

Equation Chapter 1 Section 1

Danyang Su1, K. Ulrich Mayer1 and Kerry T. B. MacQuarrie2
1Department of Earth, Ocean and Atmospheric Sciences, University of British
Columbia
2Department of Civil Engineering, University of New Brunswick

Parallelization of the Reactive Transport
Code MIN3P-THCm

NWMO-TR-2015-23 October 2015

Nuclear Waste Management Organization
22 St. Clair Avenue East, 6th Floor
Toronto, Ontario
M4T 2S3
Canada

Tel: 416-934-9814
Web: www.nwmo.ca

i

This report has been prepared under contract to NWMO. The report has been reviewed by NWMO,
but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO.

All copyright and intellectual property rights belong to NWMO.

Parallelization of the Reactive Transport Code
MIN3P-THCm

NWMO-TR-2015-23

October 2015

Danyang Su1, K. Ulrich Mayer1, Kerry T. B. MacQuarrie2

1Department of Earth, Ocean and Atmospheric Sciences,
University of British Columbia
2Department of Civil Engineering, University of New
Brunswick

ii

Document History

Title: Parallelization of the Reactive Transport Code MIN3P-THCm

Report Number: NWMO-TR-2015-23

Revision: R000 Date: October 2015

1Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia
2Department of Civil Engineering, University of New Brunswick

Authored by: Danyang Su1

Verified by: Kerry T.B. MacQuarrie2

Approved by: K. Ulrich Mayer1

Nuclear Waste Management Organization

Reviewed by: Tammy Yang

Accepted by: Mark Jensen

iii

ABSTRACT

Title: Parallelization of the Reactive Transport Code MIN3P-THCm
Report No.: NWMO-TR-2015-23
Author(s): Danyang Su1, K. Ulrich Mayer1 and Kerry T.B. MacQuarrie2
Company: 1Department of Earth, Ocean and Atmospheric Sciences, University of British

Columbia
2Department of Civil Engineering, University of New Brunswick

Date: October 2015

Abstract
Reactive transport modelling can be time consuming and memory-intensive, especially for
large-scale, long-term simulations with a large number of chemical components and
interactions. The objective of this research was to develop a parallel version of MIN3P-THCm, a
general purpose multicomponent reactive transport code for variably saturated porous media.
The resulting program, entitled ParMIN3P-THCm, is able to deal with the significant
computational burden of reactive transport simulations involving large spatial scales and long
time frames and can be run efficiently on machines ranging from desktop PCs, shared-memory
workstations, to distributed-memory supercomputers.

Parallelization of MIN3P-THCm (ParMIN3P-THCm) was achieved through the domain
decomposition method based on PETSc (Portable Extensible Toolkit for Scientific Computation)
libraries. PETSc is also used as the parallel solver package, and for data structure and
message communication. A hybrid MPI and OpenMP parallel programming approach is
implemented in the code to take advantage of leadership-class supercomputers that combine
both shared memory and distributed memory architectures. Features of the code include a
modular input file, parallel configuration file, and parallel I/O, with potential expansibility to
incorporate additional features in the near feature such as high-performance I/O using parallel
HDF5, as well as parallel multigrid and unstructured grid methods. ParMIN3P-THCm has been
developed from the ground up for parallel scalability and has been run using up to 768
processors with problem sizes up to 100 million unknowns. The code has demonstrated
excellent speedup for reactive transport simulation problems using 8 processors on a local
shared-memory workstation, 128 processors on the WestGrid supercomputer using MPI
parallelization and 768 processors on the WestGrid supercomputer using hybrid MPI-OpenMP
parallelization. The code has shown strong scalability in modelling large-scale reactive transport
problems.

iv

v

TABLE OF CONTENTS
Page

ABSTRACT ... iii

1. INTRODUCTION ... 1

1.1 PREVIOUS RESEARCH OF REACTIVE TRANSPORT CODE
PARALLELIZATION ... 2

1.2 PROJECT OBJECTIVE .. 3
1.3 REPORT ORGANIZATION ... 4

2. PARALLEL FRAMEWORK .. 4

2.1 CODE ARCHITECUTRE ... 4
2.1.1 Target System ... 5
2.1.2 Development Tools and Libraries .. 5
2.2 PARALLEL ARCHITECTURES .. 6
2.2.1 Shared-memory Multiprocessor Architecture .. 6
2.2.2 Distributed-memory Multiprocessor Architecture ... 6
2.2.3 Hybrid Distributed-shared-memory Multiprocessor Architecture 7
2.2.4 Parallel Levels ... 7
2.2.5 Parallel Levels in ParMIN3P-THCm .. 8
2.3 PARALLEL IMPLEMENTATION .. 8
2.3.1 Domain Decomposition ... 8
2.3.2 Computational Workflow.. 9
2.3.3 Shared-Memory Parallel Implementation .. 11
2.3.4 Distributed-Memory Parallel Implementation ... 13
2.3.5 Hybrid Parallel Implementation.. 15
2.4 PARALLEL MODULES .. 16
2.4.1 Global and Local Numbering ... 16
2.4.2 Parallel Matrix and Right Hand Side Assembly ... 18
2.4.3 Parallel Linear Solver .. 21
2.4.4 Parallel Input and Output ... 22
2.4.5 Summary of Parallel Modules.. 24

3. PARALLEL PERFORMANCE .. 24

3.1 RUNTIME PROFILING TOOL ... 24
3.2 COMPUTER ARCHITECTURE FOR PERFORMANCE TESTING 24
3.2.1 Shared-memory Architecture .. 24
3.2.2 Distributed-memory Architecture ... 25
3.2.3 Hybrid Distributed-shared-memory Architecture ... 25
3.3 CASES FOR PARALLEL PERFORMANCE TESTING 25
3.3.1 Case I: Complex cement/clay interactions .. 25
3.3.1.1 Case Introduction .. 25
3.3.1.2 Model Discretization .. 26
3.3.1.3 Sample Results ... 27
3.3.1.4 Runtime Profiling ... 27
3.3.2 Case II: Uranium Remediation by Lactate Injection .. 28
3.3.2.1 Case Introduction .. 28

vi

3.3.2.2 Model discretization ... 29
3.3.2.3 Sample Results ... 31
3.3.2.4 Runtime Profiling ... 31
3.3.3 Case III: Flow and Reactive Transport in a Hypothetical Sedimentary Basin 32
3.3.3.1 Case Introduction .. 32
3.3.3.2 Model Discretization .. 33
3.3.3.3 Sample Results ... 34
3.3.3.4 Runtime Profiling ... 35
3.4 SHARED-MEMORY PARALLEL PERFORMANCE ... 36
3.4.1 Case I: Complex Cement/Clay Interactions ... 36
3.4.1.1 Solver Statistics ... 36
3.4.1.2 Parallel Speedup ... 37
3.4.2 Case II: Uranium Remediation by Lactate Injection .. 37
3.4.2.1 Solver Statistics ... 37
3.4.2.2 Parallel Speedup ... 38
3.4.3 Case III: Flow and Reactive Transport in a Hypothetical Sedimentary Basin 39
3.4.3.1 Solver Statistics ... 39
3.4.3.2 Parallel Speedup ... 39
3.4.4 Summary of Shared-memory Parallel Performance .. 40
3.5 DISTRIBUTED-MEMORY PARALLEL PERFORMANCE 40
3.5.1 Case I: Complex Cement/clay Interactions ... 41
3.5.1.1 Solver Statistics ... 41
3.5.1.2 Parallel Speedup ... 41
3.5.2 Case II: Uranium Remediation by Lactate Injection .. 42
3.5.2.1 Solver Statistics ... 42
3.5.2.2 Parallel Speedup ... 43
3.5.3 Case III: Flow and Reactive Transport in a Hypothetical Sedimentary Basin 43
3.5.3.1 Solver Statistics ... 43
3.5.3.2 Parallel Speedup ... 44
3.5.4 Summary of Distributed-Memory Parallel Performance 45
3.6 HYBRID PARALLEL PERFORMANCE ... 45
3.6.1 Case I: Complex Cement/Clay Interactions ... 45
3.6.1.1 Solver Statistics ... 45
3.6.1.2 Parallel Speedup ... 46
3.6.2 Case II: Uranium remediation by lactate injection ... 48
3.6.2.1 Solver Statistics ... 48
3.6.2.2 Parallel Speedup ... 49
3.6.3 Case III: Flow and reactive transport in a hypothetical sedimentary basin 51
3.6.3.1 Solver Statistics ... 51
3.6.3.2 Parallel Speedup ... 51
3.6.4 Summary of Hybrid Distributed-Shared-Memory Parallel Performance 53
3.7 SYSTEM SCALABILITY ... 53

4. SUMMARY AND CONCLUSIONS .. 56

ACKNOWLEDGEMENTS .. 58

REFERENCES ... 59

vii

LIST OF TABLES
Page

Table 1: Linear Solvers in PETSc .. 22
Table 2: Parallel Modules Included in ParMIN3P-THCm ... 24
Table 3: Numerical Parameters Used in Case I ... 26
Table 4: Runtime Percentage Distribution for Case I ... 28
Table 5 Numerical Parameters Used in Case II .. 30
Table 6: Runtime Percentage Distribution for Case II .. 32
Table 7: Numerical Parameters Used in Case III ... 34
Table 8: Runtime Percentage Distribution for Case III ... 36
Table 9: Solver and Runtime Statistics of Shared-memory Parallelization for Case I* 36
Table 10: Solver and Runtime Statistics of Shared-memory Parallelization for Case II* 38
Table 11: Solver and Runtime Statistics of Shared-memory Parallelization for Case III* 39
Table 12: Solver and Runtime Statistics of Distributed-memory Parallelization for Case I* 41
Table 13: Solver and Runtime Statistics of Distributed-memory Parallelization for Case II* 42
Table 14: Solver and Runtime Statistics of Distributed-memory Parallelization for Case III* 44
Table 15: Solver and Runtime Statistics for Hybrid Parallelization for Case I* 46
Table 16: Solver and Runtime Statistics for Hybrid Parallelization for Case II 48
Table 17: Solver and Runtime Statistics for Hybrid Parallelization for Case III 51

LIST OF FIGURES

Page

Figure 1: Shared-memory Multiprocessor Architecture .. 6
Figure 2: Distributed-memory Multiprocessor Architecture ... 7
Figure 3: Hybrid distributed-shared-memory Multiprocessor Architecture 7
Figure 4: Domain Decomposition and Subdomain Representation .. 9
Figure 5: Computational Workflow Implemented in ParMIN3P-THCm 10
Figure 6: Diagram of Domain Decomposition for Shared-memory Parallel Implementation.
 (a) Domain Decomposition with Chunk Number 4 for 4 Threads, (b) Domain

Decomposition with Chunk Number 8 for 4 Threads ... 11
Figure 7: Diagram of Basic OpenMP Pseudo Code as Implemented in ParMIN3P-THCm 12
Figure 8: Flow Control for a PETSc Application (Balay et al. 1997, 2014a, 2014b) 13
Figure 9: Diagram of Domain Decomposition for Distributed-memory Parallel
 Implementation. (a) Domain Decomposition with Stencil Width Equals 1 for 4

Processors, (b) Domain Decomposition with Stencil Width Equals 2 for 4
Processors ... 14

Figure 10: Diagram of Domain Decomposition for Hybrid Parallel Implementation.
 (a) Domain Decomposition with Stencil Width 1 for 4 Processors and 8 Threads,
 (b) Domain Decomposition with Stencil Width 2 for 4 Processors and 8 Threads ... 16
Figure 11: Domain Decomposition and Node Numbering in ParMIN3P-THCm 17
Figure 12: Sample Code of Domain Decomposition and Mapping ... 18
Figure 13: Matrix and Right Hand Side Assembly of a Subdomain .. 19
Figure 14: Matrix and Right Hand Side Assembly of Subdomain ... 20
Figure 15: Sample Code for Jacobi Matrix Assembly ... 20
Figure 16: Sample Code for PARDISO Solver ... 21
Figure 17: Sample Code for PETSc Solver .. 22

viii

Figure 18: Parallel Output of Non-contiguous Data .. 23
Figure 19: Three Level Parallel Input and Output ... 23
Figure 20: Sample Code of Data Write Using Collective and Contiguous I/O 23
Figure 21: Model Domain for Case I, Discretized into a Heterogeneous Mesh with a
 Refined Spatial Resolution of 0.05 m at the Concrete/Clay Interface (from
 Marty et al. 2015) ... 26
Figure 22: Mineralogical Alterations and pH Changes after 10000 Years of Concrete/Clay

Interactions (from Marty et al. 2015). The Concrete-Claystone Interface Is
 Located at a Distance of 3.0 M .. 27
Figure 23: Simplified Conceptual Model Illustrating the Biotic and Abiotic Reaction
 Network of Case II (from Şengör et al. 2015) .. 29
Figure 24: Model Grid and Boundary Conditions for Case II (from Şengör et al. 2015) 30
Figure 25: Concentration Distributions for Selected Aqueous Components, Minerals and

Biomass at 60 Days for Case II ... 31
Figure 26: Location and Main Geological Features for the Intracratonic Sedimentary
 Basins in North America (Illinois Michigan and Appalachian Basins, Taken
 from McIntosh and Walter 2005) .. 32
Figure 27: Geometry and Main Hydrogeological Units Considered for Case III
 (Bea et al. 2010) .. 33
Figure 28: Distribution of Total Ca Concentration at Different Output Times for Case III 35
Figure 29: Speedup of OpenMP Parallel Version for Case I, Executed on a
 Shared-memory Workstation ... 37
Figure 30: Speedup of OpenMP Parallel Version for Case II, Executed on a

 Shared-memory Workstation ... 38
Figure 31: Speedup of OpenMP Parallel Version for Case III, Executed on a
 Shared-memory Workstation ... 40
Figure 32: Speedup of MPI Parallel Version for Case I, Executed on the WestGrid

