0E-11 | 9.0E-11 0.038 4.0E-07 0.84 2600
AlEvapSlI 3.0E-12 | 3.0E-12 0.014 4.0E-07 0.94 2870
A0SI 3.0E-12 | 3.0E-12 0.064 5.0E-07 0.76 2710
GuelphsSli 3.0E-06 | 3.0E-06 0.114 4.0E-07 0.47 2580
FossilHillSI 5.0E-11 | 5.0E-11 0.062 3.0E-07 0.62 2720
CabotHeadSlI 9.0E-13 | 9.0E-13 0.232 1.0E-06 0.60 2520
ManitoulinSlI 9.0E-13 | 9.0E-13 0.056 8.0E-07 0.86 2650
QueenstonSl 2.0E-13 | 2.0E-13 0.146 9.0E-07 0.71 2570
GBBMSI 3.1E-13 | 3.1E-13 0.140 1.0E-06 0.79 2580
CobourgSl 2.0E-13 | 2.0E-13 0.030 3.0E-07 0.80 2660
ShermanFallSlI 1.0E-13 | 1.0E-13 0.032 5.0E-07 0.88 2660
KirkfieldSl 8.0E-14 | 8.0E-14 0.042 5.0E-07 0.85 2630
CobokonksSl 4.0E-13 | 4.0E-13 0.018 5.0E-07 0.93 2670
BAnhydSO 3.0E-13 | 3.0E-13 0.089 7.0E-07 0.53 2730
A2CarbSO 3.0E-10 | 3.0E-10 0.120 7.0E-07 0.46 2420
A2EvapSO 3.0E-13 | 3.0E-13 0.089 6.0E-07 0.53 2870
AlUCarbSO 2.0E-06 | 2.0E-06 0.070 5.0E-07 0.59 2740
AlCarbSO 9.0E-12 | 9.0E-12 0.019 4.0E-07 0.84 2600
AlEvapSO 3.0E-13 | 3.0E-13 0.007 4.0E-07 0.94 2870
A0SO 3.0E-13 | 3.0E-13 0.032 5.0E-07 0.76 2710
GuelphSO 3.0E-07 | 3.0E-07 0.057 4.0E-07 0.47 2580
FossilHillSO 5.0E-12 | 5.0E-12 0.031 3.0E-07 0.62 2720
CabotHeadSO 9.0E-14 | 9.0E-14 0.116 1.0E-06 0.60 2520
ManitoulinSO 9.0E-14 | 9.0E-14 0.028 8.0E-07 0.86 2650
QueenstonSO 2.0E-14 | 2.0E-14 0.073 9.0E-07 0.71 2570
GBBMSO 3.1E-14 | 3.1E-14 0.070 1.0E-06 0.79 2580
CobourgSO 2.0E-14 | 2.0E-14 0.015 3.0E-07 0.80 2660
ShermanFallSO 1.0E-14 | 1.0E-14 0.016 5.0E-07 0.88 2660
KirkfieldSO 8.0E-15 | 8.0E-15 0.021 5.0E-07 0.85 2630
CobokonkSO 4.0E-14 | 4.0E-14 0.009 5.0E-07 0.93 2670
PlacementEDZ 1.3E-11 | 1.3E-11 0.030 3.0E-07 0.80 2660
RoomEntryEDZ 2.3E-11 | 2.3E-11 0.030 3.0E-07 0.80 2660
CrossCuteEDZ 15E-11 | 1.5E-11 0.030 3.0E-07 0.80 2660
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=De/cas o o | [ orosiy | Goote [ Leadne T2,
(m/s) (m/s) - (m™) (kg/m?3)
PerimiterEDZ 1.7E-11 | 1.7E-11 0.030 3.0E-07 0.80 2660
MainAccessEDZ 2.1E-11 | 2.1E-11 0.030 3.0E-07 0.80 2660
RoomEntrySealEDZ 1.7E-11 | 1.7E-11 0.030 3.0E-07 0.80 2660
CrossCutSealEDZ 1.1E-11 | 1.1E-11 0.030 3.0E-07 0.80 2660
PerimeterSealEDZ 1.2E-11 | 1.2E-11 0.030 3.0E-07 0.80 2660
MainAccessSealEDZ 1.4E-11 | 1.4E-11 0.030 3.0E-07 0.80 2660
Placement Tunnel Seal Material 2.1E-12 | 2.1E-12 0.481 1.0E-10 0.00 1904
Highly Compacted Bentonite 6.6E-13 | 6.6E-13 0.413 1.0E-10 0.00 2023
:g’;';’e(;?smpa‘:ted Bentonitefor | g 5£ 13 | g2E-13 | 0413 | 1.0E-10 | 0.00 2002
Gap Fill 6.0E-12 | 6.0E-12 0.486 1.0E-10 0.00 1896
Shaft Seall 1.6E-11 | 1.6E-11 0.411 1.0E-11 0.00 2011
Dense Backfill blocks 1.0E-10 | 1.0E-10 0.194 1.0E-10 0.00 2314
CrossCut DBF 8.0E-11 | 1.0E-10 0.194 1.0E-10 0.00 2314
Concrete (LHHPC), degraded 1.0E-10 | 1.0E-10 0.100 1.1E-06 0.00 2491
Asphalt 1.0E-11 | 1.0E-11 0.020 3.5E-06 0.00 1960

