Supplementary Non-Radiological Interim Acceptance Criteria for the Protection of Persons and the Environment

NWMO-TR-2017-05

June 2019

Stacey Fernandes, Katherine Woolhouse, Nicole Thackeray

Canada North Environmental Services

WASTE SOCIÉTÉ DE GESTION

Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor

22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca

Supplementary Non-Radiological Interim Acceptance Criteria for the Protection of Persons and the Environment

NWMO-TR-2017-05

June 2019

Stacey Fernandes, Katherine Woolhouse, Nicole Thackeray Canada North Environmental Services

This report has been prepared under contract to NWMO. The report has been reviewed by NWMO, but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO.

All copyright and intellectual property rights belong to NWMO.

Document History

Supplementary Non-Radiological Interim Acceptance Criteria for the Protection of Persons and the Environment				
NWMO TR-2017-05				
R000 Date: June 2019				
Canada North Environmental Services				
Stacey Fernandes, Katherine Woolhouse, Nicole Thackeray				
Harriet Phillips				
Approved by: Stacey Fernandes				
Nuclear Waste Management Organization				
Chantal Medri, Neale Hunt, Mihaela Ion, Joanne Jacyk				
Paul Gierszewski				
	Protection of Persons NWMO TR-2017-05 R000 Canada North Stacey Fernandes, K Harriet Phillips Stacey Fernandes Nuclear Waste M Chantal Medri, Neale	Protection of Persons and the Environment NWMO TR-2017-05 R000 Date: Canada North Environmental Service Stacey Fernandes, Katherine Woolhouse, N Harriet Phillips Stacey Fernandes Nuclear Waste Management Organizat Chantal Medri, Neale Hunt, Mihaela Ion, Joa		

Revision Summary			
Revision Number			
R00	2019-06	Initial issue	

ABSTRACT

 Title:
 Supplementary Non-Radiological Interim Acceptance Criteria for the Protection of Persons and the Environment

 Report No.:
 NWMO-TR-2017-05

Author(s):Stacey Fernandes, Katherine Woolhouse, Nicole ThackerayCompany:Canada North Environmental ServicesDate:June 2019

Abstract

The purpose of this report is to present interim acceptance criteria for a specific subset of elements based on the protection of persons and the environment to be used for the postclosure non-radiological release from a used fuel deep geological repository. These criteria were derived based on the available toxicity data and existing jurisdictional values compiled from a literature search. Effort was made to derive appropriate values for each media and element; however, there are some residual gaps and the criteria provided are associated with varying levels of uncertainty.

TABLE OF CONTENTS

			Page
AE	BSTRACT		iii
1.			1
2.		SCOPE OF WORK	1
	2.1	ELEMENT IDENTIFICATION	1
	2.2	JURISDICTIONAL REVIEW	
	2.3	LITERATURE REVIEW METHODOLOGY AND SOURCES	-
	2.4	DATA EVALUATION AND SCORING PROCEDURE	
	2.4.1	Aquatic Toxicity Studies	
	2.4.2	Terrestrial Toxicity Studies	5
3.		GUIDELINE APPROACH AND METHODOLOGY	6
	3.1	SURFACE WATER QUALITY GUIDELINES	
	3.1.1	Water Quality Guideline for the Protection of Aquatic Life	
	3.1.2	Water Quality Guideline for the Protection of Agricultural Uses	
	3.2	SOIL QUALITY GUIDELINES	
	3.2.1	Soil Quality Guideline for Soil Contact (SQG _{SC})	
	3.2.2 3.2.3	Soil Quality Guideline for Soil and Food Ingestion (SQG)	
	3.2.3 3.2.4	Soil Quality Guideline for Offsite Migration (SQG _{OM-E}) Soil Quality Guideline for Human Health	
	3.2.4 3.3	GROUNDWATER QUALITY GUIDELINES	
	3.4	SEDIMENT QUALITY GUIDELINES	
	3.5	AIR QUALITY GUIDELINES	
4.		DERIVATION OF ENVIRONMENTAL QUALITY GUIDELINES	15
	4.1	SURFACE WATER QUALITY GUIDELINES	
	4.1 .1	Jurisdictional Review	
	4.1.2	Toxicity Review – Aquatic Data	
	4.1.2.1	Gold	
	4.1.2.2	Iridium	
	4.1.2.3	Osmium	
	4.1.2.4	Palladium	19
	4.1.2.5	Platinum	
	4.1.2.6	Rhodium	
	4.1.2.7	Ruthenium	
	4.1.3		
	4.2 4.2.1	SOIL QUALITY GUIDELINES	
	4.2.1	Toxicity Review – Terrestrial Data	
	4.2.1.1	Indium	
	4.2.1.2	Iridium	
	4.2.1.4	Osmium	
	4.2.1.5	Palladium	
	4.2.1.6	Platinum	
	4.2.1.7	Rhodium	33