 Orcinus Cluster ... 42
Figure 33: Speedup of MPI Parallel Version for Case II, Executed on the WestGrid
 Orcinus Cluster .. 43
Figure 34: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid
 Orcinus Cluster .. 44
Figure 35: Speedup of Hybrid Parallel Version for Case I, Executed on the WestGrid
 Jasper Cluster .. 47
Figure 36: Speedup of MPI Parallel Version for Case I, Executed on the WestGrid Jasper

Cluster ... 47
Figure 37: Comparison of Total Speedup of Hybrid Parallel Version and MPI Parallel
 Version for Case I, Executed on the WestGrid Jasper Cluster 48
Figure 38: Speedup of Hybrid Parallel Version for Case II, Executed on the WestGrid
 Jasper Cluster .. 49
Figure 39: Speedup of MPI Parallel Version for Case II, Executed on the WestGrid Jasper

Cluster ... 50
Figure 40: Comparison of Total Speedup of the Hybrid Parallel Version and the MPI
 Parallel Version for Case II, Executed on the WestGrid Jasper Cluster 50
Figure 41: Speedup of Hybrid Parallel Version for Case III, Executed on WestGrid Jasper
 Cluster .. 51
Figure 42: Speedup of the MPI Parallel Version for Case III, Executed on the WestGrid
 Jasper Cluster .. 52
Figure 43: Comparison of Total Speedup between the Hybrid Parallel Version and the
 MPI Parallel Version for Case III, Executed on the WestGrid Jasper Cluster 53

ix

Figure 44: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid
 Jasper Cluster, Total Degrees of Freedom is 405,000 .. 54
Figure 45: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid Jasper
 Cluster, Total Degrees of Freedom is 6,480,000 ... 55
Figure 46: Speedup of MPI Parallel Version for Case III, Executed on WestGrid Jasper
 Cluster, Total Degrees of Freedom is 25,920,000 ... 55
Figure 47: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid Jasper
 Cluster, Total Degrees of Freedom is 103,680,000 ... 56

x

1

1. INTRODUCTION

This technical report is part of the NWMO project GS60 “Development and application of
reactive transport models for assessing the long-term geochemical stability of geological
formations”. The main goal of this project was to develop a parallel version of MIN3P-THCm
(Mayer et al. 2002; Mayer and MacQuarrie 2010), named ParMIN3P-THCm. The supported
operating systems include, but are not limited to, Windows, Mac and Linux/Unix.

MIN3P-THCm is a general purpose multicomponent reactive transport code that is designed to
simulate coupled hydrogeological, thermal, and biogeochemical processes in the subsurface.
The code solves Richards’ equation for 3D saturated/unsaturated subsurface flows; for reactive
mass transport, the code uses the direct substitution approach (DSA) and employs the global
implicit method (GIM) for solution of the multicomponent advection-dispersion equations and the
geochemical reactions. Spatial discretization is performed based on the finite volume method
and allows conducting simulations in one, two, and three spatial dimensions. Features of the
code include 3D saturated/unsaturated fluid flow, biogeochemical reactions, heat transport,
reactive transport and 1D hydromechanical coupling. The code has been developed over the
past 15 years and has steadily grown in capabilities and complexity. The code has been used at
the University of British Columbia and numerous other institutions worldwide.

Multicomponent reactive transport modelling has become a powerful tool in earth and
environmental sciences; however, more widespread use is continuously challenged by high
computational demands. The numerical methods implemented in MIN3P-THCm include the
global implicit approach with adaptive time-stepping, efficient ILU preconditioning with BICGS
acceleration and an efficient Newton-Raphson linearization. Even though MIN3P-THCm
employs robust numerical methods, it still cannot meet the requirement for large-scale long-term
simulations with numerous chemical components and interactions. With increased complexity
and simulation scale, reactive transport modelling can be very time consuming and memory
intensive, which greatly hinders the application of reactive transport models. For example, the
simulation of geochemical conditions in deep sedimentary basins that might be considered for
nuclear waste repositories may involve spatial scales of 100’s of kilometres and time scales of
1000’s of years, and is computationally intensive, even if restricted to two spatial dimensions.
The computational time for such problems often exceeds a week or more when using a single
processor workstation, which significantly hampers the progress and analysis capabilities.

With the rapid development of computing technology and numerical algorithms, approaches that
make use of high performance computing (HPC) have become more popular in many fields,
including reactive transport modelling. The objective of this work was to develop a cutting-edge
reactive transport code that can run efficiently on machines ranging from desktop PCs, shared-
memory workstations, to distributed-memory supercomputers. The resulting program is able to
deal with the significant computational burden of far-field simulations involving large spatial
scales and long time frames.

Parallelization of MIN3P-THCm (i.e. ParMIN3P-THCm) was achieved by using the domain
decomposition method using PETSc (Balay et al. 1997; Balay et al. 2014a; Balay et al. 2014b),
a Portable Extensible Toolkit for Scientific Computation. PETSc is also used to manage the
parallel solvers, data structures and message communications. A hybrid MPI and OpenMP
parallel programming approach was implemented in the code to take advantage of leadership-
class supercomputers that combine both shared memory and distributed memory architectures.

2

ParMIN3P-THCm has been developed from the ground up for parallel scalability and has been
run on up to 768 processors with problem sizes up to 100 million unknowns.

1.1 PREVIOUS RESEARCH OF REACTIVE TRANSPORT CODE PARALLELIZATION

Over the past few decades, subsurface flow and reactive transport models have become
essential tools in earth and environmental sciences. These models help researchers to gain a
better understanding of the physical, chemical and biological processes that affect geochemical
stability, contaminant transport and remediation. Several state-of-the-art reactive transport
models have been developed in the past few decades to assess and quantify contaminant
migration affected by a suite of biogeochemical reactions in subsurface media. These models
are widely used in waste disposal, groundwater remediation and carbon sequestration. Such
models include CORE2DV4 (Samper et al. 2012), CRUNCHFLOW (Steefel 2009), eSTOMP
(White and Oostrom 2006), HYDROGEOCHEM (Yeh and Tripathi 1990; Yeh et al. 2012),
HYTEC (van der Lee et al. 2003), HPx (Simunek et al. 2012), IPARS (Wheeler et al. 2012),
OpenGeoSys (Kolditz et al. 2012), ORCHESTRA (Meeussen 2003), PFLOTRAN (Hammond et
al. 2012), PHREEQC3 (Parkhurst and Appelo 2013), iPHREEQC3 (Charlton and Parkhurst
2011), PHT3D (Prommer and Post 2010), RT3D (Clement and Johnson 2012), TOUGHREACT
(Xu et al. 2012), NUFT (Hao et al. 2012), and MIN3P (Mayer et al. 2002).

Advances in computer technology and numerical algorithms have led to remarkable increases in
the spatiotemporal scales and process complexity that can be represented in simulations. The
most widely used method is to transition sequential numerical models to parallel numerical
models that can use multiprocessor structures, large memory and storage to increase the
simulation scale, while reducing runtime. To the authors’ knowledge, only some of the
abovementioned reactive transport codes have been parallelized or partially parallelized,
including CRUNCHFLOW, HYTEC, iPHREEQC, NUFT, OpenGeoSys, ORCHESTRA,
PFLOTRAN, PHT3D, eSTOMP and TOUGHREACT.

The parallel version of CRUNCHFLOW is called CHOMBO-CRUNCH, which was developed
based on the open-source adaptive mesh refinement (AMR) software framework CHOMBO
(Adams et al. 2014). The code is designed to perform simulations of reactive transport in
complex micro-scale geometries. The approach has been tested using 48K processors with up
to 1 billion grid points. Another parallel version of CRUNCHFLOW is ParCrunchFlow (Beisman
et al. 2015), which was created by coupling CRUNCHFLOW with a parallel hydrologic model
PARFLOW (Kollet and Maxwell 2006). HYTEC (Lagneau and Lee 2010) has been parallelized
to run on massively parallelized supercomputers by launching hydrodynamics and chemistry on
different processors. The solution of chemical reactions at the computational grid cells can be
distributed to an arbitrary number of processors. iPHREEQC3 (Charlton and Parkhurst 2011)
uses the domain decomposition parallelization method with nodes/cells predefined for each
processor. The parallel implementation of NUFT (Hao et al. 2012) is intended for a distributed
memory parallel system, and the inter-processor communication and data exchange are
achieved with MPI. PETSc is employed to solve the large sets of linear equations obtained from
the Newton-Raphson linearization. OpenGeoSys (Kolditz et al. 2012) is based on an object-
oriented concept, but the parallelization of the code still lacks efficiency and is the subject of
future research. ORCHESTRA (Meeussen 2003) was coded in Java and was parallelized
through Java threads to make use of multiprocessor hardware. PHT3D (Prommer and Post
2010) is an MPI-based parallel reactive transport model and the parallel version is currently
being tested. PFLOTRAN (Hammond et al. 2012) is an open source, state-of-the-art massively
parallel subsurface flow and reactive transport code. The code is designed to run on massively
parallel computing architectures as well as workstations and laptops. Parallelization was

3

achieved through domain decomposition using the PETSc software. PFLOTRAN has been
developed from the ground up for parallel scalability and has been run on up to 218 (>260,000)
processors with problem sizes up to 2 billion degrees of freedom. eSTOMP (White and Oostrom
2006) is a highly scalable version of the STOMP code for subsurface characterization and
modelling, allowing for high resolution of the model parameters and processes. It was built using
the GA Toolkit (Nieplocha et al. 2006) and PETSc and has been run on up to 217(>130,000)
processors. TOUGHREACT (Xu et al. 2012) was developed using a hybrid MPI-OpenMP
parallelization of the reactive transport routines. Recently, a new parallel version of
TOUGHREACT, THC-MP (Wei et al. 2015), was developed using the domain decomposition
method and has been applied using up to 120 processors.

Generally, there are two types of parallel architectures, the shared-memory architecture and the
distributed-memory architecture. Parallelization on the shared-memory architecture is straight-
forward while parallelization on the distributed-memory architecture is more difficult to achieve.
The advantage of shared-memory parallelization is that it has better load balancing and less
overhead as it does not include explicit communication, while for the distributed-memory
parallelization the advantage is that it can distribute the workload over different machines,
making it more scalable for large supercomputers. Shared-memory parallelization is preferable
for small scale simulations while distributed-memory parallelization is preferable for large scale
simulations.

Modern supercomputers are usually built with a hybrid distributed-shared memory architecture.
That is to say, every computing node is a shared-memory system. To take advantage of this
hybrid computer architecture, recently developed parallel codes also consider hybrid parallel
implementation.

1.2 PROJECT OBJECTIVE

The main objective of this research was to develop a parallel version of MIN3P-THCm
(ParMIN3P-THCm) that can be executed on desktop PCs, shared-memory workstations and
distributed-memory supercomputers. The resulting program aims at dealing with the significant
computational burden of simulations involving large spatial scales and long time frames.

During the development of ParMIN3P-THCm, the following tasks were undertaken:

 Identify computational “hot spots” within MIN3P-THCm including the analysis of
computational bottlenecks to determine parallelization strategies and priorities.

 Design a coherent parallel framework that can work on desktop PCs, workstations, PC
clusters and supercomputers for Windows, Unix/Linux and Mac operating systems.

 Develop a shared-memory parallel version of MIN3P-THCm using OpenMP
multithreading techniques for shared-memory architecture computers.

 Develop a distributed-memory parallel version of MIN3P-THCm using MPI and PETSc
for distributed-memory architecture computers.

 Develop a hybrid distributed-shared-memory parallel version of MIN3P-THCm using
OpenMP, MPI and PETSc for supercomputers with hybrid distributed-shared-memory
architecture.

 Test the parallel performance of ParMIN3P-THCm on computers with different
architectures for the three parallel versions of MIN3P-THCm.

 Perform real-world simulations with higher resolution discretization on supercomputers.

4

1.3 REPORT ORGANIZATION

Chapter 2 of this report describes the ParMIN3P-THCm parallelization framework including
code architecture, the theory behind the parallelization method, parallel implementation, and a
description of the parallel modules; Chapter 3 describes and analyzes the parallel performance
for a series of test examples for varying degrees of freedom which were executed on different
computer platforms; and Chapter 4 presents concluding remarks.

2. PARALLEL FRAMEWORK

Over the history of computing hardware development, the number of transistors in a dense
integrated circuit has doubled every 18 months, as described by Moore’s law1. However, the
speed of the processors has not improved much after the year 2000. Instead, the number of
processors per chip has increased significantly. With the rapid development of multi-processor
multi-core computing technology, even personal computers are now equipped with multiple
cores and multi-thread processors. If only one processor can be used for a numerical simulation
task, then multi-threaded computer hardware cannot help to increase computing efficiency
because the computing time for a single processor mainly depends on the processor’s speed.
For parallel code development, the main challenge is to take advantage of all available
processors and memory, independent of the computer architecture used.

Today’s high-end computers are characterized by complex architectures for both the individual
processors and the entire system. Achieving good performance on these systems can be quite
difficult. In-depth knowledge of programming techniques and numerical algorithms are the key
factors in high performance computing (HPC) code development. It is not realistic for a small
development team to develop tools or methodologies that allow gaining optimal parallel
performance. Recently, several state-of-the-art and open-source software tools have become
available, and the best strategy for developing parallelized reactive transport codes is to make
use of these software tools. These tools can provide performance portability over the next
decade or more, and one can greatly reduce the effort to transition legacy codes to existing and
future parallel architectures, while simultaneously achieving performance portability. These
open-source software tools have been used for the parallelization of MIN3P-THCm.

Specifically, parallelization of MIN3P-THCm is achieved through the domain decomposition
method as implemented in the PETSc library (Balay et al. 1997; Balay et al. 2014a; Balay et al.
2014b). PETSc is also used to manage the parallel solvers, data structures and message
communications. A hybrid MPI and OpenMP parallel programming technology is implemented in
the code to take advantage of leadership-class supercomputers that combine both shared
memory and distributed memory architectures.

2.1 CODE ARCHITECUTRE

ParMIN3P-THCm was mainly written in Fortran 90/95 with some of the code written in Fortran
2003. To maximize code compatibility and manageability, several code development tools were
used and specific syntax was embedded in the code.

