Continued Application of U-Pb Geochronology Methods to the Absolute Age Determination of Secondary Calcite: 2014-2016

NWMO-TR-2016-07

July 2016

Donald W. Davis Department of Earth Sciences University of Toronto

NUCLEAR WASTE SOCIÉTÉ DE GESTION MANAGEMENT DES DÉCHETS ORGANIZATION NUCLÉAIRES

Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor

22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca

Continued Application of U-Pb Geochronology Methods to the Absolute Age Determination of Secondary Calcite: 2014-2016

NWMO-TR-2016-07

July 2016

Donald W. Davis

Department of Earth Sciences University of Toronto

This report has been prepared under contract to NWMO. The report has been reviewed by NWMO, but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO.

All copyright and intellectual property rights belong to NWMO.

Document History

Title:	Continued Application of U-Pb Geochronology Methods to the Absolute Age Determination of Secondary Calcite: 2014-2016						
Report Number:	NWMO-TR-2016-07						
Revision:	R000	Date:	July 2016				
Department of Earth Sciences, University of Toronto							
Authored by:	Donald W. Davis						
Verified by:	Mike Hamilton						
Approved by:	proved by: Sandra Kamo						
Nuclear Waste Management Organization							
Reviewed by:	viewed by: A. Parmenter						
Accepted by: M. Jensen							

ABSTRACT

Title:Continued Application of U-Pb Geochronology Methods to the Absolute
Age Determination of Secondary Calcite: 2014-2016Report No.:NWMO-TR-2016-07Author(s):Donald W. DavisCompany:University of TorontoDate:July 2016

Abstract

Previous results reported by Davis (2013) determined that uranium-lead geochronology techniques, including laser ablation inductively-coupled mass spectrometry and thermal ionization mass spectrometry, were suitable for assessing the timing of emplacement of secondary vein and vug calcite in deep Ordovician and shallow Devonian-aged carbonate sedimentary rocks of the Michigan Basin. The current report presents results on the absolute age determination of 15 additional secondary calcite samples. These samples were collected from drill core of Devonian and Silurian age from the Paleozoic carbonate sedimentary rocks beneath the Bruce nuclear site, near Tiverton, Ontario (Intera, 2011; NWMO, 2011). The current report also includes revised previous results from Davis (2013) that together summarize the current understanding of the geochronology of secondary calcite mineral emplacement within the Paleozoic bedrock on the eastern flank of the Michigan Basin beneath the Bruce nuclear site.

The new data presented herein reveal a complex history of fluid mobility, and vein and vug emplacement ranging from late during the Paleozoic Era to the Pleistocene. Samples that extend down to approximately 180 metres vertical depth below ground surface (Upper Silurian Bass Islands Formation) show evidence for multiple secondary calcite ages ranging between ca. 100 and 0 Ma. Secondary calcite from the deeper Silurian Salina A1-Unit yields an age of 318 \pm 10 Ma, as well as, scattered younger ages.

Some of the LA-ICPMS data acquisition methods employed by Davis (2013) were identified for additional refinement, including the selection of the most suitable analytical standard and the selection of optimal laser beam wavelength for data collection. In addition, new software has been employed for processing the LA-ICPMS data. The outcome is a statistically more robust methodology for the application of U-Pb geochronology techniques to secondary calcite.

TABLE OF CONTENTS

AB	STRACT		Page
1			1
1.			1
	1.1	SAMPLES	1
2.		METHODS	4
	2.1 2.1.1 2.1.2	BIAS CORRECTIONS FOR NIST610 AND NIST612 GLASS STANDAR ANALYSIS USING THE 213 nm AND 193 nm LASERS 213 nm Laser 193 nm Laser	2 DS 5 7
	2.2	LA-ICPMS DATA REDUCTION	8
	2.3	ID-TIMS METHOD	9
3.		LA-ICPMS RESULTS	10
	3.1	RECALCULATION OF PREVIOUS LA-ICPMS DATA	10
	3.2	NEW LA-ICPMS DATA FROM DGR CORE	13
	3.2.1	DGR-3-037.37 Devonian Lucas Formation	13
	3.2.2	DGR-4-073.73 Devonian Amherstburg Formation	14
	3.2.3	DGR-3-096.59 Devonian Bois Blanc Formation	14
	3.2.4	DGR-3-113.55 Devonian Bois Blanc Formation	14 17
	3.2.6	DGR-1-120.18 Devonian Bois Blanc Formation	18
	3.2.7	DGR-3-133.17 Devonian Bois Blanc Formation	19
	3.2.8	DGR-3-162.07 Silurian Bass Islands Formation	19
	3.2.9	DGR-3-180.06 Silurian Bass Islands Formation	19
	3.2.10	DGR-3-186.43 Silurian Bass Islands Formation	20
	3.2.11	DGR-4-344.18 Silurian Salina A-1 Carbonate	21
4.		ID-TIMS RESULTS	23
5.		DISCUSSION	25
6.		SUMMARY	27
RE	FERENCES		28
AP	PENDIX A1	SUMMARY OF RECALCULATED LA-ICPMS U-Pb ISOTOPIC ANALYSE ON VEIN CALCITE	:S 33
AP	PENDIX A2	SUMMARY OF NEW LA-ICPMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE	49
AP	PENDIX A3	SUMMARY OF ID-TIMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE	E61

LIST OF TABLES

LIST OF FIGURES

Page

Page

Figure 1: Secondary Calcite Surface and Core Sample Stratigraphic Locations for the 2013
(Davis, 2013) and 2014-2015 Phases of Work and Summary of Age Results from all
Successful U-Pb Analyses. Plot also Includes Samples that Failed to Yield Useful Age
Data
Figure 2: A) Whole Calcite Grains on Parafilm Mounted for LA-ICPMS Analysis. B) Polished
Calcite Grains Mounted for LA-ICPMS Analysis. C) Vug Rimmed with Calcite Crystals in
Dolostone Sample DGR-1-034 Mounted for LA-ICPMS Analysis4
Figure 3: A) U-Pb Concordia Data on the Walnut Creek Calcite Using the NIST610 Standard
Ablated with a 213 nm Laser Beam. B) U-Pb Concordia Data on the Walnut Creek Calcite
Using the NIST612 Standard Ablated with a 213 nm Laser Beam
Figure 4: A) U-Pb Concordia Data on the Walnut Creek Calcite Using the NIST610 Standard
Ablated with a 193 nm Laser Beam. B) U-Pb Concordia Data on the Walnut Creek Calcite
Using the NIST612 Standard Ablated with a 193 nm Laser Beam7
Figure 5: A to D) U-Pb Concordia Data from Surface Vein Calcites Recalculated with New
Software and Corrected for Calcite-Standard Glass Bias11
Figure 6: U-Pb Concordia Data from Shallow Vein Calcites Recalculated with New Software
and Corrected for Calcite-Standard Glass Bias. Lines are Approximate Visual Fits to Data
Subsets12
Figure 7: U-Pb Concordia Data from Ordovician Vein Calcite Recalculated with New Software
and Corrected for Calcite-Standard Glass Bias12
Figure 8: U-Pb Concordia Data from Sample DGR-3-037.37 Vein Calcites
Figure 9: U-Pb Concordia Data from Sample DGR-4-073.73 Vein Calcites14
Figure 10: A) Exposed Face of Sub-Vertical Calcite-Coated Fracture in DGR-1-113.55 Core
Sample. B) U-Pb Concordia Data from Sample DGR-1-113.55 Vein Calcites with
Approximate Contamination Lines. Most of the Data in the Younger (<50 Ma) Arrays are
From Crystal Faces15
Figure 11: A) BSE Image of a Polished Vein Calcite Grain from Sample DGR-1-113.55. Data
for this Grain is Shown Below. B) U-Pb Concordia Data on a Single Polished Vein Calcite
Grain from Sample DGR-1-113.55
Figure 12: A) Exposed Face of Sub-Vertical Calcite-Coated Fracture in DGR-3-113.17 Core
Sample. B) U-Pb Concordia Data on Vein Calcite from Sample DGR-3-113.17. All but Four
of the Younger Data Shown in the Inset were from Crystal Faces
Figure 13: U-Pb Concordia Data on Vein Calcite from Sample DGR-1-120.18
Figure 14: U-Pb Concordia Data on Vein Calcite from Sample DGR-3-133.17. Contamination
Lines are Approximate
rigure 15: A) Calcite-Filled Opening in Core Sample DGR-3-180.06. B) U-Pb Concordia Data
On Vein Calcite from Core Sample DGR-3-180.06
Figure To: A) Calcile-Filled Vug from DGK-3-186.43 Near Base of the Bass Islands Formation.
D) U-PD Concordia Data on Vein Calcile from Sample DGR-3-186.43

Figure 17: A) Predominantly Horizontal mm-Scale Calcite Veins with a Few Vertical Veins from	
DGR-4-344.18 in the Silurian Salina A-1 Carbonate Unit. B) U-Pb Concordia Data on Vein	l
Calcite from Sample DGR-4-344.182	2
Figure 18: A) U-Pb Concordia Data Measured by ID-TIMS on Vein Calcite from Surface and	
Near-Surface Samples Collected from Devonian and Silurian-aged Bedrock. B) U-Pb	
Concordia Data Measured by ID-TIMS on Vein Calcite from Devonian and Silurian-aged	
Bedrock2	4
Figure 19: A to C) Probability Density Distributions for LA-ICPMS Model Ages from Calcite	
Samples Down to Approximately 180 Metres Vertically Below Ground Surface2	6

1. INTRODUCTION

Previous results reported by Davis (2013) determined that existing uranium-lead (U-Pb) geochronology techniques, including laser ablation inductively-coupled mass spectrometry (LA-ICPMS) and thermal ionization mass spectrometry (ID-TIMS), were suitable for assessing the timing of emplacement of secondary vein and vug calcite in Ordovician and Devonian-aged carbonate sedimentary rocks of the Michigan Basin. The current report presents additional results from continued application of U-Pb geochronology to the absolute age determination of 15 secondary calcite samples. These samples were collected from drill core of Devonian and Silurian age from the Paleozoic carbonate sedimentary rocks beneath the Bruce nuclear site, near Tiverton, Ontario (Intera, 2011; NWMO, 2011). The current report also includes revised previous results from Davis (2013) that together summarize the current understanding of the geochronology of secondary calcite mineral emplacement within the Paleozoic bedrock beneath the Bruce nuclear site.

Some of the LA-ICPMS data acquisition methods employed by Davis (2013) were identified for additional refinement, including the selection of the most suitable analytical standard and the selection of optimal laser beam wavelength for data collection. In addition, new software has been employed for processing the LA-ICPMS data. These refinements are described below. The outcome is a statistically more robust methodology for the application of U-Pb geochronology techniques to secondary calcite.

1.1 SAMPLES

New results, based on the refined LA-ICPMS methodology and ID-TIMS analyses, are presented for 15 core samples collected at shallow to intermediate levels beneath the Bruce nuclear site (Table 1 and Figure 1). These carbonate vein samples span the lower Devonian to middle Silurian interval of the Paleozoic succession. Table 1 and Figure 1 also include the list and location, respectively, of samples previously analysed and reported in Davis (2013). Note that the first number of the core sample name (e.g., <u>3</u>-779.15) in Table 1 and Figure 1 reference the borehole number drilled at the Bruce nuclear site, and the second value indicates the depth of the mid-point of the sample measured along the borehole axis. In addition, Figure 1 provides a summary of ages from both the previous data and new data presented below. Appendix A1 and Appendix A2 present summaries of all LA-ICPMS isotopic analyses undertaken on vein calcite. Appendix A3 presents a summary of all ID-TIMS isotopic analyses undertaken on vein calcite.

In both the previous work and recent work discussed herein some of the analysed samples failed to yield useable age information, primarily due to extremely low U and/or high common Pb concentrations. The sample locations for these failed U-Pb analyses are also included on Figure 1.

	Sample #	Formation (Period)	LA-ICPMS	ID-TIMS
	DD12-11NE	Lucas (Devonian)	Х	Х
	DD12-12SE	Lucas (Devonian)	Х	Х
	DD12-12FV	Lucas (Devonian)	Х	Х
	DD12-13N	Lucas (Devonian)	Х	Х
	DGR-3-037.37	Lucas (Devonian)	Х	
	DGR-3-034.61	Lucas (Devonian)	Х	Х
	DGR-3-034.90	Lucas (Devonian)	Х	
	DGR-5-704.44	Collingwood (Ordovician)	Х	
Davis Analyses 2013	DGR-5-706.80	Collingwood (Ordovician)	Х	Х
2010	DGR-6-756.48	Cobourg (Ordovician)		Х
	DGR-6-782.95	Sherman Fall (Ordovician)	Х	
	DGR-3-779.15	Coboconk (Ordovician)	Х	
	DGR-6-883.75	Coboconk (Ordovician)	Х	
	DGR-6-886.91	Coboconk (Ordovician)	Х	
	DGR-6-892.99	Coboconk (Ordovician)	Х	
	DGR-4-818.36	Coboconk (Ordovician)	Х	
	DGR-4-848.29	Cambrian	Х	
	DGR-4-073.73	Amherstburg (Devonian)	Х	
	DGR-3-096.59	Bois Blanc (Devonian)	Х	
	DGR-1-113.17	Bois Blanc (Devonian)	Х	Х
	DGR-3-113.55	Bois Blanc (Devonian)	Х	
	DGR-1-120.18	Bois Blanc (Devonian)	Х	
	DGR-3-133.17	Bois Blanc (Devonian)	Х	
	DGR-3-162.07	Bass Islands (Silurian)	Х	
Davis Analyses 2014-2016	DGR-3-180.06	Bass Islands (Silurian)	Х	Х
2014-2010	DGR-3-186.43	Bass Islands (Silurian)	Х	Х
	DGR-1-277.72	Salina B-Unit (Silurian)	Х	
	DGR-4-344.18	Salina A-Unit (Silurian)	Х	Х
	DGR-3-391.17	Guelph (Silurian)	Х	
	DGR-4-377.35	Guelph (Silurian)	Х	
	DGR-5-412.95	Guelph (Silurian)	Х	
	DGR-2-844.31	Cambrian	Х	

Table 1: List of Samples Analysed Using U-Pb Geochronology Methods, IncludingPrevious (Davis, 2013) and Recent (2014-2016) Work

Figure 1: Secondary Calcite Surface and Core Sample Stratigraphic Locations for the 2013 (Davis, 2013) and 2014-2015 Phases of Work and Summary of Age Results from all Successful U-Pb Analyses. Plot also Includes Samples that Failed to Yield Useful Age Data

2. METHODS

The methods employed for the U and Pb isotope analysis of secondary calcite followed the general approach of Davis (2013). Calcite collected from veins in core samples was analyzed using LA-ICPMS either as whole grains (Figure 2A), polished grains (Figure 2B) or *in situ* in the case of vugs (Figure 2C). For ID-TIMS analysis, which is more accurate than LA-ICPMS but also much more labour intensive, the first step identified grains with relatively high U and low common Pb contents using LA-ICPMS. These grains were subsequently analyzed by ID-TIMS using single or multiple dissolution steps. Davis (2013) showed that general consistency in age results between the two methods provided a measure of confidence that the LA-ICPMS results are broadly accurate.

Figure 2: A) Whole Calcite Grains on Parafilm Mounted for LA-ICPMS Analysis. B) Polished Calcite Grains Mounted for LA-ICPMS Analysis. C) Vug Rimmed with Calcite Crystals in Dolostone Sample DGR-1-034 Mounted for LA-ICPMS Analysis Some refinements to the LA-ICPMS methodology for U-Pb analysis of calcite were made since Davis (2013). This included a determination of the most appropriate external calibration standard to use; either of National Institute of Standards and Technology (NIST) standard glass samples, NIST-610 or NIST-612. It also included determination of optimal laser wavelength, either 213 nm or 193 nm, using two different instrument systems: a New Wave UP-213 laser ablation system with a 213 nm beam coupled to a VG Series 2 Plasmaquad ICPMS with enhanced pumping (S-option) for increased sensitivity, or a New Wave UP-193 laser ablation system with a 193 nm beam coupled to an Agilent 7900 ICPMS. The results of this analysis are presented below in Section 2.1. Section 2.2 describes the rationale for implementing a new data reduction method to the LA-ICPMS results.

The analytical approach was the same regardless of the laser employed. Secondary calcite samples were ablated and analyzed using two instrument systems. The laser beam diameter for calcite was in the range 100-150 microns, 10-20 Hz with a fluence of about 5 J/cm². Frequency and beam size were reduced for the more concentrated NIST610 glass standard and appropriate correction factors applied to calculate U concentrations of samples. Measurements were carried out on ²⁰⁶Pb, ²⁰⁷Pb and ²³⁸U, as well as ²³²Th to test for detrital material. Spots were pre-ablated by rastering the beam over an area larger than the beam diameter to clean the surface. Following a 10 sec period of baseline accumulation the laser sampling beam was turned on and data were collected for 25 seconds followed by a washout period. The same methods were also applied to the new analyses presented in Section 3.2 below.

2.1 BIAS CORRECTIONS FOR NIST610 AND NIST612 GLASS STANDARDS ANALYSIS USING THE 213 nm AND 193 nm LASERS

NIST610 and NIST612 glasses were compared for their applicability as external calibration standards for U-Pb analysis of calcite. While it would be ideal to use a calcite standard, there is currently no available standard that is completely homogeneous and radiogenic. Glasses have the advantage of a uniform well-known composition and they are considered to be adequate provided their relative fractionation value is well established.

In order to determine relative Pb/U ablation fractionation of these glass standards versus calcite, a sample of calcite of known age was used. This is the Walnut Creek calcite, collected by Troy Rasbury (Stony Brook University) and obtained from Randy Parrish (Natural Environment Research Council isotope lab, UK). The age of this calcite is about 254 Ma (Parrish, pers. comm.). It has fairly high U concentrations and low (although not insignificant) common Pb. This comparison was carried out using both 213 nm and 193 nm lasers in order to also establish the optimal laser wavelength for the analyses.

2.1.1 213 nm Laser

The NIST610 standard shows a 33% fractionation of Pb/U ratios relative to calcite using the 213nm laser (Figure 3A). The NIST612 standard also shows a significant fractionation of about 23% (Figure 3B). Data show significant scatter about the mean so these numbers are approximate.

Figure 3: A) U-Pb Concordia Data on the Walnut Creek Calcite Using the NIST610 Standard Ablated with a 213 nm Laser Beam. B) U-Pb Concordia Data on the Walnut Creek Calcite Using the NIST612 Standard Ablated with a 213 nm Laser Beam

2.1.2 193 nm Laser

The NIST610 standard shows no detectable fractionation under the 193 nm laser, giving an age of 255 ± 7 Ma (Figure 4A). The NIST612 standard gives a slightly higher age of 262 ± 8 Ma (Figure 4B). Given the degree of scatter, it was provisionally decided to set the fractionation correction at zero for this standard as well. Note that this experiment was run with the same data set calibrated against the two standards.

Figure 4: A) U-Pb Concordia Data on the Walnut Creek Calcite Using the NIST610 Standard Ablated with a 193 nm Laser Beam. B) U-Pb Concordia Data on the Walnut Creek Calcite Using the NIST612 Standard Ablated with a 193 nm Laser Beam

The ablation characteristics of the NIST610 and NIST612 glasses are somewhat different. NIST612 requires a higher laser power density to ablate evenly because it is a more pure glass

with 37 parts per million (ppm) U, whereas NIST610 is heavily doped with trace elements (462 ppm U) and couples to the laser at about the same power density as calcite. However, NIST610 is closer to calcite samples in terms of U concentration. Analyses using the even more dilute NIST614 glass also show no Pb/U ablation fractionation relative to calcite using the 193 nm laser (R. Parrish, pers. comm.). Ablation is thought to be more efficient at shorter laser wavelengths. With incomplete ablation a portion of the sample may be melted and blown around the ablation pit. Melts are likely to retain U but lose most of the Pb because of its high volatility, thus leading to an increase in measured $^{206}Pb/^{238}U$ ratio. In addition, only about half of the calcite is converted to CO₂ with the 213 nm laser (Münsterer et al., 2011), which can produce explosive disaggregation, leading to signal spikes that must be removed. The 193 nm laser converts most of the sample into CO₂ resulting in much more even ablation with less residual melt. The comparison indicates that all future laser ablation work on secondary calcite should be carried out using a 193 nm or shorter laser wavelength.

Based on the above analyses, fractionation bias corrections for previous and current analyses have been set at -33% for NIST610-based analyses using the 213 nm laser and -23% for NIST612-based analyses with the 213 nm laser. Previous (Davis, 2013) data have been recalculated using these values and the updated results are presented below. A numerical error in the ²⁰⁶Pb/²³⁸U value previously used for the NIST612 standard fortuitously cancelled the fractionation bias so that previously quoted ages using this standard are close to unchanged, whereas previous ages using the NIST610 standard are reduced by a third.

2.2 LA-ICPMS DATA REDUCTION

The LA-ICPMS data presented herein were calculated using software which bases mean ages on the sum of counts in an analytical time-resolved profile rather than the average of ratios, which was the previously employed method. This data reduction method is a more statistically robust approach (Ogliore et al., 2011) for the analysis of secondary calcite as it is common for signal intensity to approach baseline and for data to be noisy.