4.2	2.1.8 Ruthenium	35
4.2		
4.3		
4.4		
4.4		
4.4		
4.4		
4.5		
4.5		
4.5		
	5.2.1 Iridium	
4.5	5.3 Summary	
5.	DISCUSSION	47
6.	CONCLUSIONS	51
REFEF	RENCES	52
ACRO	NYMS	58
APPE	NDIX A.1: AQUATIC TOXICITY STUDY EVALUATION FORMS	61
APPE	NDIX A.2: TERRESTRIAL TOXICITY STUDY EVALUATION FORMS	85
APPE	NDIX B.1: COMPILED AQUATIC TOXICITY DATA	101
APPE	NDIX B.2: COMPILED TERRESTRIAL TOXICITY DATA	117
APPE	NDIX C.1: AQUATOX AQUATIC TOXICITY DATA	129

LIST OF TABLES

Page

Summary of Interim Acceptance Criteria and Elements for Guideline Derivation.	2
Summary of Data Requirements for Development of CCME WQG	8
Summary of Meadow Vole Characteristics	12
Summary of WQGs – Initial Stage	15
Summary of Chronic Aquatic Toxicity Data – Gold	17
Summary of Available Surrogate WQG – Gold	18
Summary of Chronic Aquatic Toxicity Data – Rhodium	22
Summary of Chronic Aquatic Toxicity Data – Ruthenium	23
Summary of Selected Terrestrial Toxicity Data – Gold	26
Summary of Derived Environmental SQG – Gold	26
Summary of Selected Terrestrial Toxicity Data – Indium	28
Summary of Selected Terrestrial Toxicity Data – Palladium	30
Summary of Selected Terrestrial Toxicity Data – Rhodium	34
Summary of Derived Environmental SQG – Ruthenium	37
Summary of SQGs	38
Summary of GQGs	39
Summary of SedQGs – Jurisdictional Review	41
Derivation of SedQGs	42
Summary of AQGs	46
Summary of Interim Acceptance Criteria	51
	Summary of Interim Acceptance Criteria and Elements for Guideline Derivation. Summary of Meadow Vole Characteristics. Summary of WQGs – Initial Stage. Summary of WQGs – Jurisdictional Review. Summary of Chronic Aquatic Toxicity Data – Gold Summary of Available Surrogate WQG – Gold Summary of Chronic Aquatic Toxicity Data – Platinum Summary of Chronic Aquatic Toxicity Data – Rhodium. Summary of Chronic Aquatic Toxicity Data – Rhodium. Summary of Chronic Aquatic Toxicity Data – Ruthenium. Summary of SQGs – Initial Stage. Summary of SQGs – Initial Stage. Summary of Selected Terrestrial Toxicity Data – Gold. Summary of Selected Terrestrial Toxicity Data – Gold. Summary of Selected Terrestrial Toxicity Data – Indium. Summary of Selected Terrestrial Toxicity Data – Indium. Summary of Selected Terrestrial Toxicity Data – Indium. Summary of Selected Terrestrial Toxicity Data – Palladium. Summary of Derived Environmental SQG – Indium. Summary of Derived Environmental SQG – Platinum. Summary of Derived Environmental SQG – Platinum. Summary of Selected Terrestrial Toxicity Data – Palladium. Summary of Derived Environmental SQG – Platinum. Summary of Selected Terrestrial Toxicity Data – Platinum. Summary of Selected Terrestrial Toxicity Data – Platinum. Summary of Selected Terrestrial Toxicity Data – Ruthenium. Summary of SedQGs – Jurisdictional Review. Derivation of SedQGs – Jurisdictional Review. Summary of AQGs – Jurisdictional Review. Summary of AQGs – Jurisdictional Review. Summary of Data Gaps and Limitations. Summary of Interim Acceptance Criteria.