1 Moore’s law, https://en.wikipedia.org/wiki/Moore%27s_law

5

2.1.1 Target System

The target operating systems for ParMIN3P-THCm include Windows, Unix/Linux and Mac OS.
The code is compatible with most of the popular Fortran compilers including Intel Fortran,
GFortran and IBM XL compilers. For the Windows platform, Visual Studio solutions and Intel
Fortran project files are provided. For the Unix/Linux based system, a makefile is provided to
compile the code.

In addition to desktop PCs and shared-memory workstations, the target platforms for
ParMIN3P-THCM include distributed-memory supercomputers such as IBM Blue/Gene, Cray
and Unix/Linux clusters.

2.1.2 Development Tools and Libraries

Several state-of-the-art software tools and libraries were used for the development of
ParMIN3P-THCm. These packages play different roles in the code and they can be used alone
or together, depending on the target system and parallel version to be compiled. Fortran
preprocessing syntax is embedded throughout the code to ensure the code can be managed in
a single coherent framework, which means that all developers are working on the same code
and all executable files are compiled from the same code but with different configurations. The
main software tools include:

 OpenMP: A flexible interface for developing parallel applications for shared-memory
multiprocessing platforms. OpenMP is used as the interface for the shared-memory
version and it is also used together with MPI for the hybrid distributed-shared-memory
version.

 MPI: A language-independent communications protocol that provides essential virtual
topology, synchronization and communication functionality between a set of processors.
MPI is used as the interface for the distributed-memory version and is also used together
with OpenMP for the hybrid distributed-shared-memory version.

 PETSc: A suite of data structures and routines for the scalable solution of scientific
applications modelled by partial differential equations. PETSc is used to manage the
parallel solvers, data structures and message communications.

 VisualSVN Server/VisualSVN: A professional grade subversion server and client
integration plug-in for Visual Studio. VisualSVN is used as the source code version
control tool.

 Doxygen: A standard tool for generating documentation from source code. It is used to
generate the programmer’s manual for ParMIN3P-THCm.

 Pardiso: A thread-safe, high-performance software for solving sparse linear systems of
equations on shared-memory systems. It is an optional solver for the shared-memory
parallel version of ParMIN3P-THCm and can also be used as a third-party solver
through the PETSc interface.

 HYPRE: A library for solving large, sparse linear systems of equations on massively
parallel computers. HYPRE is used together with PETSc providing a suite of optional
preconditioners in ParMIN3P-THCm.

 Other packages (e.g., SuperLU) that have an interface to PETSc are also supported in
ParMIN3P-THCm.

 Other tools/scripts to run benchmarking tests and verification tests in an automated
fashion.

6

2.2 PARALLEL ARCHITECTURES

2.2.1 Shared-memory Multiprocessor Architecture

In a shared-memory multiprocessor computer, all processors share the same memory or
address space. The shared space or address is used for communication between the
processors. All processors can access the same address space of global memory through the
interconnection network. Typically, that interconnection network is called the system bus, as
shown in Figure 1. For the shared-memory multiprocessor architecture, the memory bandwidth
becomes the system’s bottleneck due to the interconnection network limitation and memory
collision when many processors try to access the memory simultaneously.

The advantage of the shared-memory architecture is that each processor sees only one
memory address space which means that the developer does not have to create explicit
communications between processors, making the program development more straightforward.
Another advantage is that data sharing between threads is both fast and uniform due to the
proximity of memory to processor. The primary disadvantage is the lack of scalability between
memory and CPUs. The difficulty in shared-memory parallelization programming is that the
programmer is responsible for synchronization constructs to ensure correct access of the global
memory. For shared-memory parallelization, OpenMP is used as the programming library where
synchronization is achieved through barriers, locks, mutex or semaphores. OpenMP does not
introduce message communication as MPI does, but it still adds some overhead when
threading, such as startup overhead, loop scheduling overhead and lock management
overhead. In some cases, typically with small loops, the overhead numbers may be high enough
so that it does not make sense to implement OpenMP parallelization for this kind of code.

Figure 1: Shared-memory Multiprocessor Architecture

2.2.2 Distributed-memory Multiprocessor Architecture

In a distributed-memory multiprocessor, each processor is associated with its own memory. The
processor can directly get access to its own memory, as shown in Figure 2. In order to allow a
processor to access the memory owned by the other processor, processor-to-processor
communication is needed. For the distributed-memory multiprocessor architecture, the
interconnection bandwidth/latency becomes the system’s bottleneck due to the large volume of
communication simultaneously requested by processors.

The advantage of the distributed-memory architecture is that it is scalable both in terms of
memory and number of processors. Each processor can access its own memory rapidly without
the overhead incurred by trying to maintain the global cache coherency. But on the other hand,
this makes program development more difficult as the developer has to map existing data
structure onto the individual processors and create explicit communications between
processors. The difficulty in distributed-memory parallelization programming is to deal with the

7

communication overhead. For distributed-memory parallelization, MPI is used as the
programming library through which messages are sent and received between processors.

Figure 2: Distributed-memory Multiprocessor Architecture

2.2.3 Hybrid Distributed-shared-memory Multiprocessor Architecture

The largest and fastest supercomputers today employ both shared-memory and distributed-
memory architecture. As shown in Figure 3, each computing node is a shared memory
multiprocessor. Network communications are required to send data from one computing node to
another. Current usage and projections indicate that this type of architecture will continue to
prevail or even increase for future high-end supercomputers2.

The most important advantage of the hybrid architecture is the increased scalability while the
knowledge needed in programming is common to both shared and distributed memory
architectures. On the other hand, the disadvantage of this approach is that it also increases the
programming complexity.

A typical example of hybrid parallelization is the combined implementation of MPI and OpenMP.
The threads perform computationally intensive tasks using local on-node data while the
communications between processors on different nodes are done by MPI.

Figure 3: Hybrid distributed-shared-memory Multiprocessor Architecture

2.2.4 Parallel Levels

Parallel algorithms and parallel architectures are closely tied together. It is not possible to
design a parallel algorithm without taking into consideration the parallel hardware that will
support it. Conversely, it is also not possible to install parallel hardware without taking into

2 Blaise Barney, Lawrence Livermore National Laboratory. Introduction to parallel computing.

https://computing.llnl.gov/tutorials/parallel_comp/

8

consideration the parallel software that will be used. Parallelization can be implemented at
different levels in a computing system using hardware and software techniques. Generally,
parallelization can be classified into four levels (Gebali 2011):

 Data-level parallelization, where multiple data are operated on simultaneously.
Examples are bit-parallel additions, multiplication and division of binary numbers, vectors
and arrays.

 Instruction-level parallelization, where multiple instructions are executed simultaneously.
An example is the use of instruction pipelining.

 Thread-level parallelization. A thread is a portion of a program that shares processor
resources with other threads. Multiple threads are executed simultaneously on one
process or multi-core processors in thread-level parallelization.

 Process-level parallelization. A process is an independent program that is running on a
computer. Every process reserves its own computer resources such as cache and
memory space. For process-level parallelization, several programs are running
simultaneously on a computer with multi-processors or computer clusters with distributed
processors and memory.

2.2.5 Parallel Levels in ParMIN3P-THCm

One of the challenges of parallelization is that each processor must be kept as busy as possible
with tasks to avoid the processor from being idle. To meet this challenge requires careful
program development; however, efficiency is also affected by the compiler and operating
system performance. In ParMIN3P-THCm, data-level parallelization and instruction-level
parallelization are managed by the compiler and the operating system, while program
development focused on thread-level parallelization and process-level parallelization.

Thread-level parallelization in ParMIN3P-THCm is designed for shared-memory computers.
This kind of computer is popular as most modern desktop PCs are now equipped with multi-core
processors. To meet the requirement of the users who do not have access to supercomputers,
thread-level parallelization is developed using OpenMP. On the other hand, thread-level
parallelization is more suitable for small scale problems, as it is generally faster compared to
process-level parallelization.

The process-level parallelization in ParMIN3P-THCm is designed for distributed-memory
computers equipped with a large number of processors and memory availability. Process-level
parallelization is primarily used for large scale simulations that require more processors and
memory (e.g., > 32 processors).

It should be mentioned that ParMIN3P-THCm is designed at a high level to allow more
straightforward adoption to modern supercomputers with hybrid distributed-shared-memory
architecture, with potential consideration of the next generation supercomputers.

2.3 PARALLEL IMPLEMENTATION

2.3.1 Domain Decomposition

Domain decomposition generally refers to the splitting of partial differential equations, or an
approximation thereof, into coupled problems on smaller subdomains forming a partition of the
original domain (Toselli and Widlund 2005). This decomposition may enter at the continuous
level, where a large boundary value problem is split into small boundary value problems on

9

subdomains and iterating to coordinate the solution between adjacent subdomains, or in the
solution of the algebraic systems arising from the approximation of the partial differential
equations. The domain decomposition method is used in ParMIN3P-THCm in both forms, i.e. at
the continuous level and in the solution of algebraic systems.

For the continuous level domain decomposition, the entire simulation domain is split into small
subdomains or small “chunks”. All independent tasks that do not require communication with
adjacent subdomains are executed simultaneously on different threads/processors. The domain
decomposition for the shared-memory parallelization is simplified and does not require
consideration of ghost nodes because all threads share the same memory space and no data
communication is needed when building the Jacobian matrix. However, for the distributed-
memory and hybrid distributed-shared-memory parallelizations, ghost nodes with different
stencil widths are considered to provide a copy of the boundary values from the adjacent
subdomains. The ghost nodes, located at both sides of the subdomain boundaries, are also
treated as the bridge for updating values between adjacent subdomains after the global linear
equations are solved, as shown in Figure 4.

Figure 4: Domain Decomposition and Subdomain Representation

For the domain decomposition of algebraic systems, the basic idea is to decompose the solution
space into several subspaces; for each of which there is an efficient solver to generate the
result. For the domain decomposition shown in Figure 4, the iteration scheme for subdomain i (i
= 1, 2, 3, 4) is expressed in equation (2.1):

1 1 1() ()m m m m

ii i i ii ii i ij i
j

M X B A M X A X i j (2.1)

iiA is the diagonal block split of the global coefficient matrix A, ()ijA i j is the off-diagonal

block split of the global coefficient matrix A, 1m
iB
 is the right hand side of subdomain i , iiM is

the diagonal block of subdomain i , and 1m
iX
 is the solution of subdomain i . External parallel

linear solvers (e.g., Pardiso, PETSc) are employed as the global solvers in ParMIN3P-THCm.

The detailed procedures of the ParMIN3P-THCm domain decomposition parallelization are
described in the following sections.

2.3.2 Computational Workflow

The solution of the entire system of equations in ParMIN3P-THCm consists of the solution of the
variably saturated flow and energy balance equations, with the subsequent solution of the

10

reactive transport problem based on the fluxes and phase saturations obtained from the flow
solution. The system of algebraic nonlinear equations for the variably saturated flow, energy
balance and reactive transport is linearized using Newton’s method and the coupling between
fluid density and solute concentrations is resolved using the Picard iterative approach (Mayer et
al. 2014). The workflow of ParMIN3P-THCm is depicted in Figure 5.

Compared to the serial version of MIN3P-THCm, the parallel version requires additional
processing including domain decomposition, ghost values updating and data
conversion/communication between the subdomains. The most significant difference between
the serial and parallel versions of MIN3P-THCm is that most of the computationally intensive
work such as solving local mass conservation equations for each control volume, and matrix
value computing for the global linear equations, is executed for the subdomains simultaneously.
Without considering output information, these parts do not require communication between the
subdomains because all data are locally available. These parts take most of the computing time
in MIN3P-THCm, are relatively straightforward to parallelize, and are highly scalable. Message
communications are introduced for assembly of the global matrix, solution of the global
linearized equations and updating of the ghost cell values after the global linear equations are
solved. Message communications are also employed in the nonlinear solver (e.g., Newton
iteration and Picard iteration), time stepping solver and parallel input/output.

Figure 5: Computational Workflow Implemented in ParMIN3P-THCm

11

2.3.3 Shared-Memory Parallel Implementation

ParMIN3P-THCm employs the OpenMP 3.1 framework (http://openmp.org/wp/) for the shared-
memory parallelization. Development of the ParMIN3P-THCm shared-memory version focuses
on the parallelization of chemical reactions and various CPU-intensive routines, e.g., local mass
conservation equations for each control volume and matrix assembly, the solution of the
linearized equations is parallelized using an external solver such as PARDISO.

Domain decomposition in the shared-memory version provides support for different scheduling
methods available in OpenMP. The most commonly used scheduling methods are static
scheduling and dynamic scheduling, with different numbers of “chunk sizes”, as shown in Figure
6. The static scheduling has less overhead while the dynamic scheduling has better load
balancing.

Figure 6: Diagram of Domain Decomposition for Shared-memory Parallel
Implementation. (a) Domain Decomposition with Chunk Number 4 for 4 Threads, (b)
Domain Decomposition with Chunk Number 8 for 4 Threads

In the ParMIN3P-THCm shared-memory version, most of the CPU-intensive routines are
independent of the spatial discretization and perform operations for single control volumes.
Accordingly, most of the parallel code for the shared-memory parallel implementation focuses
on the parallelization of loops over these control volumes. Figure 7 depicts a diagram of
OpenMP pseudo code as implemented in ParMIN3P-THCm. The user has full control on the
parallel implementation, e.g., whether parallelization for a particular task is active or not, which
scheduling method and chunk size are to be used, and how many threads will be used for the
particular parallel task. By default, the variables in the OpenMP framework are shared by all
threads. To avoid conflicts or race conditions for some variables (e.g., some global variables in
the serial version), these variables are declared as private, first private or last private variables,
or modified to be thread private variables. The parallel overhead is an important factor for the
development of OpenMP code, in particular for the parallelization of tasks with many private
variables, because for private variable memory space needs to be allocated for each of the
threads. To reduce parallel overhead, ParMIN3P-THCm is structured with independent parallel

12

loops wrapped together in a larger outer parallel loop and several outer parallel loops wrapped
together in a parallel section. As shown in Figure 7, task A and task B are independent from
each other in the parallel loop and are wrapped together in a single do loop I, similarly, task C
and task D are wrapped together in parallel loop II. Because parallel loop I and parallel loop II
are not independent, i.e. parallel loop II requires the results from parallel loop I, it is impossible
to wrap task C and task D immediately after task A and task B without introducing additional
overhead. As a result, the code must be structured to execute parallel loops I and II
simultaneously to allow for synchronization.