Data acquisition involves collecting hundreds of cycles of ²⁰⁷Pb, ²⁰⁶Pb and ²³⁸U measurements (about 150 ms per cycle) as the beam penetrates deeper into the sample and displaying the ratios in a time-resolved profile. The traditional approach to data reduction is to define an acceptable window within the data profile and average the ratios. Calcite typically has low (<1 ppm) U concentrations and the most useful samples for dating are those with very low initial common Pb concentrations so that a significant proportion of the Pb is radiogenic. Relatively young (<100 Ma) radiogenic samples will have much lower Pb concentrations than U.

When a signal approaches baseline ratios it becomes unstable since a near-zero measured value in the denominator will cause the apparent ratio to increase without limit. This causes the average to skew toward higher values. One way to prevent this is to base the average ratio on the sum of total counts in the numerator and denominator peaks. A limitation is that calculation of standard deviations cannot be based on the scatter of individual measurements as in the ratio average approach. A standard deviation for a ratio can only be calculated based on the root-mean-square of the errors in the individual peaks, which are $1/\sqrt{N}$ where N is the number of counts in each peak. This will be a minimum estimate of the true standard deviation. The total standard deviations (sigma) for concordia coordinates and their cross correlations (rho) are determined by increasing each input parameter (measured sample and standard ratios) by one sigma, calculating the results and then taking the root-mean-square values of the

deviations of these results from the means to produce variances and covariance for the mean concordia coordinate values.

In addition, when collecting laser ablation data from calcite using a 213 nm laser there are often numerous spikes, particularly on the Pb isotopes, possibly due to the explosive nature of the ablation process. Therefore, many data sets have to be heavily edited. In the ratio averaging approach, anomalously high or low 207 Pb/ 206 Pb and 206 Pb/ 238 U ratios can be edited out independently. In the peak summing approach, peaks rather than ratios are edited and the rejection of one peak requires removal of all other peaks in the cycle. In most cases anomalous spikes are much higher than surrounding signals so the choice of which ones to edit is obvious, but this is not always the case so there is the danger of over-editing, which could bias data. The current software version has an 'auto edit' feature that allows peaks to be edited out to a chosen multiple of a standard deviation ($1/\sqrt{N}$).

Time resolved profiles of ratios for zoned calcite often show variable ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U values, which may be due either to variable age or to variations in the ratio of U to initial common Pb. A feature of the new software is that it presents a time-resolved profile of model ages. Where data are sufficiently precise, this allows resolution and averaging of specific age zones. The new software appears to result in more consistent and statistically robust ages. Meaningful age information can be extracted even when Pb signals are only a few counts in each cycle.

Reduced data are plotted and averaged using Isoplot (Ludwig 2003). Ages and error ellipses are given at 2 sigma unless otherwise noted.

2.3 ID-TIMS METHOD

Relatively large crystals with well-defined LA-ICPMS ages are preferred for ID-TIMS analyses. Crystals are fixed onto warm parafilm to shield broken basal surfaces and dissolved in 2 or 3 stages. The dissolved fractions are spiked and processed separately to determine any age differences between the interior and exterior portions of crystals.

Grains are slightly leached in dilute CLR solution to remove surface Pb contamination. They are then weighed and the volume of 3N HCl necessary to dissolve a given fraction of the crystal calculated. This volume is then applied to the crystal in a clean air box beneath a microscope. After bubbling ceased, the liquid is withdrawn and transferred to a 0.5 ml centrifuge tube, along with ²⁰⁵Pb⁻²³³U-²³⁵U spike solution (Earthtime ET535). Several drops of 9N HBr are added to the liquid in the centrifuge tube. HF is then added to precipitate Ca. It is important that precipitation occur in the presence of excess Br or Cl⁻ anions (hence the HBr) so that dissolved Pb is complexed, since uncomplexed Pb⁺² will co-precipitate with CaF₂. The tubes are then centrifuge and the liquid drawn off with a pipette, evaporated and converted to 2N HBr for chemistry in 50 microlitre anion exchange columns following the method of Krogh (1972). Isotope analysis is carried out using a Daly collector on an MM354 mass spectrometer.

3. LA-ICPMS RESULTS

LA-ICPMS results presented below include data previously presented in Davis (2013) that has been recalculated using the correct fractionation bias corrections and data reduction program described above (Section 3.1). These data are presented in Appendix A1 along with new data on sample DGR-3-034. Results on new samples from deeper levels are calculated using the same corrections and data reduction program and presented in Section 3.2 and Appendix A2. Data in section 3.1 were acquired entirely on the 213 nm laser using either NIST610 or NIST612 standards as noted in the headings of Appendix A1. Data in Section 3.2 were acquired on either the 213 nm or 193 nm laser using only the NIST610 standard, also noted in the headings to Appendix A2.

3.1 RECALCULATION OF PREVIOUS LA-ICPMS DATA

Results originally presented in Davis (2013) have been recalculated using the updated data reduction method described above in Section 2.2. Recalculated data from calcite filling northeast trending fractures at surface (DD12-11NE) are shown on Figure 5A and listed in Appendix A1. The mean regression age is 71 ± 6 Ma on a set of the 35 most radiogenic data but the MSWD is 16 indicating scatter well outside of error. The model ages from the most precise and radiogenic data (207 Pb/ 235 U ages less than 300 Ma) range from 60 ± 4 Ma to 89 ± 6 Ma, suggesting that the ablation pits sampled zones of variable age.

Data from southeast trending fractures at surface (DD12-12SE) are shown on Figure 5B. The majority of data define a mean model age of 89 ± 3 Ma but with significant scatter. A small subset of data show distinctly younger ages, the youngest and most radiogenic giving a 58 ± 2 Ma model age.

A sub-horizontal set (flat veins, DD12-12FV) gave similarly scattered U-Pb data suggesting a possibly trimodal age distribution (Figure 5C). A fairly coherent older cluster gives a mean age of 88 \pm 5 Ma with scatter only slightly outside of error (MSWD – 2 on 25 data). There is a small group of distinctly younger data, the most radiogenic of which gives a model age of 40 \pm 2 Ma. An apparently coherent intermediate cluster may define an age of about 60 Ma but this may also be an artifact of mixing.

A north-trending set of fractures (DD12-13N) gave similar data to the others with most data ranging from about 60 Ma to 85 Ma (Figure 5D). A small subset gives a distinctly younger age of 40 ± 3 Ma (MSWD – 0.9, 5 data).

A great deal of work was done on calcite from shallow brecciated veins and vugs collected from DGR drill hole number 3 at 34 m depth (sample DGR-3-034). Individual crystals were targeted on both natural surfaces and broken bases to see if there was evidence for age zonation. However, results are inconclusive. Plotting all data (Figure 6) shows a similar but somewhat wider range of ages compared to the surface samples. The oldest data define a model age of about 100 Ma although there are near concordant data at about 80 Ma, 40 Ma and possibly one datum at 25 Ma.

Most samples from Ordovician sections proved to be too low in U to obtain useful age information. One calcite vein sample from DGR-6-886.91B yielded a range of radiogenic data

that define an age of 468 ± 25 Ma (MSWD – 1.3) on 6 analyses (Figure 7). This is a middle Ordovician age consistent with the time of deposition of the host rock.

Host dolostone material was found to have relatively high U concentrations but also high common Pb and did not yield useful age information (e.g. Appendix A1, analyses 255-260 from DGR-3-034).

Figure 5: A to D) U-Pb Concordia Data from Surface Vein Calcites Recalculated with New Software and Corrected for Calcite-Standard Glass Bias

Figure 6: U-Pb Concordia Data from Shallow Vein Calcites Recalculated with New Software and Corrected for Calcite-Standard Glass Bias. Lines are Approximate Visual Fits to Data Subsets

Figure 7: U-Pb Concordia Data from Ordovician Vein Calcite Recalculated with New Software and Corrected for Calcite-Standard Glass Bias

3.2 NEW LA-ICPMS DATA FROM DGR CORE

3.2.1 DGR-3-037.37 Devonian Lucas Formation

New U-Pb analyses from a shallow level calcite vein sample produced near-concordant data with a range of model ages from about 40-90 Ma (Figure 8). This approximately matches the range found in the previous dataset.

Figure 8: U-Pb Concordia Data from Sample DGR-3-037.37 Vein Calcites

3.2.2 DGR-4-073.73 Devonian Amherstburg Formation

U-Pb data from this sample shows no evidence for the >50 Ma ages that are abundant at higher levels. Near concordant data show a range of ages (Figure 9) but these cover a younger range of 27-46 Ma. Six of the youngest data define a mean age of 28 ± 2 Ma with some scatter.

Figure 9: U-Pb Concordia Data from Sample DGR-4-073.73 Vein Calcites

3.2.3 DGR-3-096.59 Devonian Bois Blanc Formation

Although this sample shows relatively high U levels, its Pb is generally only weakly radiogenic. Only 5 analyses were done on this sample, one of which gave a slightly discordant datum with a model age of 26 ± 2 Ma.

3.2.4 DGR-1-113.55 Devonian Bois Blanc Formation

In this sample, calcite grains coat surfaces in irregular fractures that are near vertical (Figure 10A). Crystal faces were targeted in addition to broken surfaces to resolve the youngest component. Data are highly variable in terms of radiogenicity but the more concordant data appear to consist of two age components, one being about 50 Ma and the other nearly 0 Ma

(Figure 10B). Most of the data in the younger (<50 Ma) arrays are from crystal faces whereas all other data are from broken or cleaved surfaces. A polished grain that showed zoning under back-scattered electron imaging (Figure 11A) was targeted but proved to be of one age. Analyses show a wide range of discordance but are collinear with an age of 0.7 ± 1.5 Ma (Figure 11B).

Figure 10: A) Exposed Face of Sub-Vertical Calcite-Coated Fracture in DGR-1-113.55 Core Sample. B) U-Pb Concordia Data from Sample DGR-1-113.55 Vein Calcites with Approximate Contamination Lines. Most of the Data in the Younger (<50 Ma) Arrays are From Crystal Faces

Figure 11: A) BSE Image of a Polished Vein Calcite Grain from Sample DGR-1-113.55. Data for this Grain is Shown Below. B) U-Pb Concordia Data on a Single Polished Vein Calcite Grain from Sample DGR-1-113.55

3.2.5 DGR-3-113.17 Devonian Bois Blanc Formation

As with most samples, calcite grains coat surfaces in near vertical fractures (Figure 12A). This sample again gave evidence for multiple generations of calcite growth. Near concordant data give model ages that scatter from 11 Ma to 24 Ma while more discordant imprecise data suggest older components that are 50-70 Ma in age (Figure 12B). Most of the younger data shown in the inset are from crystal faces whereas all others were from broken or cleaved surfaces. The older analyses show relatively high Th/U ratios (Appendix A2, analyses 122-129) whereas the younger analyses show relatively high U concentrations of several ppm.

Figure 12: A) Exposed Face of Sub-Vertical Calcite-Coated Fracture in DGR-3-113.17 Core Sample. B) U-Pb Concordia Data on Vein Calcite from Sample DGR-3-113.17. All but Four of the Younger Data Shown in the Inset were from Crystal Faces

3.2.6 DGR-1-120.18 Devonian Bois Blanc Formation

The 8 most concordant data from this sample are consistent with a single age of 46 ± 3 Ma (Figure 13). This calcite shows anomalously high Th/U ratios, like the ca. 50 Ma component from DGR-3-113. Three other analyses (Appendix A2, analyses 135-137) show much higher U values and low Th/U but are only weakly radiogenic (off scale in Figure 13). These give model ages of about 250 Ma.

Figure 13: U-Pb Concordia Data on Vein Calcite from Sample DGR-1-120.18

3.2.7 DGR-3-133.17 Devonian Bois Blanc Formation

This sample consists of small clear crystals from narrow irregular subvertical fractures. Although the aggregate data define a mean age of 11 Ma, the more precise and concordant data appear to form two groups with ages of about 8 Ma and 12 Ma (Figure 14).

Figure 14: U-Pb Concordia Data on Vein Calcite from Sample DGR-3-133.17. Contamination Lines are Approximate.

3.2.8 DGR-3-162.07 Silurian Bass Islands Formation

Only two analyses were carried out on this sample, which proved to have very low U concentrations and failed to yield model ages (Appendix A2, analyses 195-196).

3.2.9 DGR-3-180.06 Silurian Bass Islands Formation

This sample contains irregular openings splaying off of sub-vertical fractures (Figure 15A). Ten data from this sample are consistent with an age of 18.1 ± 1.4 Ma (Figure 15B) although with some excess scatter (MSWD – 3.8). This age is largely controlled by two near-concordant data.

Figure 15: A) Calcite-Filled Opening in Core Sample DGR-3-180.06. B) U-Pb Concordia Data on Vein Calcite from Core Sample DGR-3-180.06

3.2.10 DGR-3-186.43 Silurian Bass Islands Formation

This sample was collected from a calcite-filled vug (Figure 16A). Although data were collected from both crystal faces and broken basal sections, all data appear to be consistent with a single age of 7.6 ± 0.3 Ma (MSWD – 4.1, Figure 16B).

Figure 16: A) Calcite-Filled Vug from DGR-3-186.43 Near Base of the Bass Islands Formation. B) U-Pb Concordia Data on Vein Calcite from Sample DGR-3-186.43

3.2.11 DGR-4-344.18 Silurian Salina A-1 Carbonate

This sample was distinct from the others in having a set of sub-horizontal calcite filled fractures (Figure 17A). A set of 7 analyses defines a Pb contamination line with an age of 318 ± 10 Ma (MSWD – 3.1, Figure 17B). Four other analyses scatter toward ages as young as approximately 140 Ma.

Figure 17: A) Predominantly Horizontal mm-Scale Calcite Veins with a Few Vertical Veins from DGR-4-344.18 in the Silurian Salina A-1 Carbonate Unit. B) U-Pb Concordia Data on Vein Calcite from Sample DGR-4-344.18

4. ID-TIMS RESULTS

Results of all successful U-Pb analyses by ID-TIMS are reported in Appendix A3 and shown on Figures 18A and 18B. For convenience, this includes analyses from previous reports (Davis 2013) (labeled with dwd analysis numbers in Appendix A3).

All data are well within error of concordia after correction for the common Pb component. ²⁰⁶Pb/²³⁸U ratios give the most precise age estimates and these will be quoted. LA-ICPMS ages are roughly in agreement with ID-TIMS ages where both are available on the same grain. One exception is Grain 2 from DD12-12FV which gives younger ages by both LA-ICPMS and ID-TIMS.

The ID-TIMS data set from surface and near-surface samples (Figure 18A) is sparse compared to that from LA-ICPMS but the overall age pattern is similar (compare with Figures 19A and 19B below). Most ID-TIMS analyses group around about 90 Ma but ages scatter well outside of error suggesting that crystal growth occurred over a substantial time span of about 80-110 Ma either as the result of a continuous process or due to multiple events. Some of the age spread is probably due to mixing with one or more younger phases. This was tested by dissolving and analyzing some crystals in stages. Care was taken to ensure that dissolution progressed from the crystal faces inwards by covering broken basal surfaces with parafilm. However, the integrity of the seal may be compromised after dissolution becomes advanced.

One grain from DD12-13N showed a progression from 73 ± 5 Ma to 104 ± 2 Ma over three dissolution stages as did a grain from DGR3-034, which gave 82 ± 1 Ma for the outer part versus 98 ± 1 Ma for the inner part. However, another grain from DD12-16, a loose unoriented sample collected at surface, shows a highly anomalous old but negatively discordant datum for the first wash, 91.4 ± 0.4 Ma for the second, and the youngest age of 88.2 ± 1.8 Ma for the third. Nevertheless the data show extended age zonation in the calcite crystals and suggest that ages from most whole grain dissolutions are likely to represent mixtures of younger and older components.

ID-TIMS results on deeper near-surface samples (Figure 18B) confirm the presence of younger age components, although these do not always agree with ages from LA-ICPMS. Two-stage dissolutions on each of two grains from DGR-1-113 yield the same 55 Ma ages for the cores, which roughly agree with an estimate of the older age component from LA-ICPMS (Figure 10B). The overgrowth ages of 9 Ma and 17 Ma are older than the ca. 0 Ma age component found by LA-ICPMS. They probably contain some proportion of the older component. Whole grain dissolution of DGR-3-180 gives an age of 60 ± 4 Ma, which is much older than the 18 Ma given by ID-TIMS (Figure 15B), although this is heavily dependent on just 2 radiogenic data. Two-stage dissolution of a grain from DGR-3-186 gives 10 Ma and 14 Ma, although LA-ICPMS gave an apparent age of about 8 Ma (Figure 16B), so there may be older components.

A whole grain dissolution from DGR-4-344 gives an age of 313 ± 1 Ma, in good agreement with the LA-ICPMS age of 318 ± 10 Ma for the older component (Figure 17B), while an imprecise age from a deeper Ordovician vein gives 451 ± 38 Ma (Appendix A3).

Figure 18: A) U-Pb Concordia Data Measured by ID-TIMS on Vein Calcite from Surface and Near-Surface Samples Collected from Devonian and Silurian-aged Bedrock. B) U-Pb Concordia Data Measured by ID-TIMS on Vein Calcite from Devonian and Silurian-aged Bedrock

5. DISCUSSION

The new data, based on analysis of 15 secondary near-surface calcite samples from Silurian and Devonian formations, reveal a complex history of fluid mobility and vein and vug emplacement ranging from late during the Paleozoic Era to the Pleistocene (Figure 19).

Plotting the probability density distribution of LA-ICPMS model ages from all surface samples gives a broad peak around 90 Ma with shoulders at about 100 Ma and 80 Ma and a distinct younger peak at 40 Ma (Figure 19A). For samples from the near-surface (e.g., DGR-3-034), the main distribution peaks at 100 Ma but with a slightly older shoulder and extends down to about 80 Ma. There is again a distinct younger peak at 40 Ma (Figure 19B).

Samples that extend down to approximately 180 metres vertical depth below ground surface in the Devonian and Upper Silurian sections show evidence for multiple events younger than the main growth event at surface (Figure 19C). At 73 m along borehole DGR-4 (DGR-4-73.73) ages range from about 46 Ma to 27 Ma. At 113 m along borehole DGR-1 (DGR-1-113) there is evidence for a distinct ca. 50 Ma growth event, as well as, one in geologically recent time (0.7 \pm 1.5 Ma). Calcite from approximately the same depth in borehole DGR-3 (DGR-3-113) shows hints of a ca. 50 Ma event but the most recent growth gives U-Pb ages that scatter from about 24 Ma to about 11 Ma. Vein calcite from 120 m depth along borehole DGR-1 (DGR-1-120) seems to preserve evidence for a 46 \pm 3 Ma growth event. There appears to be evidence for growth of a distinct high Th/U phase at ca. 50 Ma in DGR-3-113, DGR-1-120 and possibly a few of the analyses from DGR-1-113.

At 133 m along borehole DGR-3 near the base of the Devonian (DGR-3-133) there is evidence for two growth events at about 12 Ma and 7 Ma. Veins from the Upper Silurian (DGR-3-180) record 18 \pm 1 Ma, based largely on two near-concordant analyses, while several meters deeper in the same borehole (DGR-3-186) calcite from a vug records a growth event at 7.6 \pm 0.3 Ma with no evidence of any other ages.

In general, many of the results from the surface and near surface environment down to approximately 180 m vertical depth, appear to be the result of mixing between multiple generations of calcite but some appear to represent single or short-period events. Interestingly, the ca. 100 – 80 Ma ages are only evident in samples down to approximately 34 m vertical depth while ages down to ca. 0 Ma are found as deep as the Upper Silurian Bass Islands Formation (Figure 1). The entire shallow portion of the bedrock is within a zone of modern karst development beneath the Bruce nuclear site and, in addition, the top of the Bass Islands Formation is also recognized as a paleokarst horizon (Worthington, 2011).

In the Silurian Salina A-1 Carbonate Unit (DGR-4-344), sub-horizontal veins were filled with calcite at about 318 ± 10 Ma, at approximately the same time as the Mississippian to Pennsylvanian transition. Younger ages measured in this sample are scattered and may be the result of mixing with <100 Ma generations of calcite.

The samples collected from the Silurian Guelph Formation (e.g., DGR-3-391), as well as most of the deeper Ordovician samples analysed, proved to be too low in U to provide reliable age information. The only useful LA-ICPMS age data are from an Ordovician sample (DGR-6-886), in which vein calcite defines a much older age of 468 ± 25 Ma, while an ID-TIMS age on DGR-6-756 gave a similar age of 451 ± 38 Ma.

Figure 19: A to C) Probability Density Distributions for LA-ICPMS Model Ages from Calcite Samples Down to Approximately 180 Metres Vertically Below Ground Surface
6. SUMMARY

The results of the present study confirm the previous interpretation of Davis (2013) that the Ordovician sedimentary succession beneath the Bruce nuclear site remained isolated from post-Paleozoic geological perturbations that influenced the Devonian and Upper Silurian formations. New standard calibration factors refine previous LA-ICPMS age interpretations.