Notes: Sl is short for Shaft Inner EDZ, SO is short for Shaft Outer EDZ
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Table A-6: Shaft and EBS Transport Parameters

EDZ/EBS ID LD‘?;‘g'etr“S?\'/?t?' g.rsgesrvse'f@ De, (Nal) | Den:De,
(m) (m) (m?/s)
BAnhydSI 50 5 1.5E-13 2
A2CarbSI 50 5 2.4E-12 2
A2EvapSiI 50 5 1.5E-13 2
AlUCarbsSI 50 5 1.4E-11 1
AlCarbsSlI 50 5 3.6E-13 2
AlEvapSlI 50 5 6.0E-14 2
A0SI 50 5 6.0E-14 2
GuelphsSli 50 5 5.8E-11 1
FossilHillSI 50 5 8.6E-14 2
CabotHeadSlI 50 5 6.2E-12 2
ManitoulinSlI 50 5 3.0E-13 2
QueenstonSl 50 5 2.0E-12 2
GBBMSI 50 5 1.6E-12 2
CobourgSl 50 5 7.4E-13 2
ShermanFallSI 50 5 4.4E-13 2
KirkfieldSI 50 5 8.4E-13 2
CobokonksSl 50 5 5.4E-13 2
BAnhydSO 50 5 1.5E-13 2
A2CarbSO 50 5 2.4E-12 2
A2EvapSO 50 5 1.5E-13 2
AlUCarbSO 50 5 1.4E-11 1
AlCarbSO 50 5 3.6E-13 2
AlEvapSO 50 5 6.0E-14 2
A0SO 50 5 6.0E-14 2
GuelphSO 50 5 5.8E-11 1
FossilHill[SO 50 5 8.6E-14 2
CabotHeadSO 50 5 6.2E-12 2
ManitoulinSO 50 5 3.0E-13 2
QueenstonSO 50 5 2.0E-12 2
GBBMSO 50 5 1.6E-12 2
CobourgSO 50 5 7.4E-13 2
ShermanFallSO 50 5 4.4E-13 2
KirkfieldSO 50 5 8.4E-13 2
CobokonkSO 50 5 5.4E-13 2
PlacementEDZ 50 5 7.4E-13 2
RoomEntryEDZ 50 5 7.4E-13 2
CrossCuteEDZ 50 5 7.4E-13 2
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EDZ/EBS ID LD‘?;‘g'etr“S?\'/?t?' g.rsgesrvse'f@ De, (Nal) | Den:De,
(m) (m) (m?/s)
PerimiterEDZ 50 5 7.4E-13 2
MainAccesseEDZ 50 5 7.4E-13 2
RoomEntrySealEDZ 50 5 7.4E-13 2
CrossCutSealEDZ 50 5 7.4E-13 2
PerimeterSealEDZ 50 5 7.4E-13 2
MainAccessSealEDZ 50 5 7.4E-13 2
Placement Tunnel Seal Material 50 5 4.1E-10 1
Highly Compacted Bentonite 50 5 3.0E-10 1
SHéng\SIy Compacted Bentonite for EDZ 50 5 3.0E-10 1
Gap Fill 50 5 3.0E-10 1
Shaft Seal 50 5 3.0E-10 1
Dense Backfill blocks 50 5 2.0E-09 1
CrossCut DBF 50 5 2.0E-09 1
Concrete (LHHPC), degraded 50 5 1.3E-10 1
Asphalt 50 5 1.0E-13 1

Notes: Sl is short for Shaft Inner EDZ, SO is short for Shaft Outer EDZ