LIST OF FIGURES

Page

Figure 2-1: Overview of Data Evaluation Methodology	4
Figure 3-2: Overview of Approach and Methodology	7

1. INTRODUCTION

This document presents interim acceptance criteria for a specific subset of elements based on the protection of persons and the environment to be used for the postclosure non-radiological release from a used fuel deep geological repository. These criteria were derived based on the available toxicity data and existing jurisdictional values compiled from a literature search. Effort was made to derive appropriate values for each media and element; however, there are some residual gaps and the criteria provided are associated with varying levels of uncertainty.

2. SCOPE OF WORK

Medri (2015) completed a review of interim non-radiological acceptance criteria for the protection of persons and the environment due to potential non-radiological exposure to releases from a deep geological repository for used nuclear fuel. The document compiled criteria for surface water, groundwater, soil, sediment, and air for all relevant elements in a used fuel repository, based on Canadian Federal and Provincial guidelines supplemented as required by internationally developed guidelines. However, a specific subset of elements are missing from Medri (2015)'s compilation. Thus, the purpose of the current assessment is to develop criteria for the missing elements in various media through the review of available literature.

The fact that criteria in various environmental media were not found for some elements of interest in the previous report suggests a lack of available data. Therefore, multiple lines of evidence and approaches were considered in the current assessment in order to develop criteria for the missing elements.

2.1 ELEMENT IDENTIFICATION

The elements of interest associated with releases from a deep geological repository for CANDU used nuclear fuel which presently have insufficient criteria are identified in Table 2-1. Interim acceptance criteria specified in Medri (2015) are also provided in the table; media and elements requiring guideline derivation are indicated with shading.

Element	Surface Water (µg/L)	Groundwater (μg/L)	Soil (µg/g)	Sediment (µg/g)	Air (µg/m³)
Gold					
Bismuth			20		100
Bromine			10		20
lodine	100		4		0.67
Indium					
Iridium					
Osmium					
Palladium					
Platinum					0.2
Rhodium					
Ruthenium					
Tellurium			250		10
Tungsten	30		400		67

Table 2-1: Summary of Interim Acceptance Criteria and Elements for Guideline Derivation

Notes: Values from Medri (2015). Shading indicates guideline requiring development.

2.2 JURISDICTIONAL REVIEW

Medri (2015) completed a jurisdictional review for the elements of interest. The following additional jurisdictions were considered for acceptable criteria for the missing elements of interest:

• Environment and Climate Change Canada (ECCC 2013):

Database of Environmental Quality Guidelines: a database of guidelines for chemicals in various media from multiple national and international jurisdictions was developed to facilitate screening and remediation processes for federal contaminated sites.