Secondary calcite in veins from the Devonian and Upper Silurian samples is much younger than the host rock and appears to have crystallized over an extended period of time between about 100 Ma and 0 Ma. In general, many of the results from the surface and near surface environment appear to be the result of mixing between multiple generations of calcite but some appear to represent single or short-period events. The youngest, Pleistocene, ages were identified in samples from the Upper Silurian Bass Islands Formation. The entire shallow portion of the bedrock is within a zone of modern karst beneath the Bruce nuclear site and, in addition, the top of the Bass Islands Formation is also recognized as a paleokarst horizon (Worthington, 2011).

Secondary calcite from the deeper Silurian Salina A1-Unit yields a fairly well-defined age of 318 \pm 10 Ma, as well as, scattered younger ages. Based on available data, the deep Ordovician formations experienced one or more secondary calcite precipitation events dated in separate samples at 468 \pm 25 Ma (LA-ICPMS) and 451 \pm 38 Ma (ID-TIMS). These ages are contemporaneous with the timing of both sediment deposition and the Taconic Orogeny.

Refinements to the methodology described in Davis (2013), including the dependence of sample-standard bias on laser wavelength, indicate that future laser ablation work on calcite should be carried out using a NIST612 standard with a 193 nm wavelength laser.

REFERENCES

Davis, D.W. 2013. Application of U-Pb Geochronology Methods to the Absolute Age Determination of Secondary Calcite. Nuclear Waste Management Organization report NWMO TR-2013-21, 31 pages. Toronto, Canada.

Intera. 2011. Descriptive Geosphere Site Model. Intera Engineering Ltd. report for the Nuclear Waste Management Organization NWMO DGR-TR-2011-24 R000. Toronto, Canada.

Jaffey, A.H., K.F. Flynn, L.E. Glendenin, W.C. Bentley and A.M. Essling. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review 4: 1889-1906.

Ludwig, K.R. 2003. User's manual for Isoplot 3.00 a geochronological toolkit for Excel. Berkeley Geochronological Center Special Publication 4, 71 p.

Münsterer, C. et al., 2011. Ion Beam Physics, ETH Zurich Annual Report p 26.

NWMO. 2011. Geosynthesis. Nuclear Waste Management Organization Report NWMO DGR-TR-2011-11 R000. Toronto, Canada.

Ogliore, R.C., G.R. Huss and K. Nagashima. 2011. Ratio estimation in SIMS analysis. Nuclear Instruments and Methods in Physics Research B 269: 1910–1918.

Worthington. 2011. Karst Assessment. Worthington Groundwater report for the Nuclear Waste Management Organization NWMO DGR-TR-2011-22 R000. Toronto, Canada.

APPENDIX

CONTENTS

Page

APPENDIX A1	SUMMARY OF RECALCULATED LA-ICPMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE	.33
APPENDIX A2	SUMMARY OF NEW LA-ICPMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE	.49
APPENDIX A3	SUMMARY OF ID-TIMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE	.61

	Spot	U	Pb ²⁰⁶	<u>²³²Th</u>	207 <u>Pb</u>	1	206 Pb	1	Error	206 Pb	1	²⁰⁶ Pb	1	207 Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
	DD12-11NE vein	set													
	whole grain NIS	1-610	0.055	0.000	0 770	0.000			0 50000	05	45			10.10	70
1	DD12-11-3.1	1.7	0.055	0.003	2.772	0.290	0.0368	0.0023	0.59062	85	15	233	14	1348	76
2	DD12-11-3.2	2.8	0.082	0.001	1.982	0.168	0.0342	0.0016	0.56444	114	10	217	10	1109	56
3	DD12-11-3.4	3.2	0.102	0.014	1.582	0.131	0.0369	0.0016	0.53109	157	9	234	10	963	51
4	DD12-11-3.5	3.2	0.323	0.007	10.629	0.487	0.1175	0.0033	0.61746	167	23	716	19	2491	42
5	DD12-11-3.8	6.2	0.130	0.002	0.614	0.052	0.0243	0.0010	0.46237	129	6	155	6	486	32
6	DD12-11-3.9	2.9	0.093	0.001	1.495	0.132	0.0366	0.0017	0.52527	160	10	232	11	928	52
7	DD12-11-3.10	5.2	0.101	0.003	0.776	0.069	0.0223	0.0010	0.50377	105	6	142	6	583	39
8	DD12-11-3.11	4.6	0.115	0.002	1.084	0.090	0.0290	0.0012	0.51382	132	7	184	8	745	43
9	DD12-11-1.1	1.0	0.013	0.002	0.337	0.030	0.0145	0.0005	0.36661	78	3	93	3	295	22
10	DD12-11-2.1	1.4	0.018	0.004	0.195	0.018	0.0143	0.0004	0.29694	86	2	92	2	181	15
11	DD12-11-3B.1	1.7	0.019	0.002	0.171	0.015	0.0125	0.0003	0.29673	75	2	80	2	161	13
12	DD12-11-4.1	0.6	0.010	0.022	0.470	0.047	0.0190	0.0007	0.37740	101	5	121	4	392	32
13	DD12-11-5.1	0.8	0.020	0.007	1.530	0.087	0.0268	0.0008	0.49637	91	5	171	5	942	34
14	DD12-11-6.1	3.8	0.043	0.008	0.135	0.009	0.0130	0.0002	0.26483	80	1	83	1	129	8
15	DD12-11-6.2	1.1	0.014	0.003	0.338	0.026	0.0142	0.0004	0.36956	76	3	91	3	296	20
16	DD12-11-7.1	0.6	0.008	0.007	0.751	0.070	0.0173	0.0007	0.45336	73	5	111	5	569	40
17	DD12-11-8.1	2.0	0.024	0.004	0.242	0.019	0.0142	0.0004	0.32472	82	2	91	2	220	15
18	DD12-11-9.1	1.3	0.015	0.010	0.216	0.021	0.0141	0.0004	0.31068	83	3	90	3	198	17
19	DD12-11-9.2	1.3	0.015	0.002	0.210	0.021	0.0130	0.0004	0.31735	76	3	83	3	194	17
20	DD12-11-10.1	1.4	0.018	0.004	0.311	0.025	0.0154	0.0004	0.34727	86	3	99	3	275	19
21	DD12-11-11.1	1.1	0.012	0.005	0.360	0.029	0.0134	0.0004	0.38539	69	3	86	3	312	22
22	DD12-11-12.1	2.0	0.018	0.001	0.186	0.015	0.0104	0.0003	0.32883	60	2	67	2	173	12
23	DD12-11-13.1	1.2	0.026	0.005	1.508	0.075	0.0241	0.0006	0.50643	74	4	154	4	934	30
24	DD12-11-14.1	3.2	0.030	0.032	0.180	0.013	0.0110	0.0002	0.31815	64	2	70	2	168	11
25	DD12-11-15.1	1.1	0.014	0.003	0.341	0.034	0.0145	0.0005	0.36743	78	3	93	3	298	25
26	DD12-11-16.1	1.9	0.021	0.001	0.197	0.015	0.0131	0.0003	0.30902	77	2	84	2	183	13

APPENDIX A1: SUMMARY OF RECALCULATED LA-ICPMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE

	Spot	U	Pb ²⁰⁶	<u>²³²Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	206 <mark>Pb</mark>	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
27	DD12-11-17.1	1.2	0.015	0.003	0.232	0.022	0.0140	0.0004	0.32085	81	3	90	3	212	18
28	DD12-11-18.1	0.6	0.010	0.000	0.624	0.057	0.0179	0.0007	0.42306	85	4	115	4	492	35
29	DD12-11-19.1	1.1	0.013	0.002	0.271	0.025	0.0138	0.0004	0.34354	77	3	88	3	244	20
30	DD12-11-20.1	0.5	0.006	0.003	0.519	0.058	0.0149	0.0007	0.42114	71	5	96	4	425	38
31	DD12-11-21.1	1.3	0.017	0.010	0.232	0.020	0.0151	0.0004	0.31230	89	3	96	3	212	16
32	DD12-11-22.1	0.7	0.007	0.001	0.481	0.048	0.0118	0.0005	0.44150	51	3	75	3	399	32
33	DD12-11-23.1	0.1	0.006	0.001	4.827	0.606	0.0634	0.0044	0.55495	144	31	396	27	1790	102
34	DD12-11-24.1 Polished NIST612	0.7	0.009	0.006	0.607	0.056	0.0150	0.0006	0.44232	66	4	96	4	482	35
35	DD12-11-12.1	1.5	1.120	0.521	96.466	0.635	0.8421	0.0043	0.78242	-5	21	3938	15	4650	7
36	DD12-11-14.4	0.2	0.003	0.001	0.996	0.082	0.0212	0.0007	0.41307	85	5	135	5	702	41
37	DD12-11-16.1	0.2	0.010	0.014	3.985	0.153	0.0473	0.0009	0.51435	85	8	298	6	1631	31
38	DD12-11-19.1	0.2	0.004	0.002	1.549	0.106	0.0281	0.0008	0.44105	99	6	178	5	950	41
39	DD12-11-19.2	0.6	0.046	0.057	9.137	0.196	0.0965	0.0012	0.56504	113	10	594	7	2352	20
40	DD12-11-19.3	0.2	0.005	0.082	1.417	0.088	0.0299	0.0008	0.42232	119	6	190	5	896	36
41	DD12-11-20.1	0.2	0.008	0.038	2.906	0.163	0.0441	0.0012	0.47947	127	9	278	7	1384	42
42	DD12-11-20.2	0.5	0.007	0.002	0.877	0.050	0.0178	0.0004	0.41985	69	3	114	3	640	27
43	DD12-11-21.1	0.6	0.014	0.005	1.274	0.053	0.0260	0.0005	0.42583	101	3	166	3	834	23
44	DD12-11-21.2	0.2	0.009	0.005	6.303	0.274	0.0665	0.0016	0.54550	78	14	415	10	2019	38
45	DD12-11-22.1	0.3	0.009	0.016	3.146	0.134	0.0404	0.0009	0.50080	88	7	255	5	1444	32
	DD12-12SE vein s	et													
	whole grain NIST-	610													
46	DD12-12-1.1	1.3	0.020	0.004	0.753	0.065	0.0180	0.0007	0.44658	78	5	115	4	570	37
47	DD12-12-2.1	4.8	0.063	0.002	0.214	0.016	0.0152	0.0003	0.30008	90	2	97	2	197	13
48	DD12-12-3.1	1.9	0.024	0.003	0.157	0.022	0.0147	0.0005	0.26597	91	4	94	3	148	19
49	DD12-12-4.1	3.9	0.046	0.001	0.143	0.013	0.0138	0.0003	0.26212	85	2	88	2	135	12
50	DD12-12-5.1	1.5	0.048	0.004	3.955	0.184	0.0374	0.0010	0.57560	20	9	237	6	1625	37
51	DD12-12-6.1	4.6	0.056	0.008	0.173	0.015	0.0139	0.0004	0.28365	84	2	89	2	162	13
52	DD12-12-7.1	1.1	0.016	0.008	0.593	0.068	0.0171	0.0008	0.42036	81	5	109	5	473	43
53	DD12-12-8.1	2.0	0.027	0.057	0.225	0.024	0.0151	0.0005	0.30630	89	3	97	3	206	20

	Spot	U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
54	DD12-12-8.2	0.6	0.010	0.026	0.551	0.076	0.0176	0.0010	0.40659	87	6	112	6	446	49
55	DD12-12-9.1	3.0	0.040	0.005	0.233	0.023	0.0154	0.0005	0.30879	90	3	98	3	213	19
56	DD12-12-10.1	2.7	0.039	0.010	0.224	0.021	0.0164	0.0005	0.29628	98	3	105	3	205	17
57	DD12-12-11.1	2.4	0.026	0.010	0.440	0.037	0.0128	0.0005	0.41675	61	3	82	3	370	26
58	DD12-12-12.1	3.8	0.050	0.007	0.345	0.024	0.0152	0.0004	0.36149	83	3	97	2	301	18
59	DD12-12-12.2	0.6	0.012	0.024	1.321	0.175	0.0247	0.0016	0.48397	89	11	157	10	855	74
60	DD12-12-13.1	2.4	0.039	0.006	0.371	0.033	0.0183	0.0006	0.34844	102	4	117	4	321	24
61	DD12-12-14.1	2.2	0.030	0.009	0.309	0.029	0.0155	0.0005	0.34471	87	3	99	3	274	22
62	DD12-12-15.1	3.8	0.058	0.005	0.390	0.030	0.0175	0.0005	0.36032	96	3	112	3	335	21
63	DD12-12-16.1	6.8	0.068	0.010	0.251	0.016	0.0116	0.0003	0.35368	64	2	74	2	227	13
64	DD12-12-16.2	1.2	0.019	0.010	0.430	0.050	0.0175	0.0008	0.37312	94	5	112	5	363	35
65	DD12-12-17.1	0.4	0.011	0.011	1.925	0.235	0.0296	0.0019	0.51279	87	13	188	12	1090	79
66	DD12-12-19.1	4.7	0.054	0.008	0.202	0.017	0.0131	0.0003	0.31050	77	2	84	2	187	14
67	DD12-12-20.1	6.3	0.096	0.009	0.343	0.021	0.0177	0.0004	0.34265	100	2	113	2	299	16
68	DD12-12-21.1	1.7	0.021	0.009	0.223	0.028	0.0145	0.0006	0.31063	85	4	93	4	205	23
69	DD12-12-22.1 Polished NIST612	1.0	0.015	0.001	0.383	0.048	0.0163	0.0008	0.36665	88	5	105	5	329	35
70	DD12-12-3.1	1.2	0.011	0.007	0.193	0.012	0.0103	0.0002	0.28711	58	1	66	1	180	10
71	DD12-12-4.1	0.6	0.008	0.002	0.346	0.023	0.0154	0.0003	0.31235	84	2	99	2	302	17
72	DD12-12-5.1	0.2	0.007	0.031	2.691	0.129	0.0371	0.0009	0.48842	92	7	235	5	1326	35
73	DD12-12-11.1	0.2	0.004	0.004	1.179	0.077	0.0232	0.0006	0.42738	88	5	148	4	791	35
74	DD12-12-14.1	0.1	0.008	0.012	13.701	0.849	0.1294	0.0048	0.59985	66	40	785	27	2729	57
75	DD12-12-14.2	0.2	0.009	0.009	6.403	0.289	0.0667	0.0016	0.54721	73	14	416	10	2033	39
76	DD12-12-16.1	0.7	0.015	0.004	1.290	0.056	0.0252	0.0005	0.43039	95	3	161	3	841	25
77	DD12-12-17.1	0.1	0.004	0.012	2.558	0.149	0.0358	0.0010	0.48400	91	8	227	6	1289	42
78	DD12-12-17.2	1.5	0.082	0.013	5.580	0.086	0.0617	0.0005	0.53950	88	4	386	3	1913	13
79	DD12-12-14.3	0.5	0.009	0.009	0.969	0.064	0.0232	0.0006	0.39916	100	4	148	4	688	33
80	DD12-12-17.3clr	1.0	0.018	0.003	0.552	0.038	0.0207	0.0005	0.33774	108	3	132	3	446	24
81	DD12-12-17.4cdy	0.3	0.023	0.040	9.031	0.550	0.0969	0.0033	0.56000	122	27	596	19	2341	55
82	DD12-12-19.1cdy	0.3	0.005	0.003	1.104	0.088	0.0241	0.0008	0.41212	98	6	153	5	755	42

	Spot	U	Pb ²⁰⁶	<u>²³²Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	206 <mark>Pb</mark>	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
	DD12-12FV flat ve	eins													
	whole grain NIST-	-610													
83	DD12-12FV-1b.1	2.8	0.021	0.019	0.384	0.027	0.0086	0.0003	0.53352	36	2	55	2	330	20
84	DD12-12FV-1b.2	0.7	0.013	0.031	1.473	0.114	0.0201	0.0009	0.58763	49	6	128	6	919	46
85	DD12-12FV-1b.3	2.0	0.023	0.045	0.272	0.022	0.0133	0.0005	0.43477	74	3	85	3	245	17
86	DD12-12FV-2b.1	2.0	0.024	0.005	0.577	0.038	0.0142	0.0005	0.52352	62	3	91	3	463	24
87	DD12-12FV-2b.2	1.2	0.018	0.008	1.004	0.066	0.0167	0.0006	0.56740	54	4	107	4	706	33
88	DD12-12FV-3b.1	0.9	0.029	0.005	3.219	0.212	0.0370	0.0015	0.60646	60	10	234	9	1462	50
89	DD12-12FV-3b.2	4.9	0.063	0.003	0.221	0.012	0.0148	0.0003	0.39255	87	2	94	2	203	10
90	DD12-12FV-3b.3	0.6	0.013	0.007	1.976	0.168	0.0243	0.0012	0.59783	48	8	155	8	1107	56
91	DD12-12FV-3b.4	1.1	0.014	0.006	0.660	0.057	0.0156	0.0007	0.52847	67	4	100	4	515	34
92	DD12-12FV-3b.5	1.2	0.020	0.007	0.602	0.047	0.0195	0.0007	0.49013	97	4	125	5	479	30
93	DD12-12FV-4b.1	0.6	0.015	0.032	2.179	0.162	0.0282	0.0012	0.59405	62	8	179	8	1175	51
94	DD12-12FV-4b.2	1.6	0.028	0.016	1.102	0.065	0.0206	0.0007	0.55607	74	4	131	4	754	31
95	DD12-12FV-4b.3	1.3	0.015	0.004	0.537	0.043	0.0133	0.0006	0.52241	58	3	85	4	436	28
96	DD12-12FV-5b.1	0.4	0.010	0.024	1.423	0.131	0.0264	0.0014	0.55802	95	8	168	9	899	54
97	DD12-12FV-5b.2	0.8	0.014	0.088	0.826	0.065	0.0199	0.0008	0.52689	86	5	127	5	611	36
98	DD12-12FV-5b.3	0.5	0.009	0.022	0.875	0.084	0.0201	0.0010	0.53267	85	6	128	6	638	45
99	DD12-12FV-7b.1	0.7	0.013	0.032	0.809	0.069	0.0196	0.0009	0.52633	85	5	125	6	602	38
100	DD12-12FV-7b.2	0.5	0.008	0.042	1.222	0.121	0.0188	0.0011	0.57557	55	7	120	7	811	54
101	DD12-12FV-1.1	1.0	0.017	0.001	0.664	0.084	0.0201	0.0011	0.41731	97	7	128	7	517	50
102	DD12-12FV-2.1	0.4	0.005	0.005	0.386	0.078	0.0164	0.0012	0.36778	89	8	105	8	331	56
103	DD12-12FV-2.2	0.8	0.012	0.003	0.835	0.087	0.0169	0.0008	0.47002	66	6	108	5	616	48
104	DD12-12FV-3.1	0.6	0.010	0.003	0.798	0.092	0.0207	0.0011	0.43877	94	7	132	7	596	51
105	DD12-12FV-4.1	0.7	0.016	0.002	1.208	0.114	0.0257	0.0011	0.46993	103	7	163	7	804	51
106	DD12-12FV-4.2	1.8	0.033	0.001	0.690	0.052	0.0210	0.0007	0.41716	102	4	134	4	533	31
107	DD12-12FV-5.1	1.0	0.021	0.001	1.072	0.113	0.0245	0.0012	0.45890	103	8	156	7	740	54
108	DD12-12FV-6.1	2.1	0.029	0.002	0.252	0.021	0.0160	0.0004	0.31550	93	3	102	3	228	17