Figure 7: Diagram of Basic OpenMP Pseudo Code as Implemented in ParMIN3P-THCm

The linear equations solver used in the ParMIN3P-THCm shared-memory version is PARDISO,
a high performance, memory efficient direct solver (Schenk and Gärtner 2011). PARDISO is
used in ParMIN3P-THCm for symbolic factorization, numerical factorization and substitution. It
is implemented in the same way as the original MIN3P-THCm solver WatSolv, an iterative
solver.

It is difficult to compare the performance of a direct solver with that of an iterative solver.
Usually, iterative solvers with effective ILU preconditioners that are capable of generating
coefficient matrices with good condition numbers, converge faster than direct solvers. On the
other hand, direct solvers return a near exact solution. For a situation with ill-conditioned

13

matrices, the convergence of iterative solvers becomes poor and direct solvers are capable of
producing the solution more quickly. Whether the coefficient matrix will be well-conditioned or ill-
conditioned is problem dependent and the code must be able to deal with both situations. For
this reason, the WatSolv solver is partially parallelized and is retained in the ParMIN3P-THCm
code as an iterative solver option. In MIN3P-THCm, it takes only a relatively small fraction of
computing time to solve the linearized equations compared to the time spent on other CPU-
intensive tasks. This is especially true for the simulation of problems with complex
biogeochemical reaction networks. If parallel overhead for the solution of the linearized
equations is significant, or if the WatSolv solver is faster than PARDISO, users still have the
choice to use the WatSolv solver, even if it is not fully parallelized.

The input and output (I/O) of the ParMIN3P-THCm shared-memory version is executed by the
master thread, implying that these tasks are executed in serial.

2.3.4 Distributed-Memory Parallel Implementation

ParMIN3P-THCm employs MPI and PETSc for the distributed-memory parallelization. PETSc is
a suite of data structures and routines for the scalable (parallel) solution of scientific applications
modelled by partial differential equations. It supports MPI, shared memory pthreads, and GPUs
through CUDA or OpenCL, as well as hybrid MPI-shared memory pthreads or MPI-GPU
parallelism (Balay et al. 1997; 2014a; 2014b). The flow control for a PETSc application is shown
in Figure 8. The ParMIN3P-THCm distributed-memory version is built using PETSc with the
implementation of linear solvers (KSP) and preconditioners (PC). Linearization of the discretized
equations in ParMIN3P-THCm is performed using the Newton and Picard iterative methods, and
the time stepping solver consists of a global implicit, adaptive time stepping method.

Figure 8: Flow Control for a PETSc Application (Balay et al. 1997; 2014a; 2014b)

The domain decomposition method in the ParMIN3P-THCm distributed-memory version is
based on PETSc’s DMDA model, an object that is used to manage data for a structured grid in
1, 2 or 3 dimensions. In the global representation, each processor stores a non-overlapping
rectangular (or slab in 3D) portion of the global grid points (nodes). In the local representation,
these rectangular regions (slabs) are extended in all directions by a stencil width. Figure 9
depicts the domain decomposition for a 2D grid using the distributed-memory parallel
implementation. Examples for two alternative stencil widths (equalling 1 and 2, respectively) are
shown. Features of the DMDA model used in ParMIN3P-THCm include:

14

 Interface for topologically structured grids
 Definition of a finite-dimensional function space
 Provision of a parallel layout
 Refinement and coarsening
 Ghost value coherence
 Matrix pre-allocation

The stencil width in domain decomposition represents the number of ghost nodes used in the
subdomains. To evaluate a local function)(xf , each process requires its local portion (local
nodes in a subdomain) of the vector x and the associated ghost node values, originating
portions of x owned by neighboring processes (adjacent subdomain). Generally, single stencil
width is applied for domain decomposition. For a problem with van Leer spatial weighting (van
Leer 1977), double stencil width is applied as the spatial weighting requires a second upstream
node.

In the ParMIN3P-THCm distributed-memory parallel version, the entire domain is commonly
evenly distributed among different processors. As a result, the parallel efficiency mainly
depends on the balancing problem. Generally, the default domain decomposition can meet the
efficiency requirement. For highly heterogeneous problems, i.e. the various subdomains take
substantially different execution times, domain decomposition with spatial weighting is a better
choice. Considering the limited time available for development, this is currently not included in
ParMIN3P-THCm.

Figure 9: Diagram of Domain Decomposition for Distributed-memory Parallel
Implementation. (a) Domain Decomposition with Stencil Width Equals 1 for 4
Processors, (b) Domain Decomposition with Stencil Width Equals 2 for 4 Processors

15

The linear equations solver used in the ParMIN3P-THCm distributed-memory version is the
PETSc linear solver package (KSP), with several iterative methods (e.g., GMRES, BiCGSTAB)
and preconditioning methods (e.g., ILU, BLOCK JACOBI) included. PETSc linear solvers are
the only choice for the distributed-memory version but users have full privilege to set the
iterative method, preconditioning method and convergence criteria.

Inter-processor communications in the ParMIN3P-THCm distributed-memory version are
handled by PETSc and MPI together. Communications related to the PETSc DMDA model and
linear solvers are controlled by PETSc while all other communications are controlled by native
MPI routines.

The input and output in the ParMIN3P-THCm distributed-memory version are executed by all
processors and these routines are fully parallelized.

2.3.5 Hybrid Parallel Implementation

The hybrid distributed-shared-memory parallel version (hybrid version) of ParMIN3P-THCm is a
combination of the shared-memory version and the distributed-memory version. The hybrid
version is not simply a combination of the two versions, but involves a task-specific optimization
of both versions. The hybrid version is developed due to the following circumstances:

 Modern or next generation supercomputers are based on the hybrid distributed-shared
memory architecture.

 The hybrid implementation increases the scalability and can take advantage of both
shared-memory and distributed-memory architectures.

 Using the hybrid approach, the scalability of CPU-intensive tasks (e.g., the solution of
local mass conservation equations) is generally better than the scalability for the global
linear solver and system I/O. For some special problems, the scalability of the global
linear solver may deteriorate when using more processors. Using the hybrid parallel
approach for CPU-intensive tasks while using the distributed-memory approach for low-
scalability tasks can increase the total parallel performance.

The domain decomposition method in the hybrid version of ParMIN3P-THCm is also based on
PETSc’s DMDA model, similar to the distributed-memory parallel version. However, the hybrid
version is distinct, because each processor stores a non-overlapping rectangular (or slab in 3D)
portion of the global grid points (nodes) that is shared by two or more threads, depending on the
number of available threads for the processor. For example, as shown in Figure 10, each
subdomain is shared by two threads that are managed by the same processor. Compared to the
distributed-memory version, the communication does not increase if using the same number of
processors, however, the computing in each subdomain can be accelerated. In this way, the
ParMIN3P-THCm hybrid version can take advantage of both the distributed-memory and the
shared-memory implementations.

16

Figure 10: Diagram of Domain Decomposition for Hybrid Parallel Implementation.
(a) Domain Decomposition with Stencil Width 1 for 4 Processors and 8 Threads,
(b) Domain Decomposition with Stencil Width 2 for 4 Processors and 8 Threads

2.4 PARALLEL MODULES

Most of the functionalities available in ParMIN3P-THCm are modularized. These functionalities
have been separated into independent, interchangeable modules such that each module
contains information necessary to execute the desired functionality. Modular programming
improves the code readability and reduces the cost for code maintenance.

2.4.1 Global and Local Numbering

ParMIN3P-THCm (and previous versions of MIN3P) uses natural ordering when assembling the
coefficient matrix for its structured grid. For the natural ordering scheme, the node numbers
increase along the X-direction first, then the Y-direction and finally the Z-direction. Domain
decomposition for shared-memory parallelization is straightforward because the numbering
scheme for the subdomain is exactly the same as that of the serial version. However, for the
distributed-memory version and the hybrid implementation, the local numbering scheme is
different from the global numbering. The PETSc DMDA module is used as the domain
decomposition tool and also manages the local and global node mapping. An example for the
domain decomposition of a 2D grid is shown in Figure 11. First, domain decomposition is
executed using the natural ordering scheme. Then each subdomain is renumbered to build
PETSc global numbering, and finally the subdomains are renumbered using natural ordering
with or without ghost nodes. Topology mappings have been built to facilitate straightforward
access to the nodes within different subdomains and the global domain.

17

Sample code illustrating the domain decomposition and the local to global mapping is given in
Figure 12. In this example, the grid is a 3D structured grid with node numbers nvxgbl, nvygbl and
nvzgbl in X-, Y-, and Z-directions, respectively. The degree of the freedom per node is
dmda_react%dof and the stencil width is dmda_react%swidth. The local to global mapping ldtog is
created following domain decomposition.

Figure 11: Domain Decomposition and Node Numbering in ParMIN3P-THCm

18

Figure 12: Sample Code of Domain Decomposition and Mapping

2.4.2 Parallel Matrix and Right Hand Side Assembly

For the distributed-memory and hybrid distributed-shared-memory parallel versions, message
passing is the key factor that affects the parallel efficiency. To reduce communication,
ParMIN3P-THCm computes all matrix entries and the right hand side locally, because all
information related to ghost nodes associated with a subdomain is stored locally.
Communication is not required for computing matrix and right hand side entries for the ghost
nodes.

Figure 13 shows an example of a 2D subdomain with 16 nodes. For each subdomain, only local
entries are computed and assembled (entries without a “box”) while the remaining entries
(entries within a “box”) are computed and assembled by a processor dealing with the
neighboring subdomain. In other words, each processor needs to process only elements that it
owns locally, but any non-local elements will be sent to the appropriate processor during matrix
assembly.

19

Figure 13: Matrix and Right Hand Side Assembly of a Subdomain

From a mathematical point of view, the local entries of every subdomain can be represented by
a matrix block, as shown in Figure 14. The diagonal block includes the entries originating from
the local nodes of the subdomain while the off-diagonal blocks contain the entries related to the
connections between the subdomain and its neighboring subdomains. The entries within a
dashed box or dash-dotted box identify the local entries owned by a specific subdomain. Each
subdomain only computes and assembles its local entries towards the global entries.

Sample code for the Jacobi matrix assembly is provided in Figure 15. The matrix assembly in
PETSc is a 2-step process: MatAssemblyBegin() and MatAssemblyEnd(). Additional code can
be placed between these two functions to further improve parallel processing during
communication.

20

Figure 14: Matrix and Right Hand Side Assembly of Subdomain

Figure 15: Sample Code for Jacobi Matrix Assembly

21

2.4.3 Parallel Linear Solver

The solution of the governing equations in ParMIN3P-THCm is obtained in a three-level
process, the first level consists of the solution of the linearized equations, the second level
involves Newton’s iterative method and a Picard iterative method for the linearization of the
equations, and the third level consists of a time-stepping solver employing the global implicit
adaptive time stepping method. ParMIN3P-THCm employs the external solver PARDISO as the
first level solver for the shared-memory parallel version and PETSc KSP for the distributed-
memory and hybrid distributed-shared-memory parallel version.

The PARDISO package (Schenk and Gärtner 2011) is a robust software package for solving
large sparse linear systems of equations on computers with shared-memory architecture. In
order to improve the numerical factorization performance, the algorithm is based on the Level-3
BLAS update, and pipelining parallelism is exploited with a combination of left- and right-looking
Level-3 BLAS supernode techniques. The parallel pivoting methods allow complete supernode
pivoting in order to balance numerical stability and scalability during the factorization process
(Schenk and Gärtner 2011).

PARDISO calculates the solution of a set of sparse linear equations AX=B with a parallel LU,
LDL or LLT factorization, where A is the sparse matrix, B is the right hand side vector and X is
the solution vector. The solver allows a combination of direct and iterative methods in order to
accelerate the linear solution process for transient simulations. The solver uses a numerical
factorization A=LU for the first system and applies these exact factors L and U for the next steps
in a preconditioned Krylov-subspace iteration. If the iteration does not converge, the solver will
automatically switch back to the numerical factorization. This is particularly useful for systems
with gradually changing values of nonzero entries in the coefficient matrix, but the same
identical sparse patterns. Sample code involving calls to the PARDISO solver is given in Figure
16.

Figure 16: Sample Code for PARDISO Solver

PETSc (Balay et al. 2014a; Balay et al. 2014b; Balay et al. 1997) specializes in Krylov-type
iterative solvers but offers interfaces for external direct solvers (e.g., MUMPS, SuperLU) and
other iterative solvers (e.g., HYPRE, Trilinos/ML). Each linear solver object in PETSc actually
contains two parts: the Krylov space methods and preconditioners, as shown in Table 1.
Sample code involving calls to the PETSc solver is provided in Figure 17.

22

 Table 1: Linear Solvers in PETSc

Krylov Methods (KSP) Preconditioners (PC)

Conjugate Gradient Block Jacobi

GMRES Overlapping Additive Schwarz

CG-Squared ICC

BI-CG-stab ILU

etc. etc.

Figure 17: Sample Code for PETSc Solver

2.4.4 Parallel Input and Output

For the shared-memory parallelization, input and output (file read and write only, excluding other
computations) are executed by the master thread and are processed sequentially. For the
distributed-memory parallelization and hybrid distributed-shared-memory parallelization, parallel
input and output are supported.