- Surface water guideline for bromine
- Texas Commission on Environmental Quality (TCEQ 2014): Conducting Ecological Risk Assessments at Remediation Sites in Texas.
 No additional guidelines
 - No additional guidelines
- Texas Commission on Environmental Quality (TCEQ 2016): Effects Screening Levels Used in the Review of Air Permitting Data. November.
 - \circ $\;$ Air quality guideline for gold, indium, osmium, palladium, rhodium, ruthenium
- Savannah River National Laboratory (SRNL 2005): Ecological Screening Values for Surface Water, Sediment, and Soil: provides a comprehensive listing of ecological screening values for surface water, sediment, and soil.
 - Sediment quality guideline for bromine

• European Chemicals Agency (ECHA 2003):

Chemical Registration Dossiers: Probable No Effects Concentrations (PNECs) derived for the protection of the environment, as described in the risk assessment protocol.

- o Surface water quality guideline for bismuth, palladium, tellurium
- Soil quality guideline for palladium
- o Sediment quality guideline for bismuth, iodine, palladium, tungsten

2.3 LITERATURE REVIEW METHODOLOGY AND SOURCES

In order to assess the toxicological properties of the missing elements of interest, the available toxicity data were compiled through a comprehensive literature search. A search was completed on February 10, 2017 using the ECOTOX database (U.S. EPA 2017) to identify aquatic and soil toxicity studies available in the literature. An additional search was completed on April 24, 2019 to identify any additional toxicity studies published since 2017. The TOXNET search engine was also used to search numerous databases on toxicology, hazardous chemicals, environmental health, and toxic releases including US EPA Integrated Risk Information System (IRIS), Hazardous Substances Data Bank (HSDB), and International Toxicity Estimates for Risk (ITER) to identify available human, aquatic, and soil toxicity studies as well as information regarding the environmental fate of the elements of interest. For elements lacking in data from these searches, a further literature search was conducted on March 15, 2017 and May 1, 2019. Science Direct and NCBI/PubMed were used to identify additional studies for the aquatic and terrestrial environment. Relevant references from toxicity studies were identified to populate the datasets for the elements of interest.

Several types of compounds were excluded from the toxicity datasets, including nanoparticles, amines or other ammonium containing compounds (such as ammonium tetrachloropalladate(II)), Ruthenium Red, and other organic compounds since the chemistry of these compounds are less likely to be the dominant species in soil, sediment, surface water or groundwater. The focus of this assessment is on the more environmentally relevant, soluble inorganic compounds and their associated salts (e.g., chlorides, sulphates and hydrates).

The World Health Organization (WHO) prepared Environmental Health Criteria documents for palladium (WHO 2002) and platinum (WHO 1991); these data were compiled herein. Since palladium and platinum are members of the Platinum Group Elements (PGE), they may act as surrogates for other members of the PGE such as osmium, ruthenium, rhodium, and iridium. Thus, literature references in papers relating to palladium and platinum were reviewed to determine if there were any relevant papers for other members of the PGE.

The studies identified through the literature review were scored and evaluated using evaluation forms (Appendix A.1 and A.2) and the applicable data were summarized (Appendix B.1 and B.2). Details on the data evaluation and scoring process are provided in the following section. Additional toxicity testing was completed by AquaTox Testing and Consulting (AquaTox) on behalf of NWMO to supplement the toxicity data available from the literature review and increase the confidence in the derived guidelines for rhodium and ruthenium. Tests were completed for chronic toxicity to the aquatic invertebrate species *Ceriodaphnia dubia* and *Hyalella azteca* and the fish species *Oncorhynchus mykiss* and *Pimephales promelas* (Appendix C.1), as well as terrestrial plants (alfalfa and barley) and earthworms (Appendix C.2).

2.4 DATA EVALUATION AND SCORING PROCEDURE

Figure 2-1 provides an overview of the data evaluation and scoring procedure selected for the current review. Any documents developed by the WHO were considered automatically acceptable, since environmental health criteria documents prepared by WHO through the International Programme on Chemical Safety are critical reviews completed with quality criteria consistent with this current review. Studies obtained from other sources, such as ECOTOX or Science Direct, were evaluated and scored for inclusion in the datasets for the elements of interest.