	Spot	U	Pb ²⁰⁶	<u>²³²Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	206 Pb	1	206 <mark>Pb</mark>	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
109	DD12-12FV-7.1	0.9	0.022	0.001	2.024	0.139	0.0295	0.0011	0.52202	81	8	188	7	1124	46
110	DD12-12FV-8.1	0.4	0.008	0.002	1.027	0.133	0.0237	0.0014	0.45689	100	9	151	9	717	65
111	DD12-12FV-9.1	0.9	0.014	0.000	0.620	0.067	0.0181	0.0008	0.42067	86	5	116	5	490	41
112	DD12-12FV-10.1	0.5	0.012	0.005	1.665	0.159	0.0284	0.0014	0.50095	94	9	180	9	995	59
113	DD12-12FV-10.2	3.5	0.108	0.001	2.672	0.080	0.0353	0.0006	0.53901	81	4	223	4	1321	22
114	DD12-12FV-11.1	1.3	0.022	0.000	0.617	0.052	0.0194	0.0007	0.41111	95	4	124	4	488	32
115	DD12-12FV-12.1	1.5	0.021	0.007	0.343	0.033	0.0161	0.0006	0.35473	89	4	103	4	300	25
116	DD12-12FV-13.1	0.6	0.039	0.002	6.261	0.363	0.0704	0.0024	0.57974	106	18	438	14	2013	50
117	DD12-12FV-14.1	0.6	0.021	0.000	3.016	0.228	0.0407	0.0017	0.53861	98	12	257	10	1412	56
118	DD12-12FV-14.2	2.0	0.075	0.002	3.362	0.124	0.0430	0.0009	0.54730	92	6	271	5	1496	29
119	DD12-12FV-15.1	5.2	0.073	0.001	0.423	0.043	0.0162	0.0006	0.38193	85	4	104	4	358	30
120	DD12-12FV-16.1	8.7	0.095	0.002	0.129	0.009	0.0126	0.0002	0.26180	78	1	81	1	123	8
121	DD12-12FV-17.1	0.4	0.011	0.002	1.351	0.170	0.0302	0.0018	0.46500	125	11	192	11	868	72
122	DD12-12FV-18.1	0.6	0.016	0.000	2.201	0.215	0.0300	0.0016	0.52978	73	11	191	10	1181	66
123	DD12-12FV-19.1	2.2	0.050	0.002	1.704	0.076	0.0267	0.0006	0.51069	80	4	170	4	1010	28
124	DD12-12FV-20.1	2.0	0.021	0.001	0.201	0.024	0.0118	0.0005	0.32299	68	3	75	3	186	20
125	DD12-12FV-21.1 Polished NIST612	6.9	0.041	0.000	0.110	0.011	0.0069	0.0002	0.31260	40	1	44	1	106	10
126	DD12-12FV-1.1r	0.1	0.003	0.003	1.895	0.208	0.0320	0.0016	0.45130	105	12	203	10	1079	71
127	DD12-12FV-1.2	0.2	0.005	0.001	1.056	0.080	0.0232	0.0007	0.40887	95	5	148	5	732	39
128	DD12-12FV-6.1clr DD12-12FV-	0.0	0.002	0.000	5.065	2.720	0.0543	0.0154	0.52978	68	129	341	94	1830	392
129	6.2cdy DD12-12FV-	0.2	0.004	0.022	0.489	0.057	0.0190	0.0007	0.32875	100	5	121	5	404	38
130	14.1clr DD12-12FV-	0.1	0.006	0.008	8.531	0.695	0.0962	0.0043	0.55166	147	35	592	25	2289	72
131	14.2cdy	0.7	0.012	0.006	0.502	0.033	0.0192	0.0004	0.33237	101	3	123	3	413	22
132	DD12-12FV-15.1r	0.0	0.005	0.003	17.666	1.397	0.1694	0.0082	0.61427	102	65	1009	45	2972	74
133	DD12-12FV-15.2	0.2	0.021	0.010	12.194	0.473	0.1170	0.0027	0.58659	71	23	713	15	2619	36
134	DD12-12FV-22.1 DD12-12FV-	0.4	0.011	0.016	2.161	0.148	0.0323	0.0010	0.47176	91	8	205	7	1169	47
135	19.1clr	0.1	0.004	0.010	6.648	0.560	0.0752	0.0034	0.53826	116	28	467	20	2066	72

		(Ppiii)	(PP)							Model Age (Ma)	0.9	Age (Ma)	olg	Age (Ma)	
	Polished NIST612														
136	DD12-12FV-1.1	0.1	0.002	0.001	2.594	0.293	0.0357	0.0020	0.48713	89	16	226	12	1299	80
137	DD12-12FV-1.2	0.1	0.002	0.001	1.973	0.183	0.0276	0.0012	0.47780	71	10	176	8	1106	61
138	DD12-12FV-6.1	0.2	0.003	0.000	0.718	0.060	0.0185	0.0006	0.38579	83	4	118	4	549	35
139	DD12-12FV-6.2	0.2	0.005	0.001	1.394	0.082	0.0260	0.0007	0.43648	94	5	166	4	886	34
140	DD12-12FV-10.1	0.1	0.006	0.019	14.721	0.783	0.1381	0.0045	0.60643	64	37	834	25	2797	50
141	DD12-12FV-10.2	0.6	0.004	0.001	0.299	0.021	0.0082	0.0002	0.36853	38	2	53	1	265	17
142	DD12-12FV-14.1	0.1	0.004	0.004	8.308	0.541	0.0817	0.0030	0.56449	62	27	506	18	2265	58
143	DD12-12FV-14.2	0.2	0.006	0.004	1.679	0.102	0.0306	0.0008	0.44300	108	6	194	5	1000	38
144	DD12-12FV-14.3	0.5	0.025	0.007	6.286	0.136	0.0625	0.0007	0.55199	52	7	391	5	2016	19
145	DD12-12FV-15.1	0.1	0.006	0.002	7.383	0.397	0.0774	0.0023	0.55350	88	20	481	14	2159	47
	DD12-13N vein sei	t													
	whole grain NIST-	610													
146	DD12-13-1.1	0.5	0.011	0.001	1.885	0.123	0.0268	0.0009	0.51920	70	7	170	6	1076	43
147	DD12-13-1.2	0.4	0.008	0.000	1.484	0.138	0.0208	0.0010	0.51705	53	7	133	6	924	55
148	DD12-13-2.1	1.4	0.017	0.001	0.220	0.020	0.0140	0.0004	0.31138	82	3	89	2	202	16
149	DD12-13-2.2	0.3	0.005	0.006	0.892	0.113	0.0180	0.0011	0.46783	70	7	115	7	647	59
150	DD12-13-3.1	3.0	0.019	0.001	0.122	0.013	0.0071	0.0002	0.31857	41	2	46	2	117	12
151	DD12-13-3.2	0.6	0.007	0.000	0.296	0.039	0.0150	0.0007	0.34118	84	4	96	4	263	30
152	DD12-13-4.1	0.9	0.011	0.009	0.216	0.024	0.0144	0.0005	0.30589	85	3	92	3	199	20
153	DD12-13-4.2	1.3	0.015	0.001	0.383	0.032	0.0132	0.0004	0.39308	67	3	84	3	329	23
154	DD12-13-5.1	0.3	0.005	0.000	2.248	0.250	0.0230	0.0014	0.55707	23	12	146	9	1196	76
155	DD12-13-5.2	0.2	0.006	0.001	2.049	0.207	0.0313	0.0016	0.51392	91	11	199	10	1132	67
156	DD12-13-6.1	0.6	0.006	0.001	0.254	0.034	0.0120	0.0006	0.35057	66	4	77	4	230	27
157	DD12-13-6.2	0.1	0.003	0.002	1.032	0.191	0.0246	0.0020	0.45109	105	13	156	13	720	92
158	DD12-13-7.1	1.9	0.012	0.000	0.145	0.016	0.0071	0.0003	0.34271	40	2	46	2	137	14

Spot	U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
	(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig

	Spot	U	Pb ²⁰⁶	<u>²³²Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	206 Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
159	DD12-13-8.2	0.7	0.009	0.001	0.290	0.035	0.0154	0.0006	0.33753	87	4	98	4	259	27
160	DD12-13-9.1	0.6	0.007	0.003	0.328	0.041	0.0148	0.0007	0.35901	81	4	94	4	288	31
161	DD12-13-9.2	0.5	0.007	0.000	0.520	0.054	0.0174	0.0007	0.40085	87	5	111	5	425	36
162	DD12-13-10.1	0.4	0.006	0.001	0.526	0.067	0.0157	0.0008	0.41583	76	5	101	5	429	44
163	DD12-13-12.1	0.3	0.005	0.000	1.838	0.199	0.0236	0.0014	0.53220	51	10	150	9	1059	69
164	DD12-13-12.2	0.2	0.004	0.003	1.129	0.138	0.0230	0.0013	0.47307	89	9	146	8	767	64
165	DD12-13-1Ab.1	1.7	0.018	0.001	0.128	0.012	0.0120	0.0003	0.26723	74	2	77	2	122	11
166	DD12-13-1Bb.1	0.6	0.011	0.080	0.864	0.089	0.0207	0.0011	0.52725	89	7	132	7	632	48
167	DD12-13-2b.1	0.6	0.015	0.002	2.231	0.212	0.0273	0.0016	0.59829	53	11	174	10	1191	65
168	DD12-13-4b.1	1.5	0.023	0.001	0.526	0.047	0.0176	0.0008	0.48496	88	4	112	5	429	31
169	DD12-13-4b.2	1.1	0.015	0.000	0.479	0.046	0.0170	0.0008	0.47726	87	5	109	5	398	31
170	DD12-13-5b.1	0.9	0.013	0.003	0.384	0.043	0.0163	0.0008	0.45355	88	5	104	5	330	31
171	DD12-13-5b.2	1.1	0.016	0.005	0.648	0.057	0.0171	0.0008	0.51487	78	5	109	5	507	34
172	DD12-13-5b.3	1.4	0.014	0.001	0.627	0.054	0.0117	0.0006	0.55328	43	3	75	4	494	33
173	DD12-13-5b.4	1.8	0.017	0.001	1.088	0.140	0.0111	0.0009	0.61042	11	7	71	6	748	66
174	DD12-13-3b.1	0.6	0.013	0.039	0.878	0.087	0.0266	0.0013	0.49939	128	8	169	8	640	46
175	DD12-13-3b.2	2.6	0.035	0.004	0.453	0.029	0.0156	0.0005	0.48083	79	3	100	3	379	20
176	DD12-13-6b.1	1.6	0.022	0.001	0.559	0.043	0.0156	0.0006	0.50743	73	4	100	4	451	28
177	DD12-13-6b.2	0.1	0.004	0.003	2.111	0.349	0.0309	0.0030	0.58251	85	19	196	19	1152	109
178	DD12-13-6b.3	2.4	0.033	0.010	0.490	0.036	0.0160	0.0006	0.48754	80	3	103	4	405	24
179	DD12-13-6b.4	2.8	0.043	0.002	0.709	0.035	0.0180	0.0005	0.51993	80	3	115	3	544	21
180	DD12-13-6b.5	2.4	0.025	0.004	0.571	0.038	0.0121	0.0004	0.53941	49	3	78	3	459	24
181	DD12-13-7b.1	0.8	0.011	0.004	0.468	0.053	0.0165	0.0009	0.47760	85	5	106	6	390	36
182	DD12-13-8b.1	3.8	0.026	0.001	0.215	0.016	0.0080	0.0003	0.46934	42	2	51	2	198	14
183	DD12-13-9b.1	2.9	0.037	0.000	0.226	0.016	0.0149	0.0004	0.39308	88	3	96	3	207	13
184	DD12-13-10b.1	0.3	0.009	0.001	1.667	0.199	0.0312	0.0021	0.55717	113	12	198	13	996	74
185	DD12-13-11b.1	1.4	0.017	0.000	0.440	0.039	0.0143	0.0006	0.48811	71	4	92	4	370	27
186	DD12-13-11b.2	0.4	0.007	0.002	1.116	0.130	0.0191	0.0013	0.56452	63	8	122	8	761	61
187	DD12-13-12b.1	0.2	0.004	0.003	2.478	0.476	0.0279	0.0032	0.60565	42	23	177	20	1266	133
188	DD12-13-Vein.1	3.6	0.114	0.013	1.149	0.079	0.0367	0.0013	0.49483	180	7	233	8	777	37
189	DD12-13-Host.1	2.6	0.187	0.024	4.754	0.186	0.0829	0.0019	0.57558	278	11	513	11	1777	32

	Spot	U	Pb ²⁰⁶	<u>²³²Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
190	DD12-13-5b.5	2.4	0.025	0.002	0.326	0.028	0.0118	0.0005	0.47394	61	3	76	3	287	21
	Polished NIST612														
191	DD12-13-1.1r	0.02	0.047	0.178	397.821	34.170	3.4068	0.2708	0.92558	-407	664	9561	385	6081	84
192	DD12-13-1.2	0.02	0.002	0.002	12.141	1.705	0.1126	0.0093	0.58653	44	77	688	54	2615	126
193	DD12-13-7.1r	0.03	0.089	0.024	464.731	21.860	3.9380	0.1732	0.93524	-721	398	10295	222	6238	47
194	DD12-13-7.2	0.10	0.004	0.001	3.944	0.353	0.0438	0.0020	0.51993	63	18	276	13	1623	71
195	DD12-13-2.1r	0.03	0.002	0.003	5.236	0.638	0.0568	0.0037	0.53256	75	32	356	22	1859	100
196	DD12-13-2.2	0.14	0.026	0.344	24.091	0.779	0.2156	0.0045	0.64620	35	35	1259	24	3272	31
197	DD12-13-3.1r	0.11	0.003	0.001	1.772	0.188	0.0263	0.0013	0.46634	74	11	167	8	1035	67
198	DD12-13-3.2	0.09	0.002	0.002	1.829	0.203	0.0282	0.0014	0.46211	83	11	179	9	1056	71
199	DD12-13-4.1r	0.22	0.006	0.007	1.880	0.131	0.0295	0.0010	0.46022	89	7	188	6	1074	46
200	DD12-13-4.2	0.22	0.007	0.003	3.191	0.202	0.0364	0.0012	0.50867	58	10	231	7	1455	48
201	DD12-13-8.1r	0.08	0.002	0.001	1.983	0.250	0.0295	0.0017	0.46720	82	14	187	11	1110	82
202	DD12-13-8.2	0.12	0.004	0.002	3.541	0.270	0.0391	0.0015	0.51486	55	14	247	10	1536	59
203	DD12-13-9.1r	0.06	0.004	0.001	7.369	0.657	0.0822	0.0040	0.54323	121	33	509	24	2157	77
204	DD12-13-9.2 Polished NIST612	0.09	0.006	0.007	7.666	0.457	0.0786	0.0026	0.55214	79	23	488	15	2193	52
205	DD12-13-3.1clr	0.27	0.004	0.001	0.520	0.038	0.0183	0.0005	0.34462	94	3	117	3	425	25
206	DD12-13-3.2cld	0.19	0.003	0.001	1.422	0.090	0.0199	0.0006	0.47273	51	5	127	4	898	37
207	DD12-13-4.1r	0.07	0.022	0.000	41.337	1.649	0.3659	0.0105	0.71964	32	63	2010	49	3803	39
208	DD12-13-4.2c	0.46	0.029	0.125	8.146	0.375	0.0725	0.0019	0.57600	9	17	451	12	2247	41
209	DD12-13-4.3r	0.10	0.004	0.001	3.658	0.236	0.0464	0.0015	0.50904	98	12	292	9	1562	50
210	DD12-13-4.4c	0.04	0.002	0.000	5.536	0.464	0.0582	0.0026	0.54343	66	23	364	16	1906	70
211	DD12-13-8.1	0.03	0.001	0.004	4.526	0.532	0.0501	0.0031	0.53021	72	27	315	19	1736	94
212	DD12-13-8.2	0.19	0.003	0.006	0.939	0.077	0.0192	0.0007	0.42109	75	5	123	4	672	40
213	DD12-13-5.1	0.05	0.005	0.000	11.527	0.610	0.1132	0.0035	0.59050	85	29	691	20	2567	49
214	DD12-13-5.2	0.01	0.017	0.000	199.234	33.442	1.6749	0.2488	0.88495	-388	392	6343	573	5381	159
215	DD12-13-11.1	0.46	0.009	0.001	1.501	0.101	0.0217	0.0007	0.46989	59	6	139	4	931	40

Spot	U (ppm)	Pb ²⁰⁶ (ppm)	²³² <u>Th</u> ²³⁸ U	²⁰⁷ РЬ ²³⁵ U	1 Sig	²⁰⁶ РЬ ²³⁸ U	1 Sig	Error Correl.	206 <u>Pb</u> ²³⁸ U Model Age (Ma)	1 Sig	²⁰⁶ Pb ²³⁸ U Age (Ma)	1 Sig	²⁰⁷ Pb ²³⁵ U Age (Ma)	1 Si
DGR-3-034.61 L	Drill core													
DGR34B-1c	0.89	0.008	0.020	0.588	0.055	0.0102	0.0004	0.44006	35	3	66	3	469	35

Spot U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
(ppm) (ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig

	whole grain NIST-61	2													
216	DGR34B-1c	0.89	0.008	0.020	0.588	0.055	0.0102	0.0004	0.44006	35	3	66	3	469	35
217	DGR34B-2	0.12	0.004	0.061	2.785	0.362	0.0372	0.0024	0.48672	87	20	235	15	1352	94
218	DGR34B-3	0.34	0.009	0.022	1.414	0.132	0.0296	0.0012	0.42670	117	8	188	7	895	54
219	DGR34B-4	0.47	0.032	0.028	8.675	0.573	0.0802	0.0030	0.56079	30	28	497	18	2304	59
220	DGR34B-5	0.13	0.004	0.096	3.429	0.417	0.0345	0.0022	0.52074	31	21	219	14	1511	92
221	DGR34B-6	0.33	0.008	0.017	1.390	0.133	0.0277	0.0011	0.43014	106	8	176	7	885	55
222	DGR34B-7s	0.38	0.008	0.021	1.207	0.124	0.0254	0.0011	0.42317	101	8	161	7	804	56
223	DGR34B-8s	0.13	0.002	0.017	0.420	0.065	0.0183	0.0009	0.31547	99	6	117	6	356	46
224	DGR34B-9s	0.07	0.001	0.039	0.670	0.114	0.0228	0.0014	0.34851	115	9	146	9	521	67
225	DGR34B-10s	0.14	0.002	0.014	0.637	0.077	0.0163	0.0008	0.38456	73	5	104	5	500	47
226	DGR34B-11	0.10	0.002	0.010	1.528	0.160	0.0269	0.0013	0.44331	92	10	171	8	942	63
227	DGR34B-12t	0.12	0.002	0.021	0.511	0.070	0.0191	0.0009	0.33583	99	6	122	6	419	46
228	DGR34B-13c	0.04	0.001	0.003	1.292	0.210	0.0249	0.0017	0.42842	93	13	159	11	842	90
229	DGR34B-14s	0.11	0.002	0.021	1.230	0.143	0.0255	0.0012	0.42065	100	9	163	8	815	63
230	DGR34B-15r	0.15	0.003	0.011	0.777	0.100	0.0223	0.0011	0.37359	105	7	142	7	584	56
231	DGR34B-16s	0.14	0.002	0.015	0.295	0.052	0.0171	0.0009	0.28104	99	6	110	5	262	40
232	DGR34B-17st	0.11	0.002	0.015	0.768	0.098	0.0211	0.0010	0.37987	98	7	135	6	579	55
233	DGR34B-18r	0.10	0.002	0.017	0.990	0.131	0.0238	0.0013	0.39864	103	9	152	8	699	65
234	DGR34B-19s	0.14	0.004	0.010	1.383	0.125	0.0317	0.0012	0.41421	133	8	201	7	882	52
235	DGR34B-20c	0.06	0.002	0.064	2.066	0.268	0.0405	0.0023	0.43741	152	17	256	14	1138	86
236	DGR34B-21s	0.04	0.001	0.029	0.772	0.163	0.0230	0.0018	0.36925	110	12	147	11	581	90
237	DGR34B-22s	0.03	0.001	0.031	1.904	0.366	0.0246	0.0023	0.48524	54	20	156	14	1083	122
238	DGR34B-23s	0.10	0.002	0.010	0.594	0.095	0.0191	0.0011	0.35928	94	7	122	7	473	59
239	DGR34B-24r	0.17	0.003	0.017	0.446	0.068	0.0194	0.0009	0.31895	105	6	124	6	375	47
240	DGR34B-25s	0.05	0.002	0.126	2.963	0.446	0.0392	0.0029	0.48901	90	24	248	18	1398	110
241	DGR34B-26r	0.09	0.003	0.013	1.787	0.192	0.0336	0.0016	0.43909	122	12	213	10	1041	68