Two types of data file output are considered in ParMIN3P-THCm: the distributed data file and
the integrated data file. The distributed data file is a single file containing local data from a
subdomain without information from the ghost nodes. The integrated data file contains data from
the entire domain. The distributed data file output is suitable for all computational platforms with
distributed memory including PC clusters with distributed storage for each PC node. The
integrated data file output is designed to work for the computers with a shared (parallel) file
system.

The spatial data in a parallel system is stored in a non-contiguous space, as shown in Figure
18. For distributed data files, file operation is straightforward as each processor only deals with

23

its own data; as a result no communication is needed. For the integrated data files, collective
and contiguous I/O is employed making use of MPI libraries.

Figure 18: Parallel Output of Non-contiguous Data

Generally, there are three levels of file operation (Figure 19). The first level operation reads and
writes a single piece of data for each I/O function, the second level operation uses a block of
data and the third level operation reads and writes the entire data. Implementation of I/O
following the first level approach is easiest from a coding perspective, but is subject to poor
parallel performance. The third-level approach is most efficient from the perspective of
parallelization, but is also most complex and difficult to implement. In ParMIN3P-THCm, data
read is based on the Level 2 approach and data write is based on the Level 3 approach. Since
data read is usually used only once when the program starts, utilizing Level 2 for data read
provides a balance between efficiency and coding complexity. Sample code of data write based
on Level 3 file operation is given in Figure 20.

Figure 19: Three Level Parallel Input and Output

Figure 20: Sample Code of Data Write Using Collective and Contiguous I/O

24

Parallel read and write of the restart files in ParMIN3P-THCm is also implemented in the same
way as mentioned above.

2.4.5 Summary of Parallel Modules

A summary of the major parallel modules included in ParMIN3P-THCm is given in Table 2.

 Table 2: Parallel Modules Included in ParMIN3P-THCm

Module/Version Shared-Memory Distributed-Memory Hybrid

Global/local numbering - X X

Matrix Assembly X X X

Linear Solver X X X

Input/Output - X X

others (e.g., mass balance, restart) X X X

Symbols X: Included in parallel version, -: Not Applied

3. PARALLEL PERFORMANCE

Traditionally, speedup is defined as the execution time using one processor divided by the
execution time using n processors. ParMIN3P-THCm has been run with up to 768 processors
for problem sizes up to 100 million unknowns. Examples demonstrating the code performance
are discussed below. Larger problem sizes would be possible; however, access to such
computer hardware is currently not available.

3.1 RUNTIME PROFILING TOOL

Runtime profiling is an indispensable tool to identify the hot spots and bottlenecks of the parallel
system, and is useful for improving parallel efficiency. Two types of profiling tools are embedded
in ParMIN3P-THCm. The first tool is based on the statistics of wall-clock time spent on matrix
assembly, in the linear equation solver and on other tasks, such as mass balance calculations,
for every time step, Newton iteration and Picard iteration. The second tool is provided by PETSc
and is based on the CPU Flops and wall-clock time spent on the functions used in the parallel
solver. Both tools are used for parallel performance assessment.

In this report, we focus on using the wall-clock time to assess the parallel performance,
considering that this parameter is most relevant for the end-user. The time spent on the
following processes has been calculated: matrix assembly in flow equations, matrix assembly in
reactive transport equations, linear solver in flow equations and linear solver in reactive
transport equations. The speedup is calculated based on these components as well as total
runtime.

3.2 COMPUTER ARCHITECTURE FOR PERFORMANCE TESTING

3.2.1 Shared-memory Architecture

The computer employed for the performance testing of the ParMIN3P-THCm shared-memory
parallel version was a workstation with 2 Intel Xeon E5 2650 sockets. Each socket had 8 cores

25

(processors) that ran at 1.8GHz with turbo speed at 2.3 GHz. The available memory was 128
GB shared by the 16 processors.

3.2.2 Distributed-memory Architecture

The computer used for the performance testing of the ParMIN3P-THCm distributed-memory
parallel version was the Orcinus cluster (https://www.westgrid.ca/support/systems/Orcinus)
operated by WestGrid. Phase One of the Orcinus cluster is comprised of 12 c7000 chassis,
each containing 16 dual-density BL2x220 Generation 5 blades. There are 2 compute servers
per blade (an A node, and a B node). Every node has 2 sockets, each containing an Intel Xeon
E5450 quad-core processor, running at 3.0 GHz. In total, there are 3072 Phase One cores. The
8 cores in a single Phase One node share 16 GB of RAM. Phase Two is comprised of 17 c7000
chassis, each containing 16 dual-density BL2x220 Generation 6 blades. Again, there are 2
compute servers per blade (an A node, and a B node). Every node has 2 sockets, each
containing an Intel Xeon X5650 six-core processor, running at 2.66 GHz. In total there are 6528
Phase Two cores. The 12 cores in a single Phase Two node share 24 GB of RAM. The total
number of cores available is 9600. For this work, Phase Two was used for the parallel
performance testing.

3.2.3 Hybrid Distributed-shared-memory Architecture

The computer used for the performance test of the ParMIN3P-THCm hybrid distributed-shared-
memory parallel version was the Jasper cluster
(https://www.westgrid.ca/support/systems/Jasper) operated by WestGrid. Jasper is an SGI Altix
XE cluster with an aggregate 400 nodes, 4160 cores and 8320 GB of memory. Phase One has
240 nodes and each node is equipped with Xeon X5675 processors, 12 cores (2 x 6) and 24 GB
of memory. Of these, 32 have additional memory for a total of 48 GB. Phase Two has 160
nodes, formerly part of the Checkers cluster, and each node is equipped with Xeon L5420
processors, 8 cores (2 x 4) and 16 GB of memory. Phase One was used for the parallel
performance testing. The Jasper cluster was also used for additional performance testing of the
ParMIN3P-THCm distributed-memory parallel version.

3.3 CASES FOR PARALLEL PERFORMANCE TESTING

3.3.1 Case I: Complex cement/clay interactions

3.3.1.1 Case Introduction

Use of the subsurface for CO2 storage, geothermal energy and nuclear waste geological
disposal will greatly increase the interaction between clay or claystone and concrete. The
development of models describing the mineralogical transformations at this interface can be
computationally challenging because contrasting geochemical conditions (Eh, pH, solution
composition, etc.) induce steep concentration gradients and high mineral reactivity. Due to the
geochemical complexity of the problem, analytical solutions are not available to verify code
accuracy, and the problem must be solved numerically. Processes considered in the simulations
are diffusion-controlled transport in saturated porous media under isothermal conditions,
involving both equilibrium and kinetically controlled mineral-dissolution-precipitation reactions
and cation exchange. A recent model intercomparison demonstrates that reactive-transport
modelling can be used effectively in support of long-term performance assessment related to
clay-concrete systems (Marty et al. 2015).

26

3.3.1.2 Model Discretization

An one-dimensional radial geometry was chosen for modelling the long-term geochemical
evolution surrounding a tunnel in a radioactive nuclear waste repository site. For the two
interacting materials, the host rock can be considered of infinite extent, whereas the spatial
extent of the concrete is limited. A heterogeneous mesh with a refined spatial resolution of 0.05
m focused on the concrete/clay interface was used for the simulations. Details of the spatial
discretization are given in Figure 21. The mesh size was selected by Marty et al. (2015) to
ensure a satisfactory compromise between computational time and a spatial resolution capable
of capturing the expected geochemical processes, especially at the interface. The numerical
parameters used for this case are given in Table 3.

Figure 21: Model Domain for Case I, Discretized into a Heterogeneous Mesh with a
Refined Spatial Resolution of 0.05 m at the Concrete/Clay Interface (from Marty et al.
2015)

Table 3: Numerical Parameters Used in Case I

Parameters Value

Number of nodes in horizontal direction 112

Total number of nodes 112

Degree of freedom per node (number of components) 13

Total degrees of freedom 1456

Non-zero matrix entries for flow equations 334

Non-zero matrix entries for reactive transport equations 56446

Simulation time 10000 years

Maximum time step 0.1 year

27

3.3.1.3 Sample Results

Sample results showing mineralogical changes and pH evolution after 10000 years are depicted
in Figure 22. The following mineralogical transformations were observed: dissolution of smectite
(weak), quartz and dolomite from the claystone, and of C3FH6, monocarboaluminate, CSH1.6
and portlandite in the concrete; precipitation of calcite, saponite and clinoptilolite in the
claystone, and of ettringite, saponite, ferrihydrite, magnetite, CSH1.2 and CSH0.8 in the
concrete.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Distance (m)

V
o

lu
m

e
fr

ac
tio

n

10 000 years - MIN3P-THCm Amorphous silica
Brucite
Calcite
Celestite
Chlorite(Cca-2)
Clinoptilolite(Ca)
CSH(1.6)
CSH(1.2)
CSH(0.8)
C3FH6
Dolomite
Ettringite
Fe(OH)2
Ferrihydrite(2L)
Gibbsite(am)
Gypsum
Hydrotalcite
Illite(IMt2)
Magnetite(am)
Microcline
Monocarboaluminate
Montmorillonite(HcCa)
MordeniteB(Ca)
Portlandite
Pyrite
Pyrrhotite
Quartz(alpha)
Saponite(Ca)
Saponite(FeCa)
Siderite
Straetlingite

6

8

10

12

14

p
H

Figure 22: Mineralogical Alterations and pH Changes after 10000 Years of
Concrete/Clay Interactions (from Marty et al. 2015). The Concrete-Claystone Interface
is Located at a Distance of 3.0 m

3.3.1.4 Runtime Profiling

Case I represents a small-scale simulation with most CPU time spent on matrix assembly and in
the reactive transport solver. The runtime percentages for this case are shown in Table 4. It
should be mentioned that the CPU time in the matrix assembly of the reactive transport
equations includes the time for solving local mass conservation equations for each control
volume.

28

Table 4: Runtime Percentage Distribution for Case I

Flow equations Reactive transport equations Other

Assembly Solver Other Assembly Solver Other

0.0% 0.0% 0.0% 90.0% 7.4% 0.2% 2.4%

3.3.2 Case II: Uranium Remediation by Lactate Injection

3.3.2.1 Case Introduction

This case explores the hydrogeochemical patterns that develop under steady-state and
transient groundwater flow conditions during uranium bioremediation. A simplified conceptual
model illustrating the major biotic and abiotic reactions considered is depicted in Figure 23. The
main challenge is the complexity of the biogeochemical reaction network, which includes
various parallel, sequential and competing kinetic reactions with a strong interdependency of
processes. In addition, some of these reactions are mixing-controlled and the reaction progress
as well as the resulting solution chemistry are highly sensitive to physical mixing and therefore
potentially compromised by numerical dispersion. This causes a strong coupling between the
physical transport and geochemical reaction processes. Inaccurate solutions of the physical
transport processes will be more pronounced in multi-dimensional problems, where finer grid
resolutions that typically minimize numerical dispersion come at larger computational costs and
pragmatic choices have to be made to attain sufficient accuracy at reasonable computational
costs (Şengör et al. 2015). This case also includes an injection well, implying that geochemical
changes occur locally in the system, posing an additional challenge for parallel execution due to
load balancing.

29

Figure 23: Simplified Conceptual Model Illustrating the Biotic and Abiotic Reaction
Network of Case II (from Şengör et al. 2015)

3.3.2.2 Model discretization

The model domain for the 2D simulation was defined to be 18 m in length and 10.5 m in width,
with a uniform grid discretization of 0.125 m in both horizontal and vertical directions, as shown
in Figure 24. An injection well was defined at a location 7.25 m downstream of the influent
boundary. It was assumed that the injection of a lactate-containing solution occurred at this
location at a rate of 0.2 m3/day during the initial 8 days of the simulation. The 2D simulations
assumed a longitudinal dispersivity of 1.0 m and a transverse dispersivity of 0.1 m. The total
simulation period was defined to be 60 days with a nominal time step size of 0.01 days.
Numerical parameters used for this case are summarized in Table 5.

30

Figure 24: Model Grid and Boundary Conditions for Case II (from Şengör et al. 2015)

Table 5: Numerical Parameters Used in Case II

Parameters Value

Number of nodes in horizontal direction 145

Number of nodes in vertical direction 85

Total number of nodes 12325

Degree of freedom per node (number of components) 17

Total degrees of freedom 209525

Non-zero matrix entries for flow equations 61165

Non-zero matrix entries for reactive transport equations 6134805

Simulation time 60 days

Maximum time step 0.01 day

31

3.3.2.3 Sample Results

Concentration contours for selected aqueous components, mineral phases, and biomass are
depicted in Figure 25. The figure illustrates the spatial extent and distribution of the uranium
immobilization that was induced by the lactate injection and associated geochemical changes
surrounding the injection well. A detailed description and interpretation of the simulation results
can be found in Şengör et al. (2015).

Figure 25: Concentration Distributions for Selected Aqueous Components, Minerals
and Biomass at 60 Days for Case II

3.3.2.4 Runtime Profiling

Case II represents a simulation with an intermediate number of unknowns. Most of the CPU
time is spent on matrix assembly and in the reactive transport solver. Compared to the CPU
time required to solve the reactive transport equations, the CPU requirement for solution of the
flow equations is much smaller, amounting to only 0.3% of the total CPU time. CPU time spent
on the matrix assembly of the reactive transport equations includes the time for solving local
mass conservation equations at each control volume. The runtime percentages for this case are
summarized in Table 6.

32

Table 6: Runtime Percentage Distribution for Case II

Flow equations Reactive transport equations Other

Assembly Solver Other Assembly Solver Other

< 0.1% < 0.1% <0.1% 92.3% 3.8% 0.3% 3.6%

3.3.3 Case III: Flow and Reactive Transport in a Hypothetical Sedimentary Basin

3.3.3.1 Case Introduction

Sedimentary basins are complex systems affected by numerous interacting processes (i.e.
groundwater flow, heat transfer, mass transport, water-mixing, rock-water interactions,
mechanical loading, etc.). These processes affect the hydrogeological system in shallow and
deep aquifers to various degrees. For instance, climate change events occurring on the time
scale of thousands of years, during periods of glaciation and deglaciation can trigger
hydrogeological, geochemical and mechanical alterations in sedimentary basins. Understanding
the interactions between these processes is of importance for the evaluation of the
hydrodynamic and geochemical stability of these sedimentary basins. This case models the
complex coupled processes that could occur in a typical sedimentary basin in North America as
depicted in Figure 26. Details on the simulation approach, results and interpretation can be
found in Bea et al. (2010).