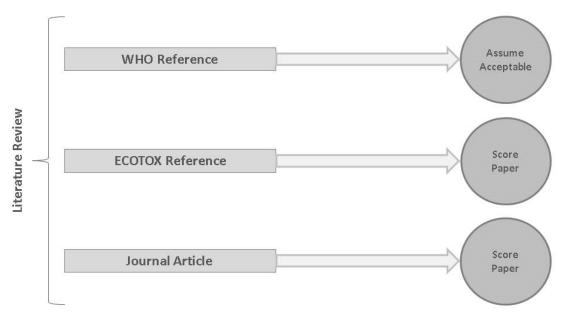


Figure 2-1: Overview of Data Evaluation Methodology

The following sections provide a detail on the data evaluation of the studies compiled for the aquatic and terrestrial toxicity datasets.

2.4.1 Aquatic Toxicity Studies

Studies obtained through ECOTOX (U.S. EPA) or other literature sources were evaluated and scored, as summarized in Appendix A.1. CCME (2007) provides guidance for the evaluation and categorization of the available aquatic toxicological data as primary, secondary or unacceptable based on suitability, usefulness, and reliability, with the allowance for special consideration on a case-by-case basis and the incorporation of scientific judgement. The following information from CCME (2007) was considered in the evaluation process:

- test conditions/design (e.g., flow-through, renewal, static, single species study, community study, mesocosm, etc.)
- test concentrations
- solubility limit of substance in relation of tested concentrations
- experimental design (i.e., analytical methodology, quality control/ quality assurance, controls, and number of replicates); and,
- description of statistics used in evaluating the data.

The datasets for the elements of interest for this study were not extensive. Therefore, the CCME (2007) guidance was generally followed with some accommodations and modifications made to the scoring approach to allow for the derivation of guidelines from the available data. This increases the uncertainty associated with the derived guidelines. Consistent with CCME (2007) guidance, a "primary" ranking was only assigned to studies with reported measured concentrations. All other studies were ranked "secondary" unless control results or reported endpoints were unacceptable (for example an LC100).

The 22 aquatic toxicity studies identified for the elements of interest in this study are provided in Appendix A.1. Only one study (Zimmerman et al. 2017) was given a primary ranking; this was a recent study that reported measured concentrations and completed the study under standard test procedures. Thirteen studies were given secondary ranking since they generally only reported nominal concentrations but provided appropriate controls and, in some cases, endpoints. One study (Harry and Aldrich 1983) was reported in U.S EPA ECOTOX; however, the paper could not be obtained. Given the general paucity of the datasets, this study was not excluded and was given an assumed secondary ranking. Three studies (Bengtsson and Tarkpea 1983, Jones 1939, and Vannini et al. 2011) were given an unacceptable ranking due to the fact that there were no measured data and no dose-response information. Four studies on platinum (Osterauer et al. 2009, 2010a, 2010b, 2011) were not considered for the dataset due to unacceptable endpoints; however, results from Osterauer et al. (2009) were included in the discussion for context for the guidelines.

The compiled aquatic dataset comprises toxicity data for fish, planktonic and benthic aquatic invertebrates, as well as aquatic plants. Overall, toxicity data for fish species were only identified for gold and platinum; no toxicity data for fish were available for other elements of interest in the compiled aquatic toxicity dataset. In addition, there were no chronic endpoints available for a number of the elements of interest in this review. This increases the uncertainty associated with the derived guidelines. Toxicity testing completed by Aquatox provided additional chronic endpoints for an invertebrate (*Ceriodaphnia dubia*) and fish (*Oncorhynchus mykiss* and *Pimephales promelas*) species for rhodium and ruthenium. These tests were given a "primary" ranking.