	Spot	U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
242	DGR34B-27st	0.11	0.002	0.015	0.760	0.100	0.0244	0.0012	0.36077	120	8	155	7	574	56
243	DGR-3-1.1	0.93	0.009	0.01	0.561	0.035	0.0110	0.0003	0.41864	42	2	71	2	452	23
244	DGR-3-1.2	0.23	0.004	0.03	0.549	0.053	0.0193	0.0006	0.34620	99	4	124	4	444	34
245	DGR-3-1.3	0.98	0.006	0.01	0.163	0.020	0.0073	0.0003	0.30692	40	2	47	2	153	17
246	DGR-3-2.1	1.04	0.008	0.01	0.419	0.025	0.0088	0.0002	0.40970	35	2	56	1	356	18
247	DGR-3-3.1	0.42	0.007	0.02	0.334	0.033	0.0189	0.0005	0.28584	108	4	121	3	293	25
248	DGR-3-3.2	0.28	0.006	0.03	1.125	0.111	0.0254	0.0010	0.41205	105	7	162	6	765	52
249	DGR-3-3.3	0.25	0.004	0.02	0.419	0.045	0.0205	0.0007	0.30346	115	5	131	4	356	32
250	DGR-3-4.1	0.30	0.015	0.02	4.149	0.174	0.0592	0.0013	0.50260	156	9	371	8	1664	34
251	DGR-3-4.2	10.53	2.237	0.02	19.046	0.161	0.2456	0.0013	0.62652	526	8	1416	7	3044	8
252	DGR-3-5.1	0.38	0.003	0.03	0.270	0.028	0.0095	0.0003	0.33784	49	2	61	2	242	22
253	DGR-3-6.1	2.33	0.013	0.02	0.058	0.005	0.0063	0.0001	0.20625	40	1	41	1	57	5
254	DGR-3-6.2	2.15	0.018	0.01	0.482	0.024	0.0098	0.0002	0.41335	38	2	63	1	400	17
255	DGR-3-7.1 br Imst	2.12	0.227	0.01	4.579	0.061	0.1234	0.0008	0.45683	554	5	750	4	1745	11
256	DGR-3-8.1 bk Imst	10.51	10.424	0.01	85.216	0.251	1.1457	0.0026	0.76901	0	0	4922	8	4525	3
257	DGR-3-9.1 bk Imst	3.63	2.209	0.01	51.655	0.265	0.7039	0.0027	0.73695	0	0	3436	10	4025	5
258	DGR-3-9.2 br Imst	2.71	0.329	0.01	4.000	0.061	0.1402	0.0009	0.42415	695	5	846	5	1634	12
259	DGR-3-9.3 bk Imst	13.67	17.630	0.00	116.061	0.337	1.4896	0.0034	0.78857	0	0	5880	9	4836	3
260	DGR-3-9.4 br Imst	1.91	0.660	0.01	27.583	0.364	0.3984	0.0035	0.66177	1027	17	2162	16	3404	13
261	DGR-3-1B.1	0.09	0.002	0.01	2.215	0.224	0.0304	0.0015	0.48539	75	12	193	9	1186	69
262	DGR-3-1B.2	0.10	0.002	0.03	0.998	0.125	0.0217	0.0011	0.41359	88	8	138	7	703	62
263	DGR-3-1B.3	0.12	0.002	0.03	1.633	0.167	0.0237	0.0011	0.47138	64	9	151	7	983	63
264	DGR-3-2B.1	0.10	0.006	0.01	5.806	0.449	0.0619	0.0026	0.54691	76	22	387	16	1947	65
265	DGR-3-3B.1	0.06	0.001	0.03	1.507	0.250	0.0223	0.0017	0.46757	62	14	142	11	933	97
	Vug														
266	DGR-3-034.1	0.48	0.048	0.07	8.880	0.261	0.1010	0.0017	0.56193	158	13	620	10	2326	27
267	DGR-3-034.2	0.24	0.015	0.13	6.263	0.306	0.0609	0.0016	0.55378	42	15	381	10	2013	42
268	DGR-3-034.3	0.70	0.047	0.05	5.266	0.189	0.0669	0.0013	0.52313	141	10	417	8	1863	30
269	DGR-3-034.4	0.25	0.005	0.10	0.954	0.098	0.0199	0.0009	0.41619	79	6	127	5	680	50
270	DGR-3-034.5	0.33	0.006	0.05	0.991	0.103	0.0184	0.0008	0.43142	66	6	117	5	699	52
271	DGR-3-034.6	0.47	0.021	0.03	4.408	0.228	0.0458	0.0013	0.53412	50	12	289	8	1714	42

	Spot	U	Pb ²⁰⁶	<u>²³²Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	206 <mark>Pb</mark>	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
272	DGR-3-034.7	0.45	0.012	0.01	1.847	0.138	0.0261	0.0009	0.47580	68	8	166	6	1062	48
273	DGR-3-034.8	1.10	0.039	0.01	3.030	0.139	0.0352	0.0008	0.51004	59	7	223	5	1415	35
274	DGR-3-034.9	2.21	0.586	0.01	17.208	0.388	0.2658	0.0036	0.60597	760	20	1519	18	2946	21
275	DGR-3-034.10	0.72	0.019	0.00	1.571	0.104	0.0271	0.0008	0.44816	91	6	172	5	959	41
276	DGR-3-034.11	0.38	0.020	0.07	5.819	0.498	0.0537	0.0025	0.55400	19	24	337	16	1949	72
277	DGR-3-034.12	1.97	0.295	0.01	6.055	0.167	0.1502	0.0020	0.47907	644	12	902	11	1984	24
	Natural surface N	IST610													
278	DGR34A-1.1	0.17	0.005	0.03	2.546	0.119	0.0374	0.0008	0.48316	103	7	237	5	1285	34
279	DGR34A-3.1	0.43	0.006	0.01	0.553	0.035	0.0171	0.0004	0.36140	84	3	109	2	447	23
280	DGR34A-4.1	0.31	0.008	0.09	1.964	0.136	0.0317	0.0010	0.46555	99	8	201	6	1103	46
281	DGR34A-5.1	1.33	0.020	0.01	0.267	0.015	0.0177	0.0003	0.26663	105	2	113	2	240	12
282	DGR34A-6.1	0.31	0.005	0.01	0.545	0.039	0.0190	0.0005	0.34694	97	3	122	3	442	25
283	DGR34A-6.2	0.95	0.015	0.01	0.239	0.013	0.0179	0.0003	0.25420	107	2	114	2	218	11
284	DGR34A-7.1	0.27	0.004	0.01	0.552	0.041	0.0165	0.0005	0.36583	79	3	105	3	446	27
285	DGR34A-8.1	2.22	0.034	0.01	0.215	0.010	0.0178	0.0002	0.24348	108	1	114	1	197	8
286	DGR34A-9.1	2.72	0.039	0.01	0.219	0.008	0.0167	0.0002	0.25514	100	1	106	1	201	7
287	DGR34A-10.1	0.59	0.010	0.01	0.532	0.031	0.0187	0.0004	0.34595	96	3	120	2	433	20
288	DGR34A-11.1	0.55	0.008	0.01	0.379	0.026	0.0169	0.0004	0.31301	92	2	108	2	326	19
289	DGR34A-12.1	0.57	0.009	0.01	0.521	0.042	0.0173	0.0005	0.35087	87	3	111	3	426	28
290	DGR34A-13.1	0.36	0.007	0.03	0.885	0.048	0.0223	0.0005	0.39352	99	3	142	3	644	26
291	DGR34A-14.1	1.59	0.024	0.01	0.351	0.015	0.0176	0.0002	0.29950	99	2	113	1	305	11
292	DGR34A-15.1	0.22	0.003	0.03	0.355	0.033	0.0167	0.0005	0.30464	93	3	107	3	308	25
293	DGR34A-16.1	1.01	0.014	0.01	0.177	0.010	0.0160	0.0002	0.23173	98	1	102	1	165	8
	Crystal base NIST	610													
294	DGR34A-1.1b	0.48	0.006	0.05	0.349	0.020	0.0150	0.0003	0.31545	82	2	96	2	304	15
295	DGR34A-2.1b	1.10	0.016	0.06	0.390	0.018	0.0163	0.0002	0.32036	88	2	104	2	334	13
296	DGR34A-3.1b	0.29	0.005	0.02	0.668	0.034	0.0205	0.0004	0.36425	100	3	131	2	520	21
297	DGR34A-4.1b	0.47	0.009	0.03	0.810	0.046	0.0226	0.0005	0.37886	106	3	144	3	602	25
298	DGR34A-6.1b	0.40	0.007	0.03	0.407	0.025	0.0202	0.0004	0.30120	113	3	129	2	346	18
299	DGR34A-6.2b	0.28	0.005	0.04	0.665	0.041	0.0226	0.0005	0.35279	114	3	144	3	518	25
300	DGR34A-7.1b	0.73	0.012	0.02	0.280	0.016	0.0182	0.0003	0.26894	107	2	117	2	251	12

	Spot	U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	207 <u>Pb</u>	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
301	DGR34A-8.1b	0.36	0.007	0.06	0.662	0.040	0.0214	0.0005	0.35883	106	3	136	3	516	24
302	DGR34A-9.1b	0.30	0.007	0.06	1.156	0.059	0.0253	0.0005	0.41658	103	4	161	3	780	28
303	DGR34A-10.1b	0.16	0.005	0.13	1.568	0.102	0.0345	0.0009	0.42225	141	7	219	6	958	40
304	DGR34A-11.1b	0.49	0.009	0.05	0.682	0.038	0.0212	0.0004	0.36299	104	3	136	3	528	22
305	DGR34A-12.1b	0.54	0.009	0.01	0.486	0.025	0.0191	0.0003	0.33045	101	2	122	2	402	17
306	DGR34A-13.1b	0.61	0.011	0.01	0.520	0.024	0.0203	0.0003	0.33251	107	2	129	2	425	16
307	DGR34A-14.1b	0.17	0.005	0.10	1.551	0.098	0.0322	0.0009	0.42726	127	6	205	5	951	38
308	DGR34A-15.1b	0.56	0.007	0.00	0.294	0.018	0.0150	0.0003	0.29416	84	2	96	2	262	14
309	DGR34A-16.1b	0.51	0.009	0.02	0.551	0.029	0.0198	0.0004	0.34293	102	2	126	2	445	19
	Natural surface N	IST610													
310	DGR34B-1c	0.89	0.009	0.02	0.588	0.055	0.0102	0.0004	0.44006	35	3	66	3	469	35
311	DGR34B-2	0.12	0.005	0.06	2.785	0.362	0.0372	0.0024	0.48672	87	20	235	15	1352	94
312	DGR34B-3	0.34	0.010	0.02	1.414	0.132	0.0296	0.0012	0.42670	117	8	188	7	895	54
313	DGR34B-4	0.47	0.037	0.03	8.675	0.573	0.0802	0.0030	0.56079	30	28	497	18	2304	59
314	DGR34B-5	0.13	0.005	0.10	3.429	0.417	0.0345	0.0022	0.52074	31	21	219	14	1511	92
315	DGR34B-6	0.33	0.009	0.02	1.390	0.133	0.0277	0.0011	0.43014	106	8	176	7	885	55
316	DGR34B-7s	0.38	0.010	0.02	1.207	0.124	0.0254	0.0011	0.42317	101	8	161	7	804	56
317	DGR34B-8s	0.13	0.002	0.017	0.420	0.065	0.0183	0.0009	0.31547	99	6	117	6	356	46
318	DGR34B-9s	0.07	0.002	0.039	0.670	0.114	0.0228	0.0014	0.34851	115	9	146	9	521	67
319	DGR34B-10s	0.14	0.002	0.014	0.637	0.077	0.0163	0.0008	0.38456	73	5	104	5	500	47
320	DGR34B-11	0.10	0.003	0.01	1.528	0.160	0.0269	0.0013	0.44331	92	10	171	8	942	63
321	DGR34B-12t	0.12	0.002	0.021	0.511	0.070	0.0191	0.0009	0.33583	99	6	122	6	419	46
322	DGR34B-13c	0.04	0.001	0.003	1.292	0.210	0.0249	0.0017	0.42842	93	13	159	11	842	90
323	DGR34B-14s	0.11	0.003	0.021	1.230	0.143	0.0255	0.0012	0.42065	100	9	163	8	815	63
324	DGR34B-15r	0.15	0.003	0.011	0.777	0.100	0.0223	0.0011	0.37359	105	7	142	7	584	56
325	DGR34B-16s	0.14	0.002	0.015	0.295	0.052	0.0171	0.0009	0.28104	99	6	110	5	262	40
326	DGR34B-17st	0.11	0.002	0.015	0.768	0.098	0.0211	0.0010	0.37987	98	7	135	6	579	55
327	DGR34B-18r	0.10	0.002	0.017	0.990	0.131	0.0238	0.0013	0.39864	103	9	152	8	699	65
328	DGR34B-19s	0.14	0.004	0.01	1.383	0.125	0.0317	0.0012	0.41421	133	8	201	7	882	52
329	DGR34B-20c	0.06	0.002	0.064	2.066	0.268	0.0405	0.0023	0.43741	152	17	256	14	1138	86
330	DGR34B-21s	0.04	0.001	0.029	0.772	0.163	0.0230	0.0018	0.36925	110	12	147	11	581	90

	Spot	U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
331	DGR34B-22s	0.03	0.001	0.031	1.904	0.366	0.0246	0.0023	0.48524	54	20	156	14	1083	122
332	DGR34B-23s	0.10	0.002	0.01	0.594	0.095	0.0191	0.0011	0.35928	94	7	122	7	473	59
333	DGR34B-24r	0.17	0.003	0.017	0.446	0.068	0.0194	0.0009	0.31895	105	6	124	6	375	47
334	DGR34B-25s	0.05	0.002	0.126	2.963	0.446	0.0392	0.0029	0.48901	90	24	248	18	1398	110
335	DGR34B-26r	0.09	0.003	0.013	1.787	0.192	0.0336	0.0016	0.43909	122	12	213	10	1041	68
336	DGR34B-27st	0.11	0.003	0.015	0.760	0.100	0.0244	0.0012	0.36077	120	8	155	7	574	56
	Crystal base NIS	T610													
337	DGR34B-1b	0.76	0.008	0.02	0.802	0.064	0.0123	0.0004	0.45264	36	4	79	3	598	36
338	DGR34B-2b	0.33	0.004	0.15	0.741	0.074	0.0157	0.0006	0.41051	63	5	100	4	563	42
339	DGR34B-3b	0.40	0.008	0.04	1.180	0.104	0.0234	0.0009	0.42563	89	6	149	6	791	47
340	DGR34B-4b	0.36	0.013	0.07	2.806	0.206	0.0418	0.0015	0.47857	118	11	264	9	1357	54
341	DGR34B-5b	0.52	0.008	0.07	1.308	0.105	0.0179	0.0007	0.47294	44	6	114	4	849	45
342	DGR34B-6b	0.62	0.009	0.05	0.537	0.051	0.0158	0.0006	0.36623	76	4	101	4	436	33
343	DGR34B-7b	0.31	0.006	0.08	1.015	0.103	0.0215	0.0009	0.41560	86	7	137	6	711	51
344	DGR34B-8b	0.34	0.006	0.06	0.851	0.094	0.0204	0.0009	0.39748	88	6	130	6	625	50
345	DGR34B-9b	0.38	0.009	0.03	1.587	0.134	0.0286	0.0011	0.44365	100	8	182	7	965	51
346	DGR34B-10b	0.31	0.009	0.13	2.117	0.192	0.0331	0.0014	0.46675	99	11	210	9	1154	61
347	DGR34B-11b	0.51	0.008	0.09	0.522	0.039	0.0180	0.0005	0.34719	91	3	115	3	427	26
348	DGR34B-12b	0.42	0.008	0.05	0.898	0.061	0.0221	0.0006	0.39537	97	4	141	4	651	32
349	DGR34B-13b	0.22	0.007	0.19	2.279	0.172	0.0374	0.0013	0.46178	119	10	237	8	1206	52
350	DGR34B-14b	0.19	0.006	0.09	2.887	0.211	0.0388	0.0014	0.49012	92	11	245	9	1378	54
351	DGR34B-15b	0.53	0.011	0.04	1.432	0.077	0.0244	0.0006	0.44781	81	5	156	4	903	32
352	DGR34B-16b	0.57	0.010	0.04	0.606	0.041	0.0194	0.0005	0.35801	96	3	124	3	481	26
353	DGR34B-17b	0.54	0.008	0.02	0.541	0.039	0.0179	0.0005	0.35255	89	3	114	3	439	25
354	DGR34B-18b	3.23	0.015	0.02	0.199	0.012	0.0055	0.0001	0.36978	25	1	35	1	184	10
355	DGR34B-19b	0.27	0.033	0.01	14.133	0.832	0.1406	0.0049	0.58967	116	40	848	28	2759	55
356	DGR34B-20b	0.44	0.008	0.02	1.025	0.060	0.0214	0.0005	0.41818	85	4	136	3	716	30
357	DGR34B-21b	0.46	0.009	0.03	0.663	0.046	0.0217	0.0005	0.35628	108	4	138	3	516	28
358	DGR34B-22b	2.37	0.016	0.03	0.154	0.010	0.0076	0.0002	0.29579	43	1	49	1	145	9
359	DGR34B-23b	1.58	0.019	0.06	0.219	0.014	0.0136	0.0002	0.27276	80	2	87	2	201	12
360	DGR34B-24b	0.45	0.008	0.04	0.979	0.065	0.0206	0.0006	0.41614	82	4	132	4	693	33

	Spot	U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	²⁰⁶ Pb	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
361	DGR34B-25b	0.21	0.006	0.21	2.613	0.177	0.0318	0.0011	0.49903	61	9	202	7	1304	49
362	DGR34B-26b	0.48	0.011	0.05	1.756	0.095	0.0263	0.0007	0.46797	74	5	167	4	1029	35
363	DGR34B-27b	0.64	0.009	0.05	0.734	0.047	0.0157	0.0004	0.41166	63	3	100	3	559	27
	natural surface NI	ST610													
364	DGR34C-1r	0.28	0.005	0.08	0.686	0.063	0.0221	0.0007	0.35994	109	5	141	5	531	37
365	DGR34C-2	0.94	0.016	0.00	0.699	0.046	0.0191	0.0005	0.38086	89	3	122	3	538	27
366	DGR34C-3	1.48	0.017	0.00	0.287	0.018	0.0134	0.0003	0.30946	74	2	86	2	256	14
367	DGR34C-4r	0.66	0.019	0.00	2.009	0.148	0.0333	0.0011	0.46087	107	9	211	7	1119	49
368	DGR34C-5s	0.36	0.009	0.06	1.814	0.117	0.0305	0.0009	0.45639	99	7	193	6	1050	42
369	DGR34C-6As	0.41	0.009	0.03	1.091	0.090	0.0250	0.0008	0.40867	105	6	159	5	749	43
370	DGR34C-6Bs	0.74	0.011	0.01	0.577	0.039	0.0173	0.0004	0.36697	83	3	110	3	462	25
371	DGR34C-7s	0.45	0.009	0.11	1.129	0.081	0.0227	0.0007	0.42498	87	5	145	4	767	38
372	DGR34C-9s	0.86	0.011	0.05	0.937	0.061	0.0151	0.0004	0.45047	47	3	97	3	671	31
373	DGR34C-10	7.98	0.050	0.01	0.140	0.007	0.0072	0.0001	0.29529	41	1	46	1	133	6
374	DGR34C-11r	0.50	0.008	0.01	0.561	0.044	0.0189	0.0005	0.35148	95	4	121	3	452	28
375	DGR34C-13	0.42	0.007	0.06	0.701	0.060	0.0198	0.0006	0.37576	93	4	127	4	539	35
376	DGR34C-14s	0.93	0.014	0.00	0.500	0.032	0.0179	0.0004	0.34367	92	3	115	2	412	21
377	DGR34C-15t	0.87	0.017	0.01	1.194	0.076	0.0228	0.0006	0.43330	84	5	146	4	798	35
378	DGR34C-16.1s	0.89	0.012	0.00	0.339	0.027	0.0157	0.0004	0.30981	86	3	100	2	296	20
379	DGR34C-16.2r	0.61	0.010	0.04	0.735	0.069	0.0185	0.0007	0.39067	82	5	118	4	560	40
380	DGR34C-17c	0.73	0.007	0.07	0.549	0.046	0.0111	0.0004	0.41612	43	3	71	2	444	30
381	DGR34C-18s	0.57	0.009	0.02	0.811	0.058	0.0194	0.0006	0.39856	84	4	124	3	603	32
382	DGR34C-19c	1.55	0.030	0.02	1.153	0.040	0.0223	0.0003	0.43296	83	2	142	2	778	19
383	DGR34C-20c crystal base NIST610	0.29	0.008	0.04	1.963	0.126	0.0303	0.0009	0.46691	90	7	193	6	1103	43
384	DGR34C-1b	0.27	0.008	0.13	2.693	0.218	0.0356	0.0014	0.48761	82	12	226	9	1327	59
385	DGR34C-2b	0.53	0.023	0.05	2.944	0.156	0.0502	0.0012	0.46323	166	9	316	8	1393	39
386	DGR34C-3b	0.76	0.008	0.04	0.522	0.047	0.0123	0.0004	0.39515	52	3	79	3	427	31
387	DGR34C-4b	0.37	0.009	0.01	1.529	0.126	0.0276	0.0010	0.44200	97	8	175	6	942	49
388	DGR34C-5b	0.70	0.011	0.00	0.786	0.062	0.0178	0.0006	0.40380	74	4	114	4	589	35

	Spot	U	Pb ²⁰⁶	²³² Th	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	206 <mark>Pb</mark>	1	206 <mark>Pb</mark>	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	²³⁸ U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	²³⁸ U Model Age (Ma)	Sig	²³⁸ U Age (Ma)	Sig	²³⁵ U Age (Ma)	Sig
389	DGR34C-6Ab	0.28	0.008	0.11	2.420	0.212	0.0335	0.0014	0.48153	84	12	212	9	1249	61
390	DGR34C-7b	0.27	0.008	0.13	2.410	0.225	0.0325	0.0015	0.48404	78	12	206	9	1245	65
391	DGR34C-8b	0.22	0.006	0.08	2.336	0.228	0.0319	0.0015	0.48202	78	12	203	9	1223	67
392	DGR34C-9b	0.42	0.006	0.06	1.040	0.114	0.0177	0.0009	0.44249	59	7	113	5	724	55
393	DGR34C-10b	0.39	0.008	0.03	1.339	0.130	0.0253	0.0011	0.43386	92	8	161	7	863	55
394	DGR34C-11b	0.40	0.007	0.05	0.835	0.100	0.0202	0.0010	0.39578	88	7	129	6	616	54
395	DGR34C-13b	0.36	0.007	0.05	1.071	0.135	0.0235	0.0012	0.41115	96	9	150	8	739	65
396	DGR34C-14b	0.27	0.007	0.11	2.604	0.252	0.0309	0.0015	0.50023	55	13	196	9	1302	69
397	DGR34C-15b	0.18	0.006	0.18	2.719	0.320	0.0403	0.0023	0.47645	112	18	255	14	1334	85
398	DGR34C-16.1b	0.33	0.006	0.05	0.575	0.049	0.0197	0.0006	0.34946	99	4	126	4	461	31
399	DGR34C-16.2b	0.45	0.007	0.02	0.645	0.051	0.0190	0.0006	0.36878	91	4	122	4	505	31
400	DGR34C-17b	0.33	0.009	0.19	1.592	0.119	0.0307	0.0010	0.43579	114	7	195	6	967	46
401	DGR34C-18b	0.45	0.009	0.03	1.188	0.078	0.0229	0.0006	0.43076	85	5	146	4	795	36
402	DGR34C-19b	0.42	0.034	0.09	9.591	0.335	0.0936	0.0019	0.56892	66	16	577	11	2396	32
403	DGR34C-20b	0.30	0.006	0.04	1.203	0.079	0.0233	0.0007	0.43063	87	5	149	4	802	36
	DGR-6-886.91B Dr	ill core													
	whole grain NIST-6	612													
404	DGR-6-3.2	0.11	0.008	0.22	1.231	0.137	0.0834	0.0028	0.29713	484	17	516	16	815	61
405	DGR-6-3.3	0.14	0.011	0.16	2.634	0.259	0.0912	0.0035	0.39344	455	22	563	21	1310	70
406	DGR-6-3.4	0.07	0.009	0.19	9.445	0.723	0.1491	0.0062	0.54328	444	39	896	35	2382	68
407	DGR-6-3.4 br Imst	0.16	0.300	1.02	243.402	4.413	2.1956	0.0357	0.89769	458	112	7489	72	5583	18
408	DGR-5-2.3 bk Imst	0.63	0.307	0.53	54.894	0.608	0.5675	0.0047	0.74287	583	23	2898	19	4085	11
409	DGR-6-1.1	0.07	0.016	0.19	24.274	1.264	0.2700	0.0091	0.64826	388	57	1541	46	3279	50
410	DGR-6-1.2	0.26	0.442	0.36	224.046	2.975	1.9967	0.0235	0.88776	262	80	7075	50	5500	13

FOOTNOTES TO APPENDIX A1

All analyses carried out using the 213 nm laser.