Figure 26: Location and Main Geological Features for the Intracratonic Sedimentary
Basins in North America (Illinois Michigan and Appalachian Basins, Taken from
McIntosh and Walter 2005)

33

3.3.3.2 Model Discretization

The geometry and geology of the sedimentary basin used in this case are depicted in Figure 27.
A symmetrical sedimentary basin of about 400 km in length and 4 km in depth is characterized
by a sequence of carbonates (dolostones and limestones, Dol1, Dol2, Dol3 and Lim1)
interbedded by sandstones, which constitute the main aquifers (Sand1, Sand2, Sand3 and
Sand4), and shales, which constitute the main confining units (Sh1, Sh2, Sh3). All units overlay
the Pre-Cambrian basement (G). Note that a weathered zone in the basement rocks (Gw) is in
direct contact with the Sand1 sedimentary unit. Interbedded evaporites (Ev) and dolostones
units (Dol1) are also considered. Numerical parameters used in this case are summarized in
Table 7.

Figure 27: Geometry and Main Hydrogeological Units Considered for Case III (Bea et
al. 2010)

34

Table 7: Numerical Parameters Used in Case III

Parameters Value

Number of nodes in horizontal direction 450

Number of nodes in vertical direction 100

Total number of nodes 45000

Degrees of freedom per node (number of components) 9

Total degrees of freedom 405000

Non-zero matrix entries for flow equations 1251208

Non-zero matrix entries for reactive transport equations 18135900

Simulation time 32500 years

Maximum time step 5.0 years

3.3.3.3 Sample Results

Although glaciation events significantly affect the fresh water balance in the system (especially
during melting and glacial retreat), the modelling results demonstrate that these ancient and
deep sedimentary basins are hydrodynamically and geochemically stable. Sample results of
total Ca concentrations at different times are depicted in Figure 28 and show that temporal
changes are restricted to shallow depths. Detailed simulation results and interpretations are
provided in Bea et al. (2010).

35

Figure 28: Distribution of Total Ca Concentration at Different Output Times for Case III

3.3.3.4 Runtime Profiling

Similar to Case II, this simulation represents a case with an intermediate number of unknowns.
Most of the CPU time is spent on matrix assembly for the reactive transport problem and in the
reactive transport solver. In comparison to the CPU-times required for the solution of the
reactive transport equations, the computational requirements for solution of the flow equations is
much smaller, requiring less than 1.8% of the total computing time. The CPU time spent in the

36

matrix assembly for the reactive transport equations includes the time for solving local mass
conservation equations at each control volume. The runtime percentage distribution for this
case is summarized in Table 8. System I/O is significant in this case and comprises around
19.7% of the total runtime.

Table 8: Runtime Percentage Distribution for Case III

Flow equations Reactive transport equations Other

Assembly Solver Other Assembly Solver Other

0.2% 1.5% < 0.1% 72.8% 5.2% 0.6% 19.7%

3.4 SHARED-MEMORY PARALLEL PERFORMANCE

The matrices of the three cases used for the performance testing are well conditioned, implying
that the iterative solver WatSolv is faster than the direct solver PARDISO, if the number of
processors used is small (i.e., not more than 8 processors). For the shared-memory parallel
performance testing, the iterative solver WatSolv was used. The parallel performance therefore
mainly depends on the speedup of the matrix assembly for the flow and reactive transport
equations.

3.4.1 Case I: Complex Cement/Clay Interactions

3.4.1.1 Solver Statistics

The solver and runtime statistics for Case I are given in Table 9. The number of time steps,
Newton iterations and solver iterations change when different numbers of processors are used.
This is due to round-off errors and is generally inevitable in parallel codes. The linear solver
requires around 25 iterations for each Newton iteration, and around 11 Newton iterations are
required for every time step. For this case, despite the small number of unknowns, the total
runtime is improved significantly with an increasing number of processors. However, due to the
small size of the problem, the performance improvement does not scale ideally with the number
of processors due to the overhead in the parallel part of the code and the remaining sequential
sections of the code in the shared-memory version.

Table 9: Solver and Runtime Statistics of Shared-memory Parallelization for Case I*

Number of Processors 1 4 8

Number of Newton iterations in flow equations 0 0 0

Number of solver iterations in flow equations 0 0 0

Number of Newton iterations in reactive transport equations 83580 81594 80711

Number of solver iterations in reactive transport equations 2088798 2084596 2084495

Number of time steps 7597 7418 7333

Total runtime (hours) 2.01 0.64 0.43

* Performance testing based on simulation time of 200 years.

37

3.4.1.2 Parallel Speedup

Parallel speedup of matrix assembly and total speedup are depicted in Figure 29. The matrix
assembly shows good speedup for up to 8 processors. However, the total speedup does not
increase as much due to the parallel overhead, the sequential solver and system IO. For such a
small case, this speedup can be considered satisfactory and indicates good code performance.

Figure 29: Speedup of OpenMP Parallel Version for Case I, Executed on a Shared-
memory Workstation

3.4.2 Case II: Uranium Remediation by Lactate Injection

3.4.2.1 Solver Statistics

The solver and runtime statistics for Case II are summarized in Table 10. For the solution of the
flow equations, the linear solver takes less than 4 iterations for each nonlinear Newton iteration.
For the solution of the reactive transport equations, the linear solver also only requires a small
number of iterations (3 iterations) per nonlinear Newton iteration. For this case, significant
reductions of runtime are seen for an increased number of processors; however, as for Case I,
runtime reduction does not scale linearly with the number of processors mostly due to the
remaining sequential parts in the shared memory version. Memory bandwidth may be also an
important factor that affects the parallel performance.

38

Table 10: Solver and Runtime Statistics of Shared-memory Parallelization for Case II*

Number of Processors 1 4 8

Number of Newton iterations in flow equations 190 190 190

Number of solver iterations in flow equations 661 661 661

Number of Newton iterations in reactive transport equations 1449 1449 1449

Number of solver iterations in reactive transport equations 3274 3274 3274

Number of time steps 190 190 190

Total runtime (hours) 3.19 0.98 0.64

* Performance testing based on simulation time of 1 day.

3.4.2.2 Parallel Speedup

Parallel speedup of the matrix assembly for both flow and reactive transport, and total speedup
are presented in Figure 30. The matrix assembly for reactive transport shows good speedup for
up to 8 processors. However, the matrix assembly for flow does not achieve good speedup due
to the parallel overhead, because the size of the matrix for the flow equations is much smaller
than the size of the matrix for the reactive transport equations. Since the solution of the flow
equations requires much less CPU time compared to the solution of the reactive transport
equations, the performance of the flow part has a negligible impact on overall performance. The
total speedup using 8 processors is around 5 for this case.

Figure 30: Speedup of OpenMP Parallel Version for Case II, Executed on a Shared-
memory Workstation

39

3.4.3 Case III: Flow and Reactive Transport in a Hypothetical Sedimentary Basin

3.4.3.1 Solver Statistics

The solver and runtime statistics for Case III are summarized in Table 11. For solution of the
flow equations, the linear solver requires around 30 iterations for each nonlinear Newton
iteration. For solution of the reactive transport equations, the linear solver requires around 3
iterations for each nonlinear Newton iteration. The total runtime is reduced substantially with an
increasing number of processors, although the performance is not ideal due to the remaining
sequential parts of the code and parallel overhead.

Table 11: Solver and Runtime Statistics of Shared-memory Parallelization for Case III*

Number of Processors 1 4 8

Number of Newton iterations in flow equations 116 101 96

Number of solver iterations in flow equations 3235 2913 2834

Number of Newton iterations in reactive transport equations 131 105 105

Number of solver iterations in reactive transport equations 353 296 295

Number of time steps 24 25 25

Total runtime (minutes) 13.67 5.20 3.63

* Performance testing based on simulation time of 100 years.

3.4.3.2 Parallel Speedup

The parallel speedup for matrix assembly for flow, reactive transport and total computing time
are depicted in Figure 31. The matrix assembly for both reactive transport and flow shows good
speedup for up to 8 processors. The total speedup using 8 processors is around 4 for this case
due to the sequential solver and other sequential parts of the shared-memory version.

40

Figure 31: Speedup of OpenMP Parallel Version for Case III, Executed on a Shared-
memory Workstation

3.4.4 Summary of Shared-memory Parallel Performance

For the shared-memory version, the code is not fully parallelized. The lack of complete
parallelization plays an important role in the parallel performance, especially when larger
numbers of processors are used. Generally, good speedup is achieved for the matrix assembly
in the reactive transport part of the code, including the computation of local mass conservation
equations. Other parts of the code do not show good speedup due to the parallel overhead. For
ill-conditioned problems, the PARDISO direct solver provides a suitable alternative to the
WATSOLV iterative solver. However, for most reactive transport problems the matrices are well
conditioned and the iterative solver is generally much faster than the direct solver - if a good
preconditioning method is used. These results suggest that the shared-memory version is useful
for cases that do not require much CPU-time in the solver and system input and output.

3.5 DISTRIBUTED-MEMORY PARALLEL PERFORMANCE

The distributed-memory version of ParMIN3P-THCm is fully parallelized and PETSc is used as
the default parallel solver. For Case I, because it represents a small scale problem, the parallel
performance is only tested for up to 8 processors; however, for Case II and Case III, the parallel
performance is tested for up to 128 processors.

41

3.5.1 Case I: Complex Cement/clay Interactions

3.5.1.1 Solver Statistics

The solver and runtime statistics for Case I are presented in Table 12. The number of Newton
iterations and time steps generally increase as the number of processors increases. This is due
to the domain decomposition method; the parallel solver usually requires more iterations when
more processors are used.

Table 12: Solver and Runtime Statistics of Distributed-memory Parallelization for Case I*

Number of Processors 1 4 8

Number of Newton iterations in flow equations 0 0 0

Number of solver iterations in flow equations 0 0 0

Number of Newton iterations in reactive transport
equations

106371 131504 138835

Number of solver iterations in reactive transport
equations

2299276 2494335 2555785

Number of time steps 7846 9494 9940

Total runtime (hours) 2.86 1.31 0.88

* Performance testing based on simulation time 200 years.

3.5.1.2 Parallel Speedup

Parallel performance for Case I, including speedup for the matrix assembly of the reactive
transport problem, speedup for the reactive transport solver and total speedup, is depicted in
Figure 32. For this small-scale problem, the performance of the parallel solver is quite sensitive
to the matrix pattern and communication cost. The speedup of the solver does not increase
when 4 processors are used, but increases up to 5 when 8 processors are used. Generally, the
total speedup for this case is less than 4 due to communication costs and load balancing
problems, which both play a significant role due to the small problem size. The load imbalance
is mainly caused by the output computational costs since not all processors export transient
data during the simulation.

42

Figure 32: Speedup of MPI Parallel Version for Case I, Executed on the WestGrid
Orcinus Cluster

3.5.2 Case II: Uranium Remediation by Lactate Injection

3.5.2.1 Solver Statistics

The solver statistics for Case II are given in Table 13. The number of linear solver iterations,
Newton iterations and time steps generally increase as the number of processors increases due
to the use of the parallel solver and the domain decomposition method.

Table 13: Solver and Runtime Statistics of Distributed-memory Parallelization
for Case II*

Number of Processors 8 16 32 64 128

Number of Newton iterations in flow equations 44828 44890 44900 44898 44934

Number of solver iterations in flow equations 52851 54415 54249 55206 55725

Number of Newton iterations in reactive
transport equations

243005 243906 243191 243339 244003

Number of solver iterations in reactive
transport equations

599914 611589 621545 632550 653349

Number of time steps 44825 44885 44897 44893 44928

Total runtime (hours) 83.51 44.97 23.09 12.94 7.38

* Performance testing based on simulation time 12 hours.

43

3.5.2.2 Parallel Speedup

The speedup due to parallelization is significant for this case (Figure 33). Speedups for matrix
assembly in both flow and reactive transport problems scale almost linearly with the number of
processors. The speedup of the solver for the reactive transport does not increase much for
more than 32 processors and the speedup of the solver for the flow problem does not increase
beyond 16 processors. For the flow equations, the performance of the solver even deteriorates
because of the limited size of the flow matrix (61165 nonzeros), which is much smaller in size
than the matrix (6134805 nonzeros) for the reactive transport equations. The speedup for matrix
assembly of the reactive transport equations increases up to 109 when using 128 processors
and the parallel efficiency is 85%. The total speedup for Case II is 92 when using 128
processors and the parallel efficiency is 72%. The speedup is mainly hindered by the solver due
to the problem size and the matrix properties. The output also affects parallel performance,
because parallel output does not scale as well as the numerical solution of the problem.

Figure 33: Speedup of MPI Parallel Version for Case II, Executed on the WestGrid
Orcinus Cluster

3.5.3 Case III: Flow and Reactive Transport in a Hypothetical Sedimentary Basin

3.5.3.1 Solver Statistics

The solver statistics for Case III are given in Table 14. The number of linear solver iterations
and Newton iterations fluctuates as the number of processors increases.

44

Table 14: Solver and Runtime Statistics of Distributed-memory Parallelization
for Case III*

Number of Processors 8 16 32 64 128

Number of Newton iterations in flow equations 26980 27181 26750 26843 26662

Number of solver iterations in flow equations 84291 84442 85111 85568 81144

Number of Newton iterations in reactive
transport equations

31505 31505 31441 31441 31489

Number of solver iterations in reactive
transport equations

90280 90271 90284 90291 90727

Number of time steps 6504 6504 6504 6504 6504

Total runtime (hours) 8.11 4.33 2.22 1.21 0.74

* Performance testing based on simulation time 1000 years.