2.4.2 Terrestrial Toxicity Studies

Studies obtained for terrestrial toxicity through ECOTOX (U.S. EPA) or other literature sources were evaluated, scored, and summarized for consideration in the derivation of the Soil Quality Guidelines, as summarized in Appendix A.2. All terrestrial plant, animal, and soil invertebrate studies were considered, however, the majority of available data were toxicity studies completed on laboratory animals. Generally, CCME (2006) guidance for evaluation and categorization of laboratory toxicological data was followed. Consistent with CCME (2006) guidance, data were screened according to whether they were considered "acceptable" (selected) or "unacceptable" (consulted) for deriving soil quality guidelines.

The 14 terrestrial toxicity studies identified for the elements of interest in this study were scored and evaluated as shown in Appendix A.2. Five studies were given an "acceptable" ranking and were considered for the derivation of soil quality guidelines. The exposure pathways for these tests were either by oral ingestion or by external exposure to soil, and reported acceptable endpoints. Studies that administered the element intraperitoneally or intravenously were given an automatic scoring of "unacceptable", since the CCME (2006) only uses the oral pathway for

the derivation of soil quality guidelines. The study completed by Schertzinger et al. (2017) was scored as "unacceptable", since the data reported were not directly applicable, but used for additional context for the derived guidelines. A study (Speranza et al. 2010) associated with a 90-minute exposure duration for kiwi fruit pollen to water was designated as "unacceptable" since it is not relevant for deriving soil quality guidelines or for consideration of agricultural uses. Egorova et al. (2019) studied the phytotoxic effects of metals, including rhodium and palladium, on several terrestrial plant species, using aqueous solutions for the growth medium. This study was considered "unacceptable" for consideration of soil guidelines due to the growth medium and was not relevant for general consideration since the concentrations tested were designed for simulating an accidental spillage and were not environmentally relevant. Mello-Andrade et al. (2018) was also considered "unacceptable", since it reported on the effects of a single dose of rhodium complex on mice.

Overall, the data in the 5 selected studies were related to laboratory rats and mice and there was a lack of toxicity data identified for non-laboratory animals in the compiled terrestrial toxicity dataset. Also, there were very few endpoints reported for vegetation and soil invertebrates. This increases the uncertainty associated with the derived guidelines in the current review. Toxicity testing completed by Aquatox provided additional chronic endpoints for vegetation and soil invertebrate for rhodium and ruthenium. These tests were given an "acceptable" ranking.

3. GUIDELINE APPROACH AND METHODOLOGY

The following sections outline the approach and methodology selected for the derivation of guidelines for the elements of interest. The first step involved a jurisdictional review. Guidelines available from the jurisdictional review were preferentially selected in favour of using literature studies for further guideline development. In the absence of a guideline from another jurisdiction, guidelines were derived from the literature search for available toxicity data. As data from the literature review were limited for the elements of interest in this study, the guideline derivation methodology was modified from standard protocols. Guidelines for other surrogate elements were considered for context in order to ensure that the derived guidelines were suitably protective, without being excessively conservative.

Elements in the same group (column) of the periodic table usually exhibit similar chemical behaviour, because they have the same number of outer electrons available to form chemical bonds (i.e. they form compounds in the same valence state) (IAEA 2009). Transition elements in the same period (row) of the periodic table also tend to be chemically similar to each another. A key use of surrogates is within the Platinum Group Elements (PGE) – platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), osmium (Os) and ruthenium (Ru) – which are chemically similar.

There are limitations to the use of surrogates (analogs) as generally similar chemistry does not necessarily imply similar metabolic characteristics in plants and animals, because of the high specificity of biochemical pathways.

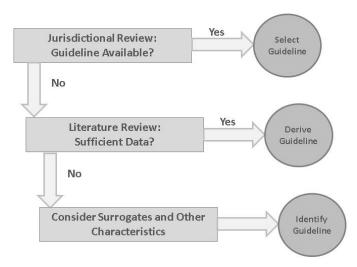


Figure 3-2: Overview of Approach and Methodology

3.1 SURFACE WATER QUALITY GUIDELINES

Criteria defined for surface water are intended to be protective of drinking water, aquatic life, agricultural water uses (irrigation and livestock), recreational water uses, and aesthetic features. The following sections describe the consideration of protection of aquatic life and agricultural protection in the selection of appropriate surface water quality guidelines (WQGs) for the elements of interest.