FV- flat vein; b - base of grain cluster, other spots on crystal faces; br - brownish, black - black, Imst - limestone, cdy - cloudy, clr - clear

Error Correl. - Error correlation coefficient for concordia coordinates

Relation between ages and concordia coordinates: Y = 206Pb/238U = EXP(L238*(206-238Age)) - 1; X = 207Pb/235U = EXP(L235*(207-235Age)) - 1; 207Pb/206Pb = 137.88*X/Y; U decay constants (L238 & L235) from Jaffey et al. (1971).

47

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	206 Pb	1	Error	Model	1	206 Pb	1	207 Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
	DGR-3-37.37	Devonia	n Lucas F	-m											
	May11-15a M150510	213nm													
1	DGR-3-37.37-gr1.1	0.99	0.012	0.00	0.185	0.008	0.0125	0.0001	0.25892	74.0	1.0	80.1	0.9	172.0	7.0
2	DGR-3-37.37-gr1.2	0.61	0.009	0.03	0.275	0.013	0.0146	0.0002	0.28813	83.0	1.3	93.6	1.2	246.5	10.2
3	DGR-3-37.37-gr1.3	0.84	0.011	0.02	0.135	0.008	0.0127	0.0002	0.22345	78.6	1.1	81.6	1.0	128.5	6.8
4	DGR-3-37.37-gr2.1	1.33	0.017	0.00	0.149	0.006	0.0125	0.0001	0.23626	76.2	0.8	80.1	0.8	141.3	5.4
5	DGR-3-37.37-gr2.2	1.12	0.013	0.00	0.125	0.006	0.0120	0.0001	0.22159	74.1	0.9	76.9	0.8	119.8	5.6
6	DGR-3-37.37-gr2.3	0.92	0.011	0.01	0.201	0.009	0.0121	0.0002	0.27213	70.2	1.0	77.4	1.0	185.9	7.8
7	DGR-3-37.37-gr3.1	0.99	0.014	0.01	0.230	0.010	0.0145	0.0002	0.26774	85.2	1.1	93.1	1.1	209.9	8.1
8	DGR-3-37.37-gr3.2	0.88	0.013	0.00	0.343	0.013	0.0146	0.0002	0.31549	79.1	1.2	93.6	1.1	299.6	10.1
9	DGR-3-37.37-gr3.3	1.54	0.020	0.00	0.155	0.006	0.0133	0.0001	0.23424	80.9	0.8	84.9	0.7	146.2	5.1
10	DGR-3-37.37-gr4.1	1.49	0.020	0.03	0.254	0.016	0.0136	0.0002	0.28604	77.2	1.6	86.9	1.5	229.5	12.7
11	DGR-3-37.37-gr4.3	1.18	0.012	0.04	0.164	0.009	0.0101	0.0002	0.26719	59.2	1.0	65.0	1.0	154.2	8.1
12	DGR-3-37.37-gr5.1	1.29	0.017	0.01	0.260	0.009	0.0133	0.0001	0.29225	75.0	0.9	85.2	0.8	234.3	7.1
13	DGR-3-37.37-gr5.2	3.25	0.031	0.03	0.178	0.013	0.0096	0.0002	0.28257	54.7	1.4	61.6	1.3	166.4	11.2
14	DGR-3-37.37-gr5.3	0.74	0.006	0.03	0.283	0.015	0.0086	0.0002	0.35443	41.9	1.2	55.4	1.1	253.1	12.2
15	DGR-3-37.37-gr6.1	2.48	0.038	0.00	0.307	0.016	0.0152	0.0002	0.29680	85.0	1.6	97.2	1.5	271.9	12.3
16	DGR-3-37.37-gr6.2	0.43	0.007	0.01	0.356	0.021	0.0152	0.0003	0.31453	82.4	2.0	97.5	1.8	309.2	15.8
17	DGR-3-37.37-gr6.3	1.22	0.019	0.02	0.200	0.009	0.0152	0.0002	0.24734	91.6	1.1	97.5	1.1	185.2	7.5
	DGR-4-73.73	Devonia	n Amhers	tburg F	m										
	May12-15a M150510	213nm													
18	DGR-4-73.73-gr1.1	0.05	0.007	0.04	14.946	1.956	0.1339	0.0108	0.61490	22.5	82.2	810.0	61.0	2811.8	119.3
19	DGR-4-73.73-gr1.2	3.94	0.618	0.01	13.756	0.084	0.1568	0.0006	0.60181	246.7	4.0	939.0	3.2	2733.1	5.8
20	DGR-4-73.73-gr2.1	3.20	0.024	0.01	0.080	0.004	0.0075	0.0001	0.22217	46.4	0.5	48.3	0.5	78.5	3.4
21	DGR-4-73.73-gr2.2	1.60	0.012	0.01	0.113	0.006	0.0074	0.0001	0.25881	43.9	0.7	47.7	0.7	108.8	5.7
22	DGR-4-73.73-gr2.3	4.28	0.021	0.06	0.048	0.002	0.0050	0.0001	0.21110	31.0	0.4	32.0	0.3	48.1	2.4
23	DGR-4-73.73-gr3.1	3.13	0.056	0.02	1.373	0.085	0.0178	0.0005	0.47883	39.6	4.6	113.8	3.3	877.2	35.8
24	DGR-4-73.73-gr3.2	2.10	0.017	0.02	0.311	0.032	0.0079	0.0003	0.37734	35.5	2.2	50.9	2.0	274.8	24.6
25	DGR-4-73.73-gr3.3	0.08	0.001	0.11	1.164	0.138	0.0146	0.0008	0.47963	30.4	7.4	93.6	5.3	783.7	63.2

APPENDIX A2: SUMMARY OF NEW LA-ICPMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
26	DGR-4-73.73-gr4.1	2.20	0.016	0.02	0.324	0.009	0.0075	0.0001	0.39192	31.5	0.6	47.9	0.5	284.9	7.1
27	DGR-4-73.73-gr4.2	1.09	0.010	0.11	0.479	0.019	0.0091	0.0002	0.41800	33.8	1.2	58.7	1.0	397.2	13.2
28	DGR-4-73.73-gr5.1	5.69	0.031	0.04	0.061	0.003	0.0055	0.0001	0.22258	34.0	0.5	35.4	0.4	59.7	3.2
29	DGR-4-73.73-gr5.2	2.56	0.015	0.00	0.218	0.006	0.0058	0.0001	0.37109	26.5	0.5	37.2	0.4	200.1	5.4
30	DGR-4-73.73-gr5.3	0.92	0.011	0.01	1.048	0.051	0.0117	0.0003	0.49188	17.7	2.7	75.3	1.8	727.9	25.1
	May13-15a M150510	213nm													
31	DGR-4-73.73-gr4.3	3.16	0.020	0.01	0.086	0.004	0.0062	0.0001	0.24797	37.0	0.5	39.8	0.5	84.0	3.8
32	DGR-4-73.73-gr2.4	2.08	0.014	0.01	0.094	0.006	0.0066	0.0001	0.24992	39.2	0.7	42.3	0.7	90.9	5.4
33	DGR-4-73.73-gr2.5	1.67	0.012	0.07	0.109	0.007	0.0073	0.0001	0.25580	43.3	0.8	46.9	0.8	105.1	6.5
34	DGR-4-73.73-gr2.6	2.69	0.012	0.02	0.062	0.004	0.0044	0.0001	0.24627	26.6	0.5	28.6	0.4	60.7	3.6
35	DGR-4-73.73-gr3.5	2.49	0.012	0.02	0.078	0.006	0.0049	0.0001	0.26134	28.7	0.6	31.5	0.6	76.0	5.4
36	DGR-4-73.73-gr5.4	1.39	0.007	0.01	0.145	0.008	0.0054	0.0001	0.32570	28.0	0.7	34.5	0.7	137.1	7.5
37	DGR-4-73.73-gr5.5	0.74	0.005	0.02	0.245	0.023	0.0061	0.0002	0.37765	27.2	1.6	39.4	1.4	222.2	18.6
38	DGR-4-73.73-gr5.6	0.82	0.005	0.09	0.145	0.014	0.0055	0.0002	0.32147	29.1	1.2	35.6	1.1	137.7	12.7
39	DGR-4-73.73-gr5.7	1.86	0.012	0.11	0.088	0.006	0.0062	0.0001	0.24898	37.2	0.7	40.0	0.7	85.6	5.7
	DGR-3-96.59	Devonia	n Bois Bl	anc Fm											
	May12-15a M150510	213nm													
40	DGR-3-96.59-gr2.1	9.73	3.512	0.05	36.315	0.153	0.3610	0.0010	0.68385	293.3	6.5	1986.7	4.9	3675.1	4.2
41	DGR-3-96.59-gr2.2	2.43	0.011	0.44	0.093	0.008	0.0047	0.0001	0.28790	26.3	0.8	30.1	0.7	90.7	7.2
42	DGR-3-96.59-gr3.1	3.98	0.874	0.02	20.847	0.081	0.2193	0.0005	0.63466	250.4	3.7	1278.3	2.9	3131.5	3.8
43	DGR-3-96.59-gr3.2	5.97	1.023	0.01	15.916	0.056	0.1715	0.0004	0.61430	218.6	2.6	1020.2	2.0	2871.8	3.3
44	DGR-3-96.59-gr3.3	6.41	1.326	0.01	19.892	0.072	0.2069	0.0005	0.63022	223.0	3.3	1212.2	2.5	3086.1	3.5
	DGR-1-113.55	Devonia	n Bois Bl	anc Fm											
	Apr15-15a	213 nm													
45	DGR-1-113-gr1.1	1.32	0.013	0.28	0.681	0.079	0.0101	0.0004	0.35808	28.0	4.5	64.5	2.7	527.2	46.8
46	DGR-1-113-gr1.2	2.88	0.694	0.01	22.588	0.097	0.2406	0.0006	0.53349	290.9	4.8	1390.0	2.9	3209.4	4.2
47	DGR-1-113-gr2.2	2.04	0.214	0.01	9.481	0.058	0.1051	0.0003	0.46564	150.7	3.1	644.3	1.8	2385.7	5.6
48	DGR-1-113-gr3.1	0.91	0.008	0.12	0.208	0.011	0.0088	0.0001	0.23086	47.8	0.8	56.7	0.7	191.9	9.1
49	DGR-1-113-gr3.2	0.24	0.003	1.18	0.569	0.041	0.0142	0.0003	0.29371	62.8	2.7	90.9	1.9	457.4	26.3
50	DGR-1-113-gr4.1	1.63	0.007	0.03	0.264	0.019	0.0046	0.0001	0.33366	15.6	1.1	29.5	0.7	237.9	14.9

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
51	DGR-1-113-gr4.2	1.36	0.005	0.05	0.261	0.019	0.0034	0.0001	0.37242	7.4	1.0	21.7	0.6	235.2	14.8
52	DGR-1-113-gr5.1	0.06	0.003	4.23	6.233	0.333	0.0634	0.0015	0.44607	60.8	17.7	396.3	9.1	2009.1	45.9
53	DGR-1-113-gr5.2	0.30	0.005	0.19	0.783	0.048	0.0174	0.0003	0.30997	71.5	3.0	111.0	2.1	587.4	26.8
54	DGR-1-113-gr6.1	0.16	0.006	0.29	2.395	0.122	0.0367	0.0007	0.36999	106.8	7.0	232.1	4.3	1241.1	36.1
55	DGR-1-113-gr6.2	0.82	0.009	0.10	0.343	0.017	0.0106	0.0001	0.26556	51.7	1.2	68.0	0.9	299.4	12.6
	Apr24-15a LA150422	213nm													
56	DGR-1-113-gr1.1	0.27	0.005	0.57	1.031	0.070	0.0203	0.0004	0.32510	76.9	4.3	129.7	2.8	719.3	34.4
57	DGR-1-113-gr1.2	0.90	0.009	0.10	0.277	0.015	0.0104	0.0001	0.24441	54.1	1.2	66.5	0.9	248.6	12.2
58	DGR-1-113-gr1.3	1.20	0.014	0.39	0.425	0.018	0.0116	0.0001	0.28079	53.7	1.2	74.4	0.9	359.6	13.0
59	DGR-1-113-gr1.4	0.58	0.014	0.00	1.938	0.071	0.0243	0.0003	0.38846	50.4	4.0	155.0	2.2	1094.3	24.4
60	DGR-1-113-gr1.5	4.66	0.860	0.01	16.663	0.064	0.1845	0.0004	0.49372	262.0	3.3	1091.5	1.9	2915.6	3.7
61	DGR-1-113-gr1.6	0.12	0.001	0.19	1.017	0.102	0.0127	0.0005	0.38230	25.8	5.7	81.1	3.1	712.2	50.5
62	DGR-1-113-gr2.1	1.12	0.011	0.29	0.274	0.019	0.0096	0.0002	0.25172	48.8	1.4	61.3	1.1	245.8	14.9
63	DGR-1-113-gr2.2	0.93	0.009	0.23	0.209	0.012	0.0098	0.0001	0.22072	54.4	1.0	63.0	0.8	192.5	9.9
64	DGR-1-113-gr3.1	1.70	0.004	0.12	0.134	0.014	0.0022	0.0001	0.34090	6.8	0.8	14.0	0.5	127.5	12.6
65	DGR-1-113-gr5.1	2.69	0.021	0.09	0.093	0.005	0.0077	0.0001	0.17014	47.0	0.5	49.6	0.4	90.7	4.5
66	DGR-1-113-gr5.2	2.70	0.022	0.09	0.121	0.008	0.0083	0.0001	0.18479	49.5	0.7	53.5	0.6	115.7	6.8
67	DGR-1-113-gr6.1	0.65	0.006	0.44	0.746	0.057	0.0091	0.0003	0.38400	17.3	3.2	58.2	1.7	566.1	32.7
68	DGR-1-113-gr6.2	0.37	0.006	0.25	1.220	0.082	0.0173	0.0004	0.36739	45.3	4.7	110.7	2.7	809.8	36.9
69	DGR-1-113-gr7.1	3.04	0.022	0.11	0.102	0.005	0.0072	0.0001	0.18251	42.9	0.5	46.2	0.4	98.3	4.4
70	DGR-1-113-gr7.2	3.22	0.023	0.09	0.079	0.004	0.0072	0.0001	0.16172	44.5	0.4	46.5	0.4	77.1	3.8
71	DGR-1-113-gr8.1	1.93	0.016	0.16	0.223	0.010	0.0084	0.0001	0.24299	44.0	0.7	54.0	0.6	204.3	7.9
72	DGR-1-113-gr8.2	1.23	0.011	0.08	0.225	0.013	0.0092	0.0001	0.23440	49.1	1.0	58.9	0.8	205.8	10.3
73	DGR-1-113-gr12.1	6.03	0.006	0.00	0.095	0.006	0.0010	0.0000	0.39415	1.4	0.3	6.7	0.2	92.6	5.6
74	DGR-1-113-gr12.2	4.45	0.005	0.00	0.103	0.008	0.0012	0.0000	0.38882	1.8	0.4	7.5	0.2	99.9	7.4
75	DGR-1-113-gr12.3	3.44	0.005	0.00	0.146	0.010	0.0016	0.0000	0.39383	2.1	0.6	10.3	0.3	138.7	8.9
76	DGR-1-113-gr11.1	0.39	0.004	0.13	0.888	0.044	0.0092	0.0002	0.40452	10.2	2.4	59.3	1.2	645.1	23.4
77	DGR-1-113-gr11.2	0.36	0.003	0.14	0.701	0.078	0.0089	0.0004	0.37643	19.3	4.4	57.4	2.4	539.1	45.9
78	DGR-1-113-gr10.1	0.24	0.010	2.92	2.990	0.111	0.0430	0.0006	0.37880	114.5	6.3	271.4	3.7	1405.1	27.9
79	DGR-1-113-gr10.2	2.08	0.018	0.37	0.153	0.008	0.0086	0.0001	0.20308	49.6	0.7	55.4	0.6	144.8	6.8
80	DGR-1-113-gr10.3	2.20	0.017	0.09	0.099	0.005	0.0079	0.0001	0.17280	47.9	0.5	50.7	0.4	95.9	4.5

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
81	DGR-1-113-gr10.4	0.19	0.003	0.35	0.793	0.054	0.0152	0.0003	0.32541	56.5	3.3	97.5	2.2	593.0	30.3
82	DGR-1-113-gr9.1	0.20	0.003	10.5	0.834	0.066	0.0160	0.0004	0.32613	59.0	4.0	102.1	2.6	615.9	36.2
83	DGR-1-113-gr9.2	1.81	0.014	0.10	0.121	0.007	0.0078	0.0001	0.19008	45.9	0.7	50.1	0.6	115.6	6.5
84	DGR-1-113-gr9.3	1.23	0.011	0.13	0.205	0.013	0.0092	0.0001	0.22531	50.2	1.1	58.8	0.9	189.0	11.1
	Мау15-15а М150430	213nm													
85	DGR-1-113-gr1.1rim	1.29	0.029	0.00	1.861	0.046	0.0224	0.0003	0.49282	41.6	2.4	142.6	1.7	1067.3	16.3
86	DGR-1-113-gr1.2rim	0.41	0.020	0.00	4.257	0.128	0.0491	0.0008	0.51933	81.1	6.6	309.2	4.7	1685.1	24.5
87	DGR-1-113-gr1.3rim	1.80	0.017	0.00	0.768	0.018	0.0095	0.0001	0.47865	19.0	0.9	61.0	0.7	578.6	10.1
88	DGR-1-113-gr1.4core	4.51	0.004	0.00	0.075	0.004	0.0009	0.0000	0.46989	1.9	0.2	6.0	0.1	73.5	3.7
89	DGR-1-113-gr1.5core	2.30	0.003	0.01	0.124	0.010	0.0014	0.0001	0.48298	2.1	0.5	8.9	0.3	118.3	8.7
90	DGR-1-113-gr1.6core	2.83	0.364	0.01	11.185	0.945	0.1285	0.0062	0.57247	207.7	46.4	779.3	35.4	2538.6	76.5
	Jun24-15a	193 nm													
91	DGR1-113-1.1	0.14	0.001	0.10	0.584	0.035	0.0093	0.0003	0.49406	28.4	2.0	59.5	1.7	467.1	22.2
92	DGR1-113-1.2	1.72	0.002	0.04	0.113	0.005	0.0014	0.0000	0.52392	2.6	0.3	8.8	0.2	108.7	4.4
93	DGR1-113-1.3	0.75	0.002	0.02	0.151	0.006	0.0021	0.0000	0.50729	5.3	0.3	13.5	0.3	142.9	5.2
94	DGR1-113-1.4	1.26	0.004	0.00	0.267	0.010	0.0034	0.0001	0.52029	7.0	0.5	21.6	0.4	240.0	7.7
95	DGR1-113-1.5	0.35	0.001	0.00	0.286	0.014	0.0039	0.0001	0.50938	9.8	0.7	25.4	0.6	255.7	10.7
96	DGR1-113-3.1	0.19	0.002	1.21	0.414	0.018	0.0121	0.0002	0.41374	57.7	1.4	77.5	1.3	351.7	12.5
97	DGR1-113-3.2	0.50	0.004	0.08	0.122	0.005	0.0087	0.0001	0.29501	51.9	0.7	55.7	0.7	116.7	4.8
98	DGR1-113-3.3	0.38	0.004	0.47	0.203	0.009	0.0099	0.0001	0.34404	55.0	1.0	63.2	0.9	187.6	7.4
99	DGR1-113-3.4	0.05	0.001	0.81	0.543	0.041	0.0104	0.0004	0.46935	38.8	2.5	66.9	2.3	440.1	26.5
100	DGR1-113-3.5	0.36	0.003	0.14	0.137	0.007	0.0090	0.0001	0.30593	52.9	0.9	57.6	0.9	130.8	6.1
101	DGR1-113-4.1	0.22	0.001	0.38	0.126	0.008	0.0043	0.0001	0.38824	22.0	0.7	27.9	0.7	120.6	6.9
102	DGR1-113-4.2	0.10	0.000	1.47	0.208	0.016	0.0047	0.0002	0.44416	19.9	1.1	30.4	1.1	191.9	13.8
103	DGR1-113-4.3	0.11	0.000	0.73	0.173	0.014	0.0041	0.0001	0.43690	18.0	1.0	26.7	0.9	162.0	11.8
104	DGR1-113-4.5	0.58	0.005	0.16	0.092	0.004	0.0081	0.0001	0.26990	49.7	0.6	52.0	0.6	89.4	3.5
	Jun24-15b	193 nm													
132	DGR1-113-1.1	1.21	0.002	0.00	0.126	0.012	0.0019	0.0001	0.49882	5.2	0.7	12.1	0.6	120.8	11.1
133	DGR1-113-1.2	1.05	0.002	0.00	0.099	0.008	0.0015	0.0001	0.49969	4.0	0.4	9.4	0.4	96.0	7.1
134	DGR1-113-1.3	1.03	0.002	0.00	0.087	0.011	0.0015	0.0001	0.47852	5.1	0.6	9.7	0.6	85.0	9.8
135	DGR1-113-1.4	1.11	0.002	0.00	0.088	0.009	0.0017	0.0001	0.46764	6.0	0.6	10.6	0.5	85.4	8.3