3.5.3.2 Parallel Speedup

Similar to Case II, the speedup is also significant for this case (Figure 34). Speedups for matrix
assembly of both flow and reactive transport problems scale almost linearly with the number of
processors. The solver for the reactive transport equations scales well up to 128 processors
while the solver for the flow equations is scalable up to 32 processors. The performance of the
solver deteriorates for the flow equations because of its small problem size. The speedup for
matrix assembly in both flow equations and reactive transport equations can reach up to 114
when using 128 processors and the parallel efficiency is 89%. The total speedup is 88 using
128 processors and the parallel efficiency is 68%. The speedup is mainly hindered by the solver
due to the relatively small problem size and matrix properties. As for Case II, the output also
affects the parallel performance.

Figure 34: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid
Orcinus Cluster

45

3.5.4 Summary of Distributed-Memory Parallel Performance

The distributed-memory version is fully parallelized; however, the scalability of different parts of
the code varies with an increasing number of processors. Generally, matrix assembly for both
the flow equations and reactive transport equations is quite scalable with parallel efficiencies
higher than 85%. The performance of the solver depends on the problem size and matrix
properties. The parallel efficiency of the solver for the reactive transport equations is up to 62%
using 128 processors; however, the parallel efficiency of the solver for the flow equations does
not scale well when using more than 32 processors for this problem size (Case II and Case III).
The total parallel efficiency is 68% using 128 processors.

The bottleneck for the distributed-memory parallel version is the scalability of the solver and the
output efficiency because these two parts are not as scalable as the matrix assembly. The
results suggest that the distributed-memory version is suitable for mid-size to large-size
problems. Generally, given the same number of processors, better speedup can be obtained for
larger size problems.

3.6 HYBRID PARALLEL PERFORMANCE

The hybrid parallel version of ParMIN3P-THCm is fully parallelized for the sections of the code
using MPI but is only partially parallelized for the sections involving OpenMP (e.g., output).
PETSc is used as the default parallel solver. For Case I, as it is a small case, the parallel
performance is tested for up to 96 processors while for Case II and Case III, the parallel
performance is tested for up to 768 processors. Code performance is compared between the
hybrid parallel version and the distributed-memory version (i.e. MPI parallel version).

3.6.1 Case I: Complex Cement/Clay Interactions

3.6.1.1 Solver Statistics

The solver and runtime statistics for Case I are given in Table 15. The number of linear solver
iterations and Newton iterations fluctuates with an increasing number of processors. Generally,
more iterations are needed when the number of processors increases.

46

Table 15: Solver and Runtime Statistics for Hybrid Parallelization for Case I*

Number of
Processors

1 4 8 12 24 48 96

Number of Newton
iterations in flow

equations
0 0 0 0 0 0 0

Number of solver
iterations in flow

equations
0 0 0 0 0 0 0

Number of Newton
iterations in

reactive transport
equations

97960 95889 103581 96942 125236 139849 104001

Number of solver
iterations in

reactive transport
equations

2186952 2171330 2260365 2206782 2422811 2592327 2175160

Number of time
steps

7298 7162 7647 7233 9110 10017 7719

Total runtime
(minutes)

117 38 26 20 16 11 6

* Performance testing based on simulation time of 200 years.

3.6.1.2 Parallel Speedup

For this small-scale simulation the speedup is significant when using less than 12 processors.
As shown in Figure 35, the speedup of the matrix assembly continues to increase gradually as
the number of processors increases. Due to the small problem size, the solver achieves almost
no speedup for more than 12 processors, negatively affecting the total speedup. The total
speedup is around 6 when 12 processors are used and 11 when using 48 processors.

47

Figure 35: Speedup of Hybrid Parallel Version for Case I, Executed on the WestGrid
Jasper Cluster

The hybrid parallel version performs similar to the MPI parallel version, as shown in Figure 36.
However, the MPI version can only scale up to 48 processors as it is unable to effectively deal
with additional domain decomposition for a larger number of processors. The speedup of the
hybrid parallel version is slightly improved in comparison to the MPI parallel version, but not
significantly.

Figure 36: Speedup of MPI Parallel Version for Case I, Executed on the WestGrid
Jasper Cluster

48

A direct comparison of total speedup between the hybrid version and the MPI version is
depicted in Figure 37. The speedup of the MPI parallel version is sligthly superior to the hybrid
parallel version for less than 24 processors. However, as the number of processors increases,
the speedup of the hybrid parallel version becomes better than that of the pure MPI parallel
version, implying that it is more scalable.

Figure 37: Comparison of Total Speedup of Hybrid Parallel Version and MPI Parallel
Version for Case I, Executed on the WestGrid Jasper Cluster

3.6.2 Case II: Uranium remediation by lactate injection

3.6.2.1 Solver Statistics

The solver statistics for Case II for the hybrid parallel version are summarized in Table 16. The
number of linear solver iterations and Newton iterations generally increases with an increasing
number of processors.

Table 16: Solver and Runtime Statistics for Hybrid Parallelization for Case II

Number of Processors 12 24 48 96 192 384 768

Number of Newton iterations in flow
equations

140 140 140 140 140 140 140

Number of solver iterations in flow
equations

1347 2358 2563 2410 2547 2554 2840

Number of Newton iterations in
reactive transport equations

904 904 901 901 901 905 912

Number of solver iterations in reactive
transport equations

3859 3864 4413 4419 4418 4484 4363

Number of time steps 140 140 140 140 140 140 140

Total runtime (seconds) 1034 598 297 150 77 41 25

49

3.6.2.2 Parallel Speedup

The speedup that can be achieved is significant for this case, as shown in Figure 38. The
speedup for the matrix assembly of the reactive transport problem is almost linear with an
increasing number of processors, up to 768 processors. The solver for the reactive transport
equations achieves a near-linear speedup for up to 384 processors. Speedups for matrix
assembly and solution of the flow equations are not as substantial as for the reactive transport
equations, due to the smaller size of the flow problem. The total speedup is around 500 when
using 768 processors, implying a parallel efficiency of 65%.

Figure 38: Speedup of Hybrid Parallel Version for Case II, Executed on the WestGrid
Jasper Cluster

The hybrid parallel version shows better scalability than the MPI parallel version when the
number of processors exceeds a specific threshold, as shown in Figure 39. For the hybrid
parallel version, the matrix assembly is scalable for up to 768 processors for the reactive
transport equations, but only up to 384 processors for the flow equations. The solver is scalable
up to 192 processors for the reactive transport equations, but only for 24 proessors for the flow
equations. The total speedup is around 260 when using 768 processors (Figure 39), implying a
parallel efficiency of around 34%.

50

Figure 39: Speedup of MPI Parallel Version for Case II, Executed on the WestGrid
Jasper Cluster

A direct comparison between the total speedups between the hybrid version and the MPI
version is provided in Figure 40. The speedup of the MPI version is slightly better than that of
the hybrid version for less than 48 processors, e.g., the speedup is 42 for hybrid version and 43
for MPI version. However, as the number of processors increases, speedup of the hybrid
parallel version becomes substantially superior to the MPI version, implying that the hybrid
version is more scalable.

Figure 40: Comparison of Total Speedup of the Hybrid Parallel Version and the MPI
Parallel Version for Case II, Executed on the WestGrid Jasper Cluster

51

3.6.3 Case III: Flow and reactive transport in a hypothetical sedimentary basin

3.6.3.1 Solver Statistics

The solver statistics for Case III for the hybrid parallel version are provided in Table 17. As for
the previous test cases, the number of linear solver iterations and Newton iterations generally
increase with an increasing number of processors.

Table 17: Solver and Runtime Statistics for Hybrid Parallelization for Case III

Number of Processors 12 24 48 96 192 384 768

Number of Newton iterations in flow
equations

633 636 633 646 646 649 660

Number of solver iterations in flow
equations

1717 1833 1700 1728 1721 1729 1762

Number of Newton iterations in
reactive transport equations

825 825 825 825 825 826 836

Number of solver iterations in reactive
transport equations

2257 2257 2257 2263 2263 2279 2296

Number of time steps 205 205 205 205 205 205 204
Total runtime (seconds) 996 549 279 152 80 46 29

3.6.3.2 Parallel Speedup

The speedup achieved is also significant for this case, as shown in Figure 41. The speedups for
both matrix assembly and solution of the reactive transport equations are almost linear as the
number of processors increases, up to 768 processors. The speedups for the matrix assembly
and for the solution of the flow equations are less than the corresponding speedups for reactive
transport equations, due to the smaller size of the flow problem. The total speedup is around
410 when using 768 processors, implying a parallel efficiency of 54%.

Figure 41: Speedup of Hybrid Parallel Version for Case III, Executed on WestGrid
Jasper Cluster

52

As for Case I and Case II, the results demonstrate that the hybrid parallel version is more
scalable than the MPI version, if the number of processors exceeds a specific threshold, as
shown in Figure 42. The matrix assembly in the hybrid version scales well up to 768 processors
for the reactive transport equations; however, for the flow equations good scaling can only be
observed up to 384 processors. The solver is scalable up to 768 processors for the reactive
transport equations, but only up to 24 processors for the flow equations. For the MPI version,
there is no total speedup for more than 384 processors. The total speedup is around 128 using
384 or 768 processors and the parallel efficiency is around 34% or 17%, respectively.

Figure 42: Speedup of the MPI Parallel Version for Case III, Executed on the
WestGrid Jasper Cluster

A direct comparison of total speedup between the hybrid version and the MPI version is
provided in Figure 43. The speedup of the MPI version is marginally better than that of the
hybrid version for less than 48 processors. However, as the number of processors increases,
speedup of the hybrid version is substantially superior in relation to the MPI version, implying
that it is more scalable.

53

Figure 43: Comparison of Total Speedup between the Hybrid Parallel Version and
the MPI Parallel Version for Case III, Executed on the WestGrid Jasper Cluster

3.6.4 Summary of Hybrid Distributed-Shared-Memory Parallel Performance

In the hybrid parallel version of ParMIN3P-THCm, the MPI part is fully parallelized while the
OpenMP part is only partially parallelized. The scalability of different parts of the code is quite
different as the number of processors increases. Generally, the assembly and solution of the
reactive transport equations are much more scalable than the corresponding tasks for the flow
equations. The performance of the solver depends on the problem size and matrix properties.
For the reactive transport equations, the parallel efficiency for matrix assembly and solver reach
up to 83% and 70%, respectively, when using 768 processors. The total parallel efficiency is
hindered somewhat by the solution of the flow problem, which is not as scalable as the reactive
transport problem due to its smaller scale and lower number of unknowns. The total parallel
efficiency, considering input and output, averages around 54% when using 768 processors.

The MPI parallel version is generally superior to the hybrid version when using a small number
of processors (e.g., less than 96). However, as the number of processors increases, the hybrid
version tends to provide better speedup. The results indicate that the MPI parallel version is
most suitable for simulations utilizing a small number of processors. However, when the
speedup of the MPI parallel version does not further increase for a larger number of processors,
the hybrid parallel version should be used. The performance test for the hybrid version is based
on a mid-size problem (Case II and Case III). The speedup should be more substantial for larger
scale simulations. However, it can be difficult to secure longer runtimes and a larger number of
processors on the WestGrid clusters.

3.7 SYSTEM SCALABILITY

The aforementioned parallel performance tests have shown that ParMIN3P-THCm generally
performs well as the number of processors increases. However, the tests also revealed that the
speedup has an upper limit for a fixed size problem. In this section, a simulation speedup
analysis for different problem sizes is presented for Case III.

54

The selected case focused on flow and reactive transport processes in a hypothetical
sedimentary basin. Four different spatial discretizations were selected for the analysis. The total
degrees of freedom for these four cases are 405,000, 6,480,000, 25,920,000 and 103,680,000,
respectively. Speedups for flow and reactive transport solutions, other operations (e.g., input
and output), and total speedup are depicted in Figure 44 to Figure 47.

Figure 44: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid
Jasper Cluster, Total Degrees of Freedom is 405,000

55

Figure 45: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid
Jasper Cluster, Total Degrees of Freedom is 6,480,000

Figure 46: Speedup of MPI Parallel Version for Case III, Executed on WestGrid
Jasper Cluster, Total Degrees of Freedom is 25,920,000

56

Figure 47: Speedup of MPI Parallel Version for Case III, Executed on the WestGrid
Jasper Cluster, Total Degrees of Freedom is 103,680,000

An important conclusion that can be drawn from this analysis is that the total speedup tends to
approach linear speedup when the degrees of freedom per processor is larger than 135,000.
For the reactive transport problem, the speedup tends to be ideal when the degrees of freedom
per processor is larger than 33,750. As expected from prior analysis, the speedup for solution of
the flow problem is not as scalable as for the reactive transport problem because of the smaller
size of the flow problem. The speedup of other operations is seriously affected by system input
and output, which tends to require intensive communication. Because most of the execution
time is spent on the reactive transport problem, this analysis documents very good scalability for
large reactive transport simulations.

4. SUMMARY AND CONCLUSIONS

A parallel version of the reactive transport code MIN3P-THCm has been developed to facilitate
simulations of large-scale long-term computationally intensive problems by using methods of
high-performance computing. Parallelization of the new code, ParMIN3P-THCm, was achieved
through the domain decomposition method using the PETSc toolkit. Three parallel versions,
including a shared-memory version, a distributed-memory version and a hybrid distributed-
shared-memory version, were developed, suitable for different kinds of problems and computer
architectures.

The code has demonstrated an excellent speedup for reactive transport simulations for up to 8
processors on local shared-memory workstations, 768 processors on the WestGrid
supercomputer for the distributed-memory parallel version, and 768 processors on the WestGrid

57

supercomputer for the hybrid parallel version. The code has shown strong scalability for
modelling large scale reactive transport problems with problem sizes up to 100 million
unknowns.