As discussed above, one consideration in the derivation of criteria for surface water is the protection of drinking water. Tungsten was the only element of interest in the current review with an available drinking water guideline; the lack of drinking water guidelines represents a data gap for the derived surface water quality guidelines. However, ecological effects on aquatic species are generally more restrictive than human health effects related to the consumption of water, and therefore the derived guidelines for the protection of aquatic life are expected to be protective of human health. In addition, surface water used for a drinking water source for human consumption is typically treated prior to consumption, this would further reduce and potential exposure to elements in the water.

3.1.1 Water Quality Guideline for the Protection of Aquatic Life

The CCME (2007) protocol for the derivation of Water Quality Guidelines (WQGs) for the protection of aquatic life provides an approach and methodology for developing guidelines that ensure that the introduction of toxic substances do not lead to the degradation of Canadian fresh and marine waters. This protocol was used as the guide for the development of WQGs for the protection of freshwater aquatic life for long-term exposures. Long-term exposure guidelines are designated to protect against all negative effects during indefinite exposures.

The derivation of WQGs for marine water was considered to be out of scope for the current study, since, as stated in Medri (2015), it is not anticipated that the repository will be sited near

saltwater. In any case, only two studies for the marine environment were found for the elements of interest for this study (Robinson et al. 1997, Bengtsson and Tarkpea 1983).

CCME (2007) provides three methods for aquatic protection guideline development – in order of decreasing robustness: Type A, Type B1, and Type B2. Type A guidelines are derived using a species sensitivity distribution (SSD) approach when there are adequate toxicity data to satisfactorily fit a SSD curve. Type B1 and B2 guidelines are derived for substances that either have inadequate or insufficient toxicity data for the SSD approach, but for which enough toxicity data from a minimum number of primary and/or secondary studies are available. There is currently no CCME guidance for the development of criteria if insufficient data are available to meet the minimum requirements for the derivation of a Type B2 guideline. Table 3-1 summarizes the minimum data requirements for each of the three guideline development approaches.

Comment Type A^a Type B1^b Type B2^b Group 1 salmonid and 1 non-3 species Fish 3 species 2 species salmonid Aquatic 1 planktonic crustacean 3 species 3 species 2 species Invertebrates Additional requirements if 0 species Aquatic Plants 1 species 1 species phyto-toxic Highly desirable, but not Amphibians 0 species 0 species 0 species necessary

 Table 3-1:
 Summary of Data Requirements for Development of CCME WQG

Notes: From Table 1 of CCME (2007).

a – Type A WQG derived using a SSD approach when there are adequate toxicity data to satisfactorily fit a SSD curve

b – Lowest Endpoint Derivation Approach

There are further requirements on data quality for each of the guideline development approaches: Type A and Type B2 consider both primary and secondary data and Type B1 requires primary data (CCME 2007).

For a number of elements, there were no data for chronic toxicity to fish species from literature studies. Since CCME (2007) does not provide guidance for an approach with insufficient data, professional judgement was used along with consideration of surrogate elements to develop an approach for guideline derivation for this study. Thus for these elements, a long-term guideline was developed using the lowest endpoint Type B2 derivation approach. The CCME (2007) provide preferred acceptable endpoints for this approach which include, in the order of preference, EC/IC < 25%, LOEC, MATC, EC/IC < 50%, LC50. The most sensitive (lowest concentration) effects endpoint was selected as the critical study and used in the derivation of the guideline in this study. Following CCME (2007) guidance, the endpoint concentration from the critical study was divided by their recommended safety factor of 10 to derive the long-term exposure guideline.