	Spot	U	Pb ²⁰⁶	<u>Th</u>	<u>207</u> Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
136	DGR1-113-1.5	1.28	0.002	0.00	0.113	0.011	0.0016	0.0001	0.50233	4.3	0.6	10.4	0.5	108.4	9.7
137	DGR1-113-2.1	2.08	0.002	0.01	0.084	0.009	0.0011	0.0001	0.51628	2.3	0.5	6.9	0.4	81.4	8.1
138	DGR1-113-2.2	4.25	0.004	0.01	0.056	0.007	0.0010	0.0001	0.47483	3.5	0.4	6.5	0.4	55.8	6.8
139	DGR1-113-2.3	2.51	0.004	0.00	0.110	0.007	0.0016	0.0000	0.50254	4.2	0.4	10.2	0.3	106.1	6.1
140	DGR1-113-2.4	2.24	0.004	0.00	0.127	0.009	0.0017	0.0001	0.51034	4.1	0.5	11.0	0.4	121.0	7.8
141	DGR1-113-2.5	2.27	0.002	0.00	0.078	0.007	0.0010	0.0000	0.51240	2.4	0.4	6.7	0.3	76.5	6.2
142	DGR1-113-3.1	0.72	0.005	0.00	0.422	0.015	0.0064	0.0001	0.49839	18.5	0.9	41.1	0.7	357.4	10.8
143	DGR1-113-3.2	1.85	0.005	0.00	0.178	0.016	0.0025	0.0001	0.50617	6.4	0.9	16.0	0.7	165.9	14.0
144	DGR1-113-3.3	1.99	0.005	0.00	0.200	0.014	0.0027	0.0001	0.50942	6.7	0.8	17.5	0.6	184.8	11.7
145	DGR1-113-3.4	1.94	0.006	0.00	0.212	0.019	0.0030	0.0001	0.50580	7.7	1.0	19.2	0.9	195.6	15.6
146	DGR1-113-3.5	2.34	0.004	0.00	0.129	0.010	0.0018	0.0001	0.50525	4.7	0.6	11.7	0.5	123.6	9.3
147	DGR1-113-3.6	0.98	0.005	0.00	0.412	0.013	0.0055	0.0001	0.51304	13.1	0.7	35.5	0.6	350.0	9.1
	DGR-3-113.17	Devonia	n Bois Bl	anc Fm.											
	May8-15b M150508	213 nm													
105	DGR-3-113-gr1.1	3.65	0.010	0.20	0.032	0.003	0.0026	0.0001	0.23182	16.0	0.4	16.9	0.3	32.1	2.7
106	DGR-3-113-gr1.2	6.91	0.017	0.02	0.023	0.002	0.0024	0.0000	0.20888	15.0	0.3	15.5	0.3	23.4	2.0
107	DGR-3-113-gr1.3	6.66	0.016	0.03	0.017	0.002	0.0024	0.0000	0.18141	15.4	0.3	15.5	0.3	17.2	1.7
108	DGR-3-113-gr2.1	0.99	0.004	0.09	0.127	0.013	0.0036	0.0001	0.35955	17.0	1.0	23.1	0.8	121.3	11.6
109	DGR-3-113-gr2.2	2.84	0.007	0.02	0.047	0.004	0.0026	0.0001	0.27435	15.0	0.4	16.8	0.4	46.7	4.2
110	DGR-3-113-gr2.3	3.18	0.011	0.06	0.050	0.005	0.0036	0.0001	0.24634	21.3	0.6	22.9	0.6	49.4	4.8
111	DGR-3-113-gr3.1	11.32	0.063	0.03	0.294	0.008	0.0056	0.0001	0.41800	20.7	0.5	36.0	0.4	261.7	6.6
112	DGR-3-113-gr3.3	6.79	0.047	0.06	0.432	0.016	0.0069	0.0001	0.44157	21.2	0.9	44.2	0.7	364.8	11.1
113	DGR-3-113-gr3.2	9.63	0.041	0.04	0.122	0.006	0.0042	0.0001	0.33521	21.4	0.5	27.1	0.5	117.3	5.7
114	DGR-3-113-gr4.1	2.16	0.006	0.05	0.044	0.005	0.0026	0.0001	0.26732	15.0	0.5	16.7	0.5	43.8	4.7
115	DGR-3-113-gr4.2	2.25	0.006	0.18	0.046	0.005	0.0028	0.0001	0.26296	16.4	0.5	18.1	0.5	45.7	4.8
116	DGR-3-113-gr4.3	2.24	0.009	0.08	0.052	0.005	0.0039	0.0001	0.24125	23.5	0.6	25.1	0.5	51.5	4.5
117	DGR-3-113-gr5.1	7.00	0.018	0.13	0.026	0.003	0.0026	0.0001	0.21102	16.3	0.4	16.8	0.4	26.1	2.8
118	DGR-3-113-gr5.2	2.54	0.009	0.11	0.086	0.013	0.0037	0.0002	0.30712	19.9	1.2	23.6	1.1	84.1	12.0
119	DGR-3-113-gr5.3	3.19	0.012	0.36	0.050	0.005	0.0036	0.0001	0.24674	21.7	0.6	23.3	0.6	49.9	4.9
120	DGR-3-113-gr6.1	1.16	0.003	0.00	0.151	0.016	0.0029	0.0001	0.41253	10.8	1.0	18.6	0.8	142.5	13.7

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
121	DGR-3-113-gr6.2	0.56	0.003	0.08	0.136	0.017	0.0051	0.0002	0.32398	26.8	1.4	32.9	1.3	129.3	14.9
122	DGR-3-113-gr6.3	0.21	0.003	2.02	0.481	0.053	0.0148	0.0006	0.35739	72.1	4.1	94.8	3.7	399.0	35.9
123	DGR-3-113-gr7.1	0.18	0.004	2.96	0.862	0.083	0.0197	0.0008	0.40123	82.9	5.5	126.0	4.8	631.1	44.3
124	DGR-3-113-gr7.2	0.18	0.003	2.45	0.888	0.086	0.0180	0.0007	0.41643	69.9	5.4	115.3	4.6	645.2	45.5
125	DGR-3-113-gr7.3	1.04	0.008	0.19	0.124	0.011	0.0081	0.0002	0.25986	47.6	1.3	51.8	1.2	118.7	10.1
126	DGR-3-113-gr8.1	0.08	0.004	1.46	3.378	0.287	0.0465	0.0019	0.49215	115.0	15.5	292.8	12.0	1499.2	64.9
127	DGR-3-113-gr9.1	0.27	0.005	0.83	0.865	0.068	0.0170	0.0006	0.42013	64.2	4.2	108.7	3.6	633.1	36.5
128	DGR-3-113-gr9.2	0.16	0.003	1.31	0.842	0.101	0.0173	0.0009	0.41396	67.5	6.4	110.4	5.4	620.1	54.5
129	DGR-3-113-gr9.3	0.32	0.004	2.35	0.338	0.037	0.0121	0.0004	0.33463	62.3	3.0	77.6	2.8	295.7	27.5
130	DGR-3-113-gr10.1	2.63	0.006	0.01	0.051	0.005	0.0023	0.0001	0.29693	12.8	0.5	14.9	0.4	50.2	4.9
131	DGR-3-113-gr10.2	1.99	0.006	0.17	0.045	0.005	0.0031	0.0001	0.25153	18.4	0.6	19.9	0.5	45.2	4.7
	DGR-1-120.18	Devonia	n, Bois B	lanc Fm											
	May12-15a M150510	213 nm													
148	DGR-1-120.18-gr1.1	0.69	0.006	0.40	0.304	0.022	0.0093	0.0002	0.35393	45.1	1.6	59.6	1.5	269.7	16.7
149	DGR-1-120.18-gr1.2	0.32	0.005	0.64	0.774	0.040	0.0151	0.0003	0.41999	56.5	2.5	96.4	2.1	581.9	22.7
150	DGR-1-120.18-gr1.3	0.24	0.005	0.46	1.162	0.073	0.0191	0.0005	0.44677	60.8	4.2	121.9	3.4	782.9	34.0
151	DGR-1-120.18-gr2.1	5.14	1.007	0.02	18.230	0.082	0.1959	0.0005	0.62239	246.4	3.8	1153.0	2.9	3001.9	4.3
152	DGR-1-120.18-gr2.2	6.45	1.119	0.01	15.489	0.063	0.1735	0.0004	0.60850	256.8	3.0	1031.2	2.4	2845.8	3.9
153	DGR-1-120.18-gr2.3	5.25	1.112	0.01	19.725	0.079	0.2118	0.0005	0.62812	265.6	3.6	1238.5	2.8	3078.0	3.9
154	DGR-1-120.18-gr3.1	0.82	0.007	0.25	0.203	0.011	0.0089	0.0002	0.30740	48.5	1.0	57.1	1.0	187.8	9.5
155	DGR-1-120.18-gr3.2	1.51	0.013	0.19	0.129	0.011	0.0085	0.0002	0.25868	50.0	1.2	54.4	1.1	123.3	9.4
	May13-15a M150510	213 nm													
156	DGR-1-120.18-gr1.4	1.17	0.009	0.29	0.162	0.010	0.0081	0.0001	0.29032	45.3	1.0	51.8	0.9	152.1	8.8
157	DGR-1-120.18-gr1.5	0.42	0.004	0.55	0.258	0.021	0.0091	0.0003	0.33493	46.3	1.8	58.2	1.6	233.3	17.2
158	DGR-1-120.18-gr1.6	0.87	0.008	0.66	0.182	0.013	0.0089	0.0002	0.29400	49.4	1.3	56.8	1.2	170.1	11.3
	DGR-3-133.17	Devonia	n Bois Bl	anc Fm.											
	Apr10-15a	213 nm													
159	DGR-3-133-gr1.1	0.25	0.005	0.00	1.305	0.069	0.0211	0.0004	0.35202	66.0	4.0	134.6	2.5	847.7	29.8
	Apr12-15a	213 nm													
160	DGR-3-133-gr1.1	1.14	0.002	0.00	0.108	0.009	0.0020	0.0001	0.32164	7.2	0.6	12.9	0.4	103.9	8.5

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U Age	Sig	²³⁵ U Age	Sig
										(Ma)		(Ma)		(ivia)	
161	DGR-3-133-gr1.2	0.13	0.005	0.01	3.900	0.152	0.0357	0.0006	0.44316	10.7	8.1	225.8	3.8	1613.7	31.1
162	DGR-3-133-gr4.1	0.11	0.021	0.00	22.301	0.447	0.2016	0.0022	0.53856	46.1	22.4	1184.2	11.7	3196.9	19.3
163	DGR-3-133-gr4.2	1.66	0.003	0.00	0.063	0.004	0.0016	0.0000	0.28341	7.3	0.3	10.4	0.2	62.2	4.3
	Jun24-15a	193 nm													
164	DGR3-133-1.1	0.04	0.000	0.00	0.736	0.098	0.0071	0.0005	0.55271	4.3	4.8	45.4	3.3	560.0	56.1
165	DGR3-133-1.2	0.01	0.000	0.00	1.058	0.144	0.0103	0.0008	0.55269	7.2	7.2	66.1	5.0	732.8	69.4
166	DGR3-133-1.3	0.02	0.000	0.00	1.000	0.133	0.0106	0.0008	0.54339	12.7	6.7	67.9	4.9	703.7	66.1
167	DGR3-133-1.4	0.03	0.000	0.00	0.775	0.097	0.0085	0.0006	0.53804	12.1	5.0	54.8	3.7	582.7	54.6
168	DGR3-133-1.5	0.03	0.000	0.00	0.598	0.080	0.0072	0.0005	0.52760	13.2	4.1	46.0	3.2	475.7	49.6
169	DGR3-133-3.1	0.86	0.002	0.00	0.029	0.002	0.0021	0.0000	0.29043	12.5	0.2	13.4	0.2	28.7	1.7
170	DGR3-133-3.2	0.37	0.001	0.00	0.061	0.004	0.0026	0.0001	0.35640	14.3	0.4	16.9	0.4	59.9	4.2
171	DGR3-133-3.3	0.43	0.001	0.00	0.050	0.005	0.0023	0.0001	0.34988	12.5	0.5	14.6	0.5	49.3	4.6
	Jun24-15b	193 nm													
172	DGR3-133-3.7	0.81	0.002	0.00	0.033	0.003	0.0022	0.0001	0.30079	12.9	0.4	14.0	0.4	32.8	2.9
173	DGR3-133-3.8	0.01	0.000	0.00	2.605	0.462	0.0301	0.0029	0.54202	49.6	23.5	190.9	18.0	1302.2	124.2
174	DGR3-133-3.9	0.02	0.000	0.00	1.539	0.162	0.0147	0.0009	0.55648	8.4	8.0	93.9	5.5	946.1	63.2
175	DGR3-133-3.10	0.77	0.002	0.00	0.030	0.002	0.0020	0.0000	0.30036	11.8	0.2	12.8	0.2	29.9	1.8
176	DGR3-133-5.2	0.01	0.000	0.03	0.783	0.150	0.0097	0.0010	0.52445	19.4	7.8	62.1	6.2	587.2	82.6
177	DGR3-133-5.3	0.02	0.000	0.00	0.369	0.098	0.0049	0.0007	0.51308	11.6	5.2	31.7	4.3	318.9	70.5
178	DGR3-133-5.4	0.08	0.000	0.00	0.248	0.038	0.0032	0.0003	0.51680	7.0	2.0	20.5	1.6	224.7	30.4
179	DGR3-133-5.5	0.01	0.000	0.00	1.580	0.257	0.0170	0.0015	0.54426	21.9	13.0	108.8	9.5	962.5	97.6
180	DGR3-133-2.3	0.02	0.000	0.33	0.783	0.102	0.0067	0.0005	0.56422	-0.7	4.3	43.2	3.2	587.0	56.8
181	DGR3-133-2.5	0.02	0.000	0.00	0.673	0.088	0.0067	0.0005	0.54884	5.4	4.4	42.8	3.1	522.2	52.7
182	DGR3-133-2.6	0.05	0.000	0.00	0.277	0.038	0.0041	0.0003	0.50106	11.2	2.1	26.1	1.8	248.1	29.7
183	DGR3-133-2.7	0.06	0.000	0.00	0.286	0.048	0.0043	0.0004	0.49713	12.5	2.7	27.9	2.3	255.7	37.6
184	DGR3-133-2.8	0.14	0.000	0.00	0.096	0.013	0.0019	0.0001	0.45902	7.5	0.8	12.5	0.8	93.3	12.1
185	DGR3-133-2.9	0.05	0.000	0.00	0.111	0.030	0.0033	0.0004	0.40630	16.0	2.4	21.3	2.4	106.9	27.4
186	DGR3-133-2.10	0.10	0.000	0.00	0.146	0.016	0.0027	0.0001	0.47213	9.5	1.0	17.2	0.9	138.7	14.4
187	DGR3-133-6.2	0.01	0.000	0.00	2.509	0.592	0.0229	0.0030	0.56515	6.3	25.9	145.7	19.2	1274.7	161.4
188	DGR3-133-6.3	0.04	0.000	0.00	0.417	0.069	0.0051	0.0004	0.52405	9.8	3.6	32.7	2.8	354.1	48.7
189	DGR3-133-6.4	0.10	0.000	0.00	0.367	0.047	0.0038	0.0003	0.54167	4.2	2.4	24.6	1.7	317.7	34.2

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
190	DGR3-133-6.6	0.02	0.000	0.00	0.994	0.174	0.0107	0.0010	0.54129	13.6	8.8	68.5	6.4	700.5	85.7
191	DGR3-133-4.2	0.54	0.001	0.00	0.018	0.003	0.0019	0.0001	0.24239	12.2	0.5	12.5	0.5	17.8	2.7
192	DGR3-133-4.3	0.31	0.000	0.00	0.056	0.008	0.0016	0.0001	0.41434	7.4	0.6	10.1	0.6	55.3	7.2
193	DGR3-133-4.5	0.07	0.000	0.00	0.161	0.035	0.0020	0.0002	0.51847	4.3	1.8	13.1	1.5	151.9	29.9
194	DGR3-133-4.9	0.07	0.000	0.00	0.075	0.022	0.0033	0.0003	0.35346	18.0	2.2	21.2	2.2	73.4	20.2
	DGR-3-162.07	Silurian	Bass Isla	nds Fm											
	May11-15a	213 nm l	W150510												
195	DGR-3-162.07-gr5.3	0.01	0.023	0.70	63.193	7.255	1.8299	0.1617	0.76988	0.0	0.0	6706	358	4226.0	110.0
196	DGR-3-162.07-gr2.2	0.04	0.019	0.08	7.471	0.630	0.4355	0.0163	0.44345	0.0	0.0	2331.0	73.0	2170.0	73.0
	DGR-3-180.06	Silurian	Bass Isla	nds Fm											
	May8-15b M150508	213nm													
197	DGR-3-180-gr1.1	0.13	0.003	0.07	2.569	0.208	0.0254	0.0011	0.51946	20.5	10.6	162.0	6.7	1291.7	57.9
198	DGR-3-180-gr1.2	0.23	0.002	0.00	0.961	0.074	0.0103	0.0004	0.49672	12.8	3.9	65.9	2.5	683.6	37.9
199	DGR-3-180-gr2.1	0.06	0.002	0.00	3.129	0.275	0.0334	0.0015	0.51685	40.9	14.1	211.5	9.4	1439.8	65.9
200	DGR-3-180-gr3.1	0.04	0.022	0.05	8.397	0.432	0.5249	0.0123	0.45596	0.0	0.0	2720.0	51.8	2274.8	45.8
201	DGR-3-180-gr4.1	4.73	0.016	0.54	0.078	0.003	0.0034	0.0000	0.30284	18.8	0.3	22.2	0.3	76.1	3.3
202	DGR-3-180-gr4.2	1.47	0.005	0.02	0.127	0.008	0.0035	0.0001	0.36383	16.2	0.6	22.4	0.5	121.2	6.8
203	DGR-3-180-gr5.1	0.04	0.002	0.01	5.847	0.466	0.0541	0.0024	0.55131	20.2	22.8	339.4	14.5	1953.4	67.5
204	DGR-3-180-gr5.2	0.05	0.002	0.02	2.864	0.418	0.0305	0.0023	0.51468	37.0	21.5	193.4	14.3	1372.6	105.5
205	DGR-3-180-gr5.3	0.05	0.001	0.01	3.641	0.312	0.0293	0.0014	0.54858	-14.5	13.4	186.4	8.6	1558.6	66.7
206	DGR-3-180-gr6.1	0.07	0.003	0.21	4.254	0.299	0.0435	0.0016	0.53016	43.0	15.1	274.4	10.0	1684.5	56.6
207	DGR-3-180-gr6.2	0.05	0.001	0.04	1.956	0.191	0.0193	0.0010	0.51459	15.1	9.8	123.2	6.1	1100.4	64.1
	DGR-3-186.43	Silurian	Bass Isla	nds Fm											
	Apr10-15a	213 nm													
208	DGR-3-186-gr4.1	3.41	0.007	0.00	0.122	0.006	0.0020	0.0000	0.33758	6.5	0.3	13.0	0.2	117.0	5.1
209	DGR-3-186-gr4.2	4.01	0.007	0.00	0.085	0.004	0.0019	0.0000	0.30214	7.7	0.3	12.0	0.2	83.0	4.2
210	DGR-3-186-gr3.1	4.53	0.010	0.00	0.129	0.007	0.0022	0.0000	0.33517	7.3	0.4	14.1	0.2	123.6	6.0
211	DGR-3-186-gr3.2	0.21	0.002	0.00	0.988	0.096	0.0106	0.0004	0.40268	13.1	5.3	67.7	2.6	697.5	48.0
212	DGR-3-186-gr1.1	3.31	0.007	0.00	0.068	0.005	0.0020	0.0000	0.26737	9.7	0.4	12.9	0.3	66.9	5.1