Detailed performance testing for the three parallel versions has been conducted. For the
shared-memory version, the CPU-intensive tasks, such as matrix assembly for the reactive
transport equations including computing of the local mass conservation equations, show good
speedups; however, other tasks cannot achieve good speedup due to the parallel overhead. For
the distributed-memory version, the code is fully parallelized, but the scalability of different parts
of the code varies substantially with an increasing number of processors. Generally, the CPU-
intensive tasks for both the flow and reactive transport equations scale well with parallel
efficiencies higher than 85%. The performance of the solver depends on the problem size and
matrix properties. The total parallel efficiency reaches up to 72% when using 128 processors.
For the hybrid version, the MPI part is fully parallelized while the OpenMP part is only partially
parallelized. For the reactive transport equations, the parallel efficiency for matrix assembly and
solver is up to 83% and 70%, respectively when using 768 processors. The total parallel
efficiency is hindered by the solution of the flow problem, which is not as scalable as the
reactive transport problem due to its smaller size. The total parallel efficiency, considering input
and output, is around 54% when using 768 processors.

The CPU-intensive tasks in the code are quite scalable and the performance of the solver and
other parts (e.g. input and output) depends on various aspects of the problem (e.g., problem
size, matrix properties, and output). The major bottleneck for the parallel version is the
scalability of the flow problem, which is usually not as scalable as the reactive transport part for
an increasing number of processors. The parallel efficiency of the solver and data input/output
are also important factors that affect the performance.

The total speedup tends to be ideal and near-linear when the degrees of freedom per processor
is larger than 135,000. For the reactive transport solution, the speedup tends to be ideal with
near-linear performance when the degrees of freedom per processor is larger than 33,750. The
speedup for the flow problem and other operations (e.g. input and output) are not as scalable as
the reactive transport problem, because of the smaller size of the flow problem and
communication requirements for system input and output. However, since most of the execution
time is spent in reactive transport, ParMIN3P-THCm shows a strong scalability for large-scale
reactive transport simulations.

The results suggest that it is most efficient to use the shared-memory version for cases that do
not require much solver time, as well as system input and output. In addition, the shared-
memory version is restricted to small and mid-size problems, because increased bandwidth
provides a bottleneck for shared-memory machines.

The MPI parallel version is generally superior in comparison to the hybrid parallel version for a
relatively small number of processors (e.g., less than 96). As the number of processors
increases, the hybrid version generally provides better speedup for the test cases considered.
The results suggest that the MPI parallel version should be used for solution of problems with a
small number of processors. When the speedup of the MPI parallel version no longer increases
with the number of processors, the hybrid parallel version should be used instead. To date, the
performance testing for the hybrid version was based on mid-size problems. It is expected that
better speedup and higher parallel efficiency can be obtained for larger scale simulations. To
date, model testing with more than 1000 processors was not possible because of a lack of
computational resources.

58

The performance analysis of the new code has shown that a speedup greater than 100 is easily
achievable with ParMIN3P-THCm. As a result, it is now possible to carry out 2D reactive
transport simulations that require weeks of CPU time (on a single processor machine) within
hours. The new code will also allow refining model discretization in both space and time and will
facilitate 3D simulations that were impractical to carry out with the sequential version of MIN3P-
THCm.

ACKNOWLEDGEMENTS

This research is supported by NWMO under project GS60. The authors would like to
acknowledge the contributions of the PETSc development team, especially Barry Smith, Jed
Brown, and Satish Balay. Without their help, ParMIN3P-THCm would not have achieved its high
scalability in such a short development time. The authors would also like to acknowledge
WestGrid (www.westgrid.ca) and Compute Canada (www.computecanada.ca) for providing
computing hardware, software and technical support. The development team gives many thanks
to Roman Baranowski and Brent Gawryluik for their patient technical support on WestGrid
Orcinus supercomputer, and Masao Fujinaga for his support on WestGrid Jasper
supercomputer. The authors are also indebted to the Argonne National Lab (www.anl.gov) for
providing a scholarship to Danyang Su to attend the “Argonne Training Program on Extreme-
Scale Computing (ATPESC) 2014“, which provided intensive hands-on training on the key skills,
approaches, and tools to design, implement and execute applications on current high-end
computing systems.

59

REFERENCES

Adams, M., P. Colella, D.T. Graves, J.N. Johnson, N.D. Keen, T.J. Ligocki, D.F. Martin, P.W.

McCorquodale, D. Modiano, P.O. Schwartz, T.D. Sternberg and B. Van Straalen. 2014.
Chombo Software Package for AMR Applications - Design Document, Lawrence
Berkeley National Laboratory Technical Report LBNL-6616E.
https://commons.lbl.gov/display/chombo/Chombo+-
+Software+for+Adaptive+Solutions+of+Partial+Differential+Equations

Balay, S., S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D.

Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith and H. Zhang.
2014a. PETSc Web page. http://www.mcs.anl.gov/petsc.

Balay, S., S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D.

Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp and B.F. Smith and H. Zhang.
2014b. PETSc Users Manual. http://www.mcs.anl.gov/petsc.

Balay, S., W.D. Gropp, L.C. McInnes and B.F. Smith. 1997. Efficient Management of Parallelism

in Object Oriented Numerical Software Libraries, in Modern Software Tools in Scientific
Computing (editors Arge, E., A. M. Bruaset and H. P. Langtangen), 163-202, Birkhauser
Press.

Bea Jofre, S. A, K.U. Mayer and K.T.B. MacQuarrie. 2011. Modelling Reactive Transport in

Sedimentary Rock Environments – Phase II. MIN3P Code Enhancements and
Illustrative Simulations for a Glaciation Scenario. Nuclear Waste Management
Organization Technical Report NWMO TR-2011-13.

Beisman, J.J., R.M. Maxwell, A.K. Navarre-Sitchler, C.I. Steefel and S. Molins. 2015.

ParCrunchFlow: an efficient, parallel reactive transport simulation tool for physically and
chemically heterogeneous saturated subsurface environments. Computational
Geosciences, 19(2), 403-422, doi: 10.1007/s10596-015-9475-x.

Charlton, S.R., and D.L. Parkhurst. 2011. Modules based on the geochemical model PHREEQC

for use in scripting and programming languages. Computers & Geosciences, 37, 1653-
1663.

Clement, T. P. and C. D. Johnson. 2012. RT3D: Reactive Transport in 3-Dimensions.

Groundwater Reactive Transport Models, 96-111 (16), doi:
10.2174/978160805306311201010096.

Gebali, F. 2011. Algorithms and Parallel Computing, Wiley Series on Parallel and Distributed

Computing, Albert Zomaya, Series Editor.

Hammond, G. E., P. C. Lichtner, C. Lu and R.T. Mills. 2012. PFLOTRAN: Reactive Flow &

Transport Code for Use on Laptops to Leadership-Class Supercomputers. Groundwater
Reactive Transport Models, 141-159(19), doi: 10.2174/978160805306311201010141.

Hao, Y., Y. Sun and J.J. Nitao. 2012. Overview of NUFT: A Versatile Numerical Model for

Simulating Flow and Reactive Transport in Porous Media. Groundwater Reactive
Transport Models, 212-239 (28), doi: 10.2174/978160805306311201010212.

60

Kolditz, O., S. Bauer, L. Bilke, N. Bottcher, J. Delfs, T. Fischer, U. Gorke, T. Kalbacher, G.
Kosakowski, C. McDermott, C. Park, F. Radu, K. Rink, H. Shao, H. Shao, F. Sun, Y.
Sun, A. Singh, J. Taron, M. Walther, W. Wang, N. Watanabe, Y. Wu, M. Xie, W. Xu and
B. Zehner. 2012. OpenGeoSys: an open-source initiative for numerical simulation of
thermo-hydro-mechanical/chemical (THM/C) processes in porous media Environmental
Earth Sciences, Springer-Verlag, 67, 589-599

Kollet, S. J. and R.M. Maxwell. 2006. Integrated surface-groundwater flow modelling: A free-

surface overland flow boundary condition in a parallel groundwater flow model,
Advances in Water Resources, (29)7, 945-958.

Lagneau, V. and J.V.D. Lee. 2010. HYTEC results of the MoMas reactive transport benchmark.

Computational Geosciences, Springer Verlag (Germany), 14, 435-449. https://hal-mines-
paristech.archives-ouvertes.fr/hal-00505360.

Marty, N. C.M., O. Bildstein, P. Blanc, F. Claret, B. Cochepin, E.C. Gaucher, D. Jacques, J.E.

Lartigue, S. Liu, K.U. Mayer, J.C.L. Meeussen, I. Munier, I. Pointeau, D. Su and C.I.
Steefel. 2015. Benchmarks for multicomponent reactive transport across a cement/clay
interface, Computational Geosciences, 19, 635-653.

Mayer, K.U., E.O. Frind and D.W. Blowes. 2002. Multicomponent reactive transport modelling in

variably saturated porous media using a generalized formulation for kinetically controlled
reactions. Water Resources Research, 38, 1174, doi: 10:1029/2001WR000862.

Mayer, K.U., and K.T.B. MacQuarrie. 2010. Solution of the MoMaS reactive transport

benchmark with MIN3P - Model formulation and simulation results, Computational
Geosciences, 14, 405-419, doi:10.1007/s10596-009-9158-6.

Mayer, K.U., M. Xie, D. Su and K.T.B. MacQuarrie. 2014. MIN3P-NWMO: A Three-dimensional

Numerical Model for Multicomponent Reactive Transport in Variably Saturated Porous
Media.

McIntosh, J. and L. Walter. 2005. Volumetrically significant recharge of Pleistocene glacial

meltwaters into epicratonic basins: Constraints imposed by solute mass balances.
Chemical Geology, 222, 292-309.

Meeussen, J.C. 2003. ORCHESTRA: An object-oriented framework for implementing chemical

equilibrium models. Environmental Science & Technology, 37, 1175–1182.

Nieplocha, J., B. Palmer, V. Tipparaju, M. Krishnan, H. Trease and E. Apra. 2006. Advances,

Applications and Performance of the Global Arrays Shared Memory Programming
Toolkit, International Journal of High Performance Computing Applications, 20(2), 203-
231.

Parkhurst, D.L. and C.A.J. Appelo. 2013. Description of input and examples for PHREEQC

version 3—a computer program for speciation, batch-reaction, one-dimensional
transport, and inverse geochemical calculations, U.S. Geological Survey Techniques
and Methods, book 6, chap. A43,497 p., available only at http://pubs.usgs.gov/tm/06/a43

Prommer, H. and V.E.A. Post. 2010. PHT3D, A Reactive multicomponent transport model for

saturated porous media. User’s Manual v2.10 (2010). http://www.pht3d.org.

61

Samper, J., C. Yang, L. Zheng, L. Montenegro, T. Xu, Z. Dai, G. Zhang, C. Lu and S. Moreira.
2012. CORE2D V4: A Code for Water Flow, Heat and Solute Transport, Geochemical
Reactions, and Microbial Processes. Groundwater Reactive Transport Models, 160-185
(26), doi: 10.2174/978160805306311201010160.

Schenk, O. and K. Gärtner. 2011. PARDISO User Guide Version 4.1.2. http://www.pardiso-

project.org/index.php?p=manual.

Şengör, S. S., K. U. Mayer, J. Greskowiak, C. Wanner, D. Su and H. Prommer. 2015. A reactive

transport benchmark on modelling biogenic uraninite re-oxidation by Fe(III)-(hydr)oxides,
Computers & Geosciences, 19, 569-583.

Simunek, J., D. Jacques, M. Sejna and M.T. van Genuchten. 2012, The HP2 Program for

HYDRUS (2D/3D): A coupled code for simulating two-dimensional variably-saturated
water flow, heat transport, and biogeochemistry in porous media, Version 1.0, PC
Progress, Prague, Czech Republic, 76.

Steefel, C.I. 2009. CrunchFlow: Software for modelling multicomponent reactive flow and

transport user’s manual. Earth Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720 USA.

Toselli, A. and O.B. Widlund. 2005. Domain Decomposition Methods – Algorithms and Theory,

pp 4-5, doi: 10.1007/b137868, Springer Berlin Heidelberg.

van der Lee, J., L. De Windt, V. Lagneau and P. Goblet. 2003. Module-oriented modelling of

reactive transport with HYTEC. Computers & Geosciences, 29, 265–275.

van Leer, B. 1977. Towards the Ultimate Conservative Difference Scheme IV. A New Approach

to Numerical Convection, Journal of Computational Physics, 23, 276-299.

Wei, X., W. Li, H. Tian, H. Li, H. Xu and T. Xu. 2015. THC-MP: High performance numerical

simulation of reactive transport and multiphase flow in porous media, Computers &
Geosciences, 80, 26-37.

Wheeler, M. F., S. Sun and S.G. Thomas. 2012. Modelling of Flow and Reactive Transport in

IPARS. . Groundwater Reactive Transport Models. 42-73(32), doi:
10.2174/978160805306311201010042.

White, M.D. and M. Oostrom. 2006. STOMP subsurface transport over multiple phases version

4.0 user’s guide. Pacific Northwest National Laboratory, Washington.

Xu, T., E. Sonnenthal, N. Spycher, G. Zhang, L. Zheng and K. Pruess. 2012. TOUGHREACT: A

Simulation Program for Subsurface Reactive Chemical Transport under Non-isothermal
Multiphase Flow Conditions. Groundwater Reactive Transport Models, 74-95 (22), doi:
10.2174/978160805306311201010074.

Yeh, G.T. and V.S. Tripathi. 1990. HYDROGEOCHEM: A coupled model of HYDROlogical

transport and GEOCHEMical equilibrium of multi component systems, ORNL 6371, Oak
Ridge National Laboratory, p. 37831. Oak Ridge National Laboratory, Oak Ridge.

62

Yeh, G. T., V.S. Tripathi, J.P. Gwo, H.P. Cheng, J. –R.C. Cheng, K.M. Salvage, M.H. Li, Y.
Fang, Y. Li, J. T. Sun, F. Zhang and M.D. Siegel. 2012. HYDROGEOCHEM: A Coupled
Model of Variably Saturated Flow, Thermal Transport, and Reactive Biogeochemical
Transport. Groundwater Reactive Transport Models, 3-41(36), doi:
10.2174/978160805306311201010003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