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
	Apr12-15a	213 nm													
213	DGR-3-186-gr2.1	1.93	0.003	0.00	0.058	0.003	0.0016	0.0000	0.27699	7.3	0.2	10.2	0.2	57.3	3.2
214	DGR-3-186-gr2.2	2.03	0.003	0.00	0.054	0.004	0.0014	0.0000	0.27808	6.6	0.2	9.3	0.2	53.4	3.4
215	DGR-3-186-gr3.1	1.14	0.003	0.00	0.147	0.008	0.0026	0.0000	0.32972	8.7	0.5	16.5	0.3	139.2	7.2
216	DGR-3-186-gr3.2	1.82	0.003	0.00	0.077	0.004	0.0018	0.0000	0.29012	7.9	0.3	11.8	0.2	75.5	4.2
217	DGR-3-186-gr4.3	3.62	0.005	0.00	0.036	0.002	0.0015	0.0000	0.22836	8.2	0.2	9.8	0.1	35.9	2.2
218	DGR-3-186-gr5.1	0.09	0.001	0.00	1.353	0.108	0.0127	0.0004	0.42296	6.1	5.8	81.4	2.7	868.8	45.8
219	DGR-3-186-gr5.2	0.25	0.003	0.00	1.041	0.056	0.0106	0.0002	0.41148	10.0	3.1	67.7	1.5	724.2	27.7
220	DGR-3-186-gr5.3	3.28	0.006	0.00	0.061	0.004	0.0018	0.0000	0.27053	8.5	0.3	11.5	0.2	60.5	3.8
221	DGR-3-186-gr6.1	1.97	0.004	0.00	0.105	0.007	0.0019	0.0000	0.32626	6.9	0.4	12.4	0.3	101.4	6.5
222	DGR-3-186-gr6.2	1.98	0.004	0.00	0.101	0.008	0.0020	0.0000	0.31624	7.6	0.5	12.9	0.3	98.0	6.9
223	DGR-3-186-gr6.3	1.01	0.002	0.00	0.108	0.008	0.0019	0.0000	0.32827	6.7	0.5	12.4	0.3	103.9	7.5
	Apr24-15a LA150422	213 nm													
224	DGR-3-186-1.1	0.70	0.004	0.00	0.561	0.031	0.0060	0.0001	0.39872	7.8	1.7	38.9	0.9	452.2	20.2
225	DGR-3-186-1.2	0.83	0.004	0.00	0.342	0.020	0.0044	0.0001	0.37241	10.0	1.1	28.6	0.6	298.6	14.9
226	DGR-3-186-1.3	0.70	0.003	0.00	0.339	0.026	0.0042	0.0001	0.37959	8.2	1.5	26.8	0.8	296.5	19.8
227	DGR-3-186-1.4	3.14	0.006	0.00	0.073	0.006	0.0018	0.0000	0.29015	7.8	0.4	11.5	0.3	71.9	5.7
	Apr24-15b LA150422	213 nm													
228	DGR-3-186-3.1	0.23	0.012	0.00	5.733	0.158	0.0532	0.0007	0.44553	21.3	8.4	334.2	4.0	1936.3	23.6
229	DGR-3-186-3.2	0.24	0.002	0.00	0.681	0.054	0.0073	0.0002	0.39949	9.2	3.0	46.9	1.5	527.3	32.1
230	DGR-3-186-3.3	0.79	0.003	0.00	0.331	0.023	0.0039	0.0001	0.38386	7.0	1.3	25.2	0.7	290.5	17.2
231	DGR-3-186-3.4	3.19	0.009	0.00	0.122	0.006	0.0027	0.0000	0.30194	11.1	0.4	17.3	0.3	116.8	5.3
232	DGR-3-186-2.1	0.57	0.009	0.00	1.570	0.048	0.0152	0.0002	0.41763	10.3	2.6	97.4	1.2	958.5	18.8
233	DGR-3-186-2.2	0.43	0.004	0.00	0.910	0.043	0.0101	0.0002	0.39621	14.6	2.3	64.8	1.2	657.3	22.4
234	DGR-3-186-5.1	1.58	0.005	0.00	0.210	0.016	0.0029	0.0001	0.36006	7.6	0.9	18.9	0.5	193.1	13.4
235	DGR-3-186-5.2	0.33	0.005	0.00	1.901	0.115	0.0167	0.0004	0.43168	0.8	5.4	107.0	2.8	1081.6	39.7
236	DGR-3-186-5.3	0.46	0.004	0.00	0.919	0.042	0.0098	0.0002	0.40204	11.8	2.3	62.6	1.2	661.9	22.3
237	DGR-3-186-6.1	1.87	0.006	0.00	0.256	0.020	0.0033	0.0001	0.37035	7.5	1.1	21.5	0.6	231.4	15.7
238	DGR-3-186-7.1	1.80	0.004	0.00	0.159	0.008	0.0025	0.0000	0.34625	7.5	0.5	16.0	0.3	149.6	7.1

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U	Sig	²³⁵ U	Sig
										(Ma)		Age (Ma)		Age (Ma)	
239	DGR-3-186-7.2	2.66	0.006	0.00	0.112	0.006	0.0021	0.0000	0.32346	7.5	0.4	13.4	0.2	107.4	5.4
240	DGR-3-186-7.3	8.67	0.012	0.00	0.029	0.002	0.0014	0.0000	0.21965	7.5	0.1	8.7	0.1	29.4	1.5
	Apr12-15b LA150409	213 nm													
241	DGR-3-186-gr2.1	3.04	0.005	0.00	0.083	0.004	0.0018	0.0000	0.30468	7.2	0.3	11.5	0.2	81.2	3.8
242	DGR-3-186-gr2.2	2.20	0.004	0.00	0.093	0.006	0.0018	0.0000	0.31424	7.1	0.4	11.9	0.2	90.5	5.3
243	DGR-3-186-gr2.3	3.45	0.006	0.00	0.073	0.004	0.0018	0.0000	0.29063	7.6	0.3	11.3	0.2	71.6	4.1
	Jun24-15a	193 nm													
244	DGR3-186-6.1	0.19	0.000	0.00	0.080	0.007	0.0017	0.0001	0.45045	7.0	0.5	11.1	0.5	78.3	6.8
245	DGR3-186-6.2	0.31	0.001	0.00	0.085	0.007	0.0020	0.0001	0.44052	8.4	0.5	12.7	0.4	82.7	6.2
246	DGR3-186-6.3	0.13	0.000	0.00	0.285	0.020	0.0037	0.0001	0.51527	8.5	1.1	24.1	0.9	254.9	15.9
247	DGR3-186-6.4	0.07	0.000	0.00	0.502	0.038	0.0055	0.0002	0.53823	7.2	1.9	35.0	1.4	413.3	25.6
248	DGR3-186-6.5	0.81	0.001	0.00	0.064	0.005	0.0017	0.0000	0.42491	7.5	0.3	10.7	0.3	62.8	4.3
249	DGR3-186-6.6	0.17	0.001	0.00	0.298	0.021	0.0041	0.0001	0.50785	10.5	1.1	26.7	0.9	264.6	16.2
250	DGR3-186-6.7	0.04	0.000	0.00	0.697	0.056	0.0069	0.0003	0.54887	5.6	2.8	44.4	1.9	537.1	33.1
251	DGR3-186-6.8	0.71	0.001	0.00	0.054	0.003	0.0017	0.0000	0.39992	8.2	0.3	10.8	0.2	53.0	3.0
252	DGR3-186-6.9	0.05	0.000	0.00	0.734	0.060	0.0073	0.0003	0.54845	6.2	3.0	47.0	2.1	559.2	34.5
253	DGR3-186-6.10	1.23	0.002	0.00	0.025	0.001	0.0014	0.0000	0.32091	8.1	0.2	9.0	0.2	24.8	1.4
254	DGR3-186-6.11	0.55	0.001	0.00	0.054	0.003	0.0016	0.0000	0.40427	7.9	0.2	10.5	0.2	53.2	2.9
255	DGR3-186-6.12	1.32	0.002	0.00	0.037	0.002	0.0015	0.0000	0.36699	7.8	0.2	9.4	0.2	36.6	1.7
256	DGR3-186-6.13	0.06	0.000	0.00	0.485	0.036	0.0057	0.0002	0.52876	10.1	1.8	36.8	1.4	401.2	24.2
257	DGR3-186-3.1	0.34	0.001	0.00	0.114	0.007	0.0022	0.0001	0.46491	8.3	0.4	14.2	0.4	109.9	6.3
258	DGR3-186-3.2	0.05	0.000	0.00	0.706	0.049	0.0075	0.0003	0.54076	9.4	2.5	48.5	1.8	542.2	28.7
259	DGR3-186-3.3	0.31	0.001	0.00	0.127	0.007	0.0023	0.0001	0.47168	8.4	0.4	15.1	0.4	121.8	6.4
260	DGR3-186-3.4	0.60	0.001	0.00	0.060	0.004	0.0017	0.0001	0.41307	8.0	0.3	11.0	0.3	59.2	4.1
261	DGR3-186-3.5	0.06	0.002	0.00	3.508	0.102	0.0320	0.0005	0.56955	9.4	5.0	203.3	3.3	1529.0	22.8
262	DGR3-186-3.6	0.12	0.001	0.00	0.368	0.021	0.0046	0.0001	0.52219	9.2	1.1	29.3	0.9	317.9	15.4
263	DGR3-186-3.7	0.59	0.001	0.00	0.069	0.004	0.0018	0.0000	0.42661	7.9	0.3	11.4	0.3	67.4	3.5
	DGR-4-344.18	Silurian	Salina A1	Unit											
	May12-15a M150510	213 nm													
264	DGR-4-344.18-gr3.1	2.67	0.529	0.40	17.822	0.203	0.1980	0.0014	0.61274	284.4	9.5	1164.6	7.4	2980.2	10.9

	Spot	U	Pb ²⁰⁶	<u>Th</u>	²⁰⁷ Pb	1	²⁰⁶ Pb	1	Error	Model	1	²⁰⁶ Pb	1	²⁰⁷ Pb	1
		(ppm)	(ppm)	U	²³⁵ U	Sig	²³⁸ U	Sig	Correl.	Age	Sig	²³⁸ U Аде	Sig	²³⁵ U Age	Sig
:										(Ma)		(Ma)		(Ma)	
265	DGR-4-344.18-gr3.3	4.01	0.693	0.05	14.976	0.083	0.1726	0.0006	0.60310	276.7	4.6	1022.8	3.7	2813.5	6.1
266	DGR-4-344.18-gr4.1	0.65	0.018	0.15	0.690	0.029	0.0282	0.0004	0.32892	119.5	3.2	134.3	3.0	335.7	22.3
	May13-15a M150510	213 nm													
267	DGR-4-344.18-gr4.2	0.35	0.018	0.43	0.711	0.037	0.0522	0.0007	0.27018	309.2	4.8	328.3	4.5	545.4	21.8
268	DGR-4-344.18-gr4.3	0.87	0.031	0.28	0.706	0.051	0.0360	0.0008	0.30523	201.7	5.2	228.2	4.9	542.2	29.7
269	DGR-4-344.18-gr4.4	0.19	0.010	0.34	0.915	0.066	0.0544	0.0012	0.29661	311.9	7.5	341.6	7.1	659.6	34.5
270	DGR-4-344.18-gr4.5	0.74	0.027	0.20	1.103	0.040	0.0373	0.0005	0.36184	186.6	3.2	235.8	3.0	754.9	18.9
271	DGR-4-344.18-gr4.6	1.36	0.033	0.17	0.446	0.024	0.0242	0.0004	0.29182	137.2	2.6	153.8	2.4	374.6	17.0
272	DGR-4-344.18-gr4.7	1.01	0.053	0.30	0.483	0.020	0.0527	0.0005	0.22925	325.4	3.2	331.0	3.0	400.0	13.5
273	DGR-4-344.18-gr4.8	0.47	0.024	0.33	0.501	0.029	0.0513	0.0007	0.23290	314.8	4.5	322.2	4.2	412.3	19.5
274	DGR-4-344.18-gr4.9	1.68	0.118	0.14	3.121	0.152	0.0703	0.0015	0.43934	289.6	10.0	438.2	9.0	1438.0	36.9

FOOTNOTES TO APPENDIX A2

All analyses carried out using the NIST610 standard

Error Correl. - Error correlation coefficient for concordia coordinates

Relation between ages and concordia coordinates: Y = 206Pb/238U = EXP(L238*(206-238Age)) - 1;

X = 207Pb/235U = EXP(L235*(207-235Age)) - 1

207Pb/206Pb = 137.88*X/Y; U decay constants (L238 & L235) from Jaffey et al. (1971).

APPENDIX A3: SUMMARY OF ID-TIMS U-Pb ISOTOPIC ANALYSES ON VEIN CALCITE

No.	Sample	Comments*	Wt.	U	²³⁸ U/	Pbtot	%Pb ²⁰⁶	²⁰⁶ Pb/	2	²⁰⁷ Pb/	2	Rho76	²⁰⁶ Pb/ ²³⁸ U	2	²⁰⁷ Pb/ ²³⁵ U	2	RhoC
			(mg)	(ppb)	²⁰⁴ Pb	(pg)	Com	²⁰⁴ Pb	Sig	²⁰⁴ Pb	Sig		Age(Ma)	Sig	Age(Ma)	Sig	
	DD12-11NE De	evonian Lucas Fo	ormation	<u>1</u>													
1	amt-1	outer half	2.0	0.27	3413	16.9	36.4	66.38	16.55	17.79	0.78	0.9725	89.5	1.5	85.1	24.8	0.08615
2	amt-2	inner half	2.0	0.32	4989	16.5	28.3	89.80	31.62	18.91	1.48	0.9880	91.3	1.1	88.1	17.3	0.13004
3	dwd5916A**	Grain 6, 80 Ma	1***	0.56	16736	9	11	253.5	142.5	26.60	6.71	0.9965	89.9	0.5	87.9	6.6	0.41316
4	dwd5916B**	Grain 6, 80 Ma	1***	0.57	8856	11	19	142.81	80.82	21.32	3.73	0.9962	89.9	0.6	86.4	10.4	0.23108
5	dwd5914	Grain 2, 86 Ma Grain 12, 60	1***	0.71	2740	26	35	59.42	5.28	17.62	0.29	0.9268	95.6	1.8	97.3	29.7	0.03369
6	dwd5917	Ма	1***	0.39	1562	21	53	39.28	2.81	16.68	0.22	0.7455	85.1	3.1	90.9	53.3	0.05663
	DD12-12SE De	evonian Lucas Fo	ormation	<u>1</u>													
7	amt-3	outer half	4.4	0.12	413	84.2	86.7	22.34	0.16	15.71	0.05	0.4015					
8	amt-4	inner half	4.4	0.12	1050	73.0	18.8	108.78	8.76	19.65	0.40	0.9817	530.7	4.5	430.8	55.7	0.02445
	DD12-12FV De	evonian Lucas Fo	rmatior	<u>1</u>													
9	dwd5911	Ma	1***	0.42	1064	31	59	33.91	1.29	16.35	0.10	0.6973	92.5	4.5	92.2	77.0	0.01364
10	dwd5913	Grain 2, 60 Ma	1***	1.30	2553	43	51	38.60	1.26	16.55	0.09	0.7436	50.5	1.9	49.9	33.0	0.00925
	DD12-13N Dev	onian Lucas For	mation														
11	amt-8	outer third	5.3	0.24	945	96.9	65.6	29.47	0.40	16.05	0.05	0.4567	73.2	5.1	60.4	89.5	0.00549
12	amt-9	middle third	5.3	0.32	3567	48.5	32.3	63.62	4.73	17.57	0.22	0.9328	80.8	1.4	73.4	23.2	0.02030
13	amt-10	inner third	5.3	0.32	2636	64.7	37.7	61.57	12.03	17.44	0.53	0.9583	104.1	1.9	91.9	31.5	0.06294
	DD12-16 Devo	nian Lucas Form	ation														
14	amt-5	outer third	10.2	0.05	455	91.1	53.4	36.44	0.75	16.30	0.06	0.5809	246.9	10.3	188.1	167. 1	0.00599
15	amt-6	middle third	10.2	0.38	34328	55.4	8.8	508.12	2287	37.53	102	1.0000	91.4	0.4	85.6	4.0	0.48497
16	amt-7	inner third	10.2	0.11	2646	37.6	37.9	55.08	4.55	17.06	0.20	0.9051	88.2	1.8	73.1	31.3	0.02153
	DGR3-034 Dev	vonian Lucas For	mation														
17	amt-11	whole grain	2.3	1.12	2567	88.4	44.9	48.20	5.18	17.03	0.27	0.9218	73.8	1.9	73.7	32.5	0.03245
18	dwd5953	whole grain	0.71	0.91	3448	19.6	31.3	64.79	4.08	17.74	0.21	0.9144	85.7	1.4	82.3	23.8	0.02229
19	dwd5954	outer half	0.6	0.90	4555	13.7	27.5	77.04	8.37	18.39	0.43	0.9511	82.1	1.1	81.7	18.2	0.05147
20	dwd5955	inner half	0.6	0.63	10619	7.6	14.8	181.32	91.33	22.96	4.13	0.9972	98.1	0.6	92.3	8.5	0.20982
21	dwd5771	slab fragment	8.0	0.07	1304	38	47	40.66	0.81	16.85	0.08	0.6673	108.5	3.6	124.4	60.6	0.01158
22	dwd5772	slab fragment	33.0	0.05	1469	91	50	37.68	0.28	16.65	0.04	0.5399	83.5	3.2	93.7	55.1	0.00401

DGR-1-113 Devonian Bois Blanc Formation

23	amt15	outer half	4.8	0.50	2555	44	84.9	22.16	0.23	15.81	0.14	0.8554	8.8	1.9	9.9	35.0	0.00300
24	amt16	inner half	4.8	0.36	24442	16	11.5	226.4	119.4	24.37	5.04	0.9978	54.7	0.2	48.9	3.9	0.24332
25	amt17	outer third inner two-	5.4	0.33	17640	10	39.5	56.30	14.22	16.86	0.67	0.7652	13.8	0.3	9.7	6.0	0.33386
26	amt18	thirds	5.4	1.11	4374	140	33.7	56.01	0.89	17.16	0.07	0.6556	55.0	1.1	48.1	19.3	0.00949
	DGR-3-180 Silu	urian Bass Island	<u>ls Fm</u>														
27	amt19	whole crystal	1.8	0.33	1293	35	62.3	30.72	0.88	16.09	0.09	0.5125	59.9	3.7	48.8	66.1	0.01553
	DGR-3-186 Silu	urian Bass Island	<u>ls Fm</u>														
28	amt13	outer half	28.0	0.97	28732	97	30.7	62.27	1.50	16.94	0.07	0.7276	9.9	0.2	6.4	3.0	0.00759
29	amt14	inner half	28.0	3.25	6964	1012	55.3	33.84	0.07	16.17	0.04	0.8517	14.1	0.7	10.9	12.5	0.00376
	DGR-4-344 Sil	urian Salina A1	<u>Jnit</u>														
30	amt20 DGR-6-756-48	whole crystal <u>B Ordovician</u>	3.0	0.44	9379	78	4.6	485.0	117.1	40.57	6.27	0.9997	313.1	0.6	317.4	7.1	0.11423
31	dwd5777	slab fragment	1.4	0.08	118	67	69.7	27.1	0.2	16.14	0.05	0.5565	450.7	38.1	480.1	527. 4	0.00529

FOOTNOTES TO APPENDIX A3

Pb-Pb and U-Pb ratios corrected for fractionation, blank and spike. U-Pb ratios also corrected for initial common Pb.

*Grain number refers to Table 1, followed by LA-ICPMS model age; ** splits of the same solution, *** not weighed, ca. 1 mg.

PbTot - common Pb assuming the isotopic composition of laboratory blank:(errors of 2%).

206/204 - 18.221; 207/204 - 15.612; 208/204 - 39.360 %Pb206 Com - Percent of total 206Pb that is initial common Pb.

Rho76 - Error correlation coefficient for Pb 207/204 vs. 206/204 coordinates

RhoC - Error correlation coefficient for concordia coordinates

Concordia coordinates: Y = 206Pb/238U = EXP(L238*(206-238 Age)) - 1; X = 207Pb/235U = EXP(L235*(207-235 Age)) - 1

207Pb/206Pb = 137.88*X/Y; Uranium decay constants (L238 & L235) are from Jaffey et al. (1971).