In some cases, in addition to the lack of fish toxicity data, there were no available chronic aquatic toxicity data with which to derive a guideline following the modified Type B2 approach described above. This introduces considerable uncertainty to the guidelines derived using the modified Type B2 approach. The CCME (2007) protocol allows for consideration of endpoints from short-term exposure studies to be used as the critical study for the derivation of a long-term exposure guideline. In these cases, the lowest exposure concentration from the acute dataset was divided by the CCME default recommended safety factor of 100 for persistent, non-biodegradable substances to derive the long-term exposure guideline.

The guidelines derived by these methods were considered in the context of guidelines available for surrogates to select an appropriate guideline value that represents the available toxicity data, but also considers the various uncertainties introduced by the derivation method while ensuring the protection of aquatic life. The specifics of the guideline derivation for the elements for this study are provided in Section 4.1.2.

The additional species testing completed for rhodium and ruthenium by Aquatox (Appendix C.1) was selected based on satisfying the minimum criteria for the derivation of a Type B2 guideline per the CCME (2007) protocol. Therefore, one salmonid (*Oncorhynchus mykiss*) and non-salmonid (*Pimephales promelas*) fish species were identified, as well as one planktonic crustacean (*Ceriodaphnia dubia*) and one epibenthic amphipod (*Hyalella azteca*). Test methods satisfying the CCME (2007) protocol for chronic duration were also selected.

3.1.2 Water Quality Guideline for the Protection of Agricultural Uses

The CCME (1999a) protocol for the derivation of WQGs for the protection of agricultural water uses (irrigation and livestock water) provides an approach and methodology for developing guidelines to protect crops from adverse effects and damage due to contaminants in irrigation water. To derive a WQG for irrigation water, the CCME (1999a) protocol requires certain minimum toxicological data set requirements, which include toxicity data for cereals, tame hays, pastures, and other crops. For a WQG for livestock water, the minimum toxicological data set requirements outlined in the protocol include toxicity data for livestock and domestic poultry species. There were no available data in the compiled datasets to meet these minimum data requirements for the derivation of WQG for the protection of agricultural uses. This is identified as a data gap and introduces uncertainty in the derived WQGs for the elements of interest in the current study.

3.2 SOIL QUALITY GUIDELINES

Criteria defined for soil are intended to be protective of ecological receptors and human health based on various land uses (agricultural, residential/parkland, commercial, and industrial). Soil Quality Guideline (SQG) values were derived following the CCME (2006) protocol. As described in Section 2.3, this involved an extensive literature search of published data regarding the toxicity of the elements of interest to soil-dependent biota (soil invertebrates and terrestrial plants) and terrestrial animals (mammals and birds), followed by review and classification of the data. The derivation of the SQG for each land use category (agricultural, residential/parkland, commercial, industrial) is complex and requires the evaluation of multiple exposure pathways.

The overall SQG for each land use is equal to the lowest of the applicable pathway-specific guideline values for both environmental protection and human health. In order to set an overall

environmental SQG for each land use, values for the soil contact (SQG_{SC}), soil and food ingestion (SQG_I), and offsite migration (SQG_{OM-E}) need to be derived. SQG_{SC} are derived for all land uses, while SQG_I only apply for agricultural and residential/parkland (in the absence of element biomagnification information) land uses and SQG_{OM-E} apply for commercial and industrial land uses. SQG_{HH} were not quantitatively derived due to a lack of appropriate human health toxicity data; however, consideration was given to potential effects on human health through the consideration of surrogate benchmark.

Evaluation of nutrient and energy cycling (SQG_{NEC}) was not completed since insufficient data were available from the literature search to evaluate the guideline check regarding potential effects of the elements of interest on soil nutrient and energy cycling. Therefore, this component of the SQG is not considered for the guideline derivation and is recognized as a data gap. The groundwater components of the SQG for freshwater life (SQG_{FL}), agricultural irrigation uses (SQG_{IR}), and agricultural livestock watering (SQG_{LW}) are not applicable to metal compounds and are therefore not derived.

As discussed in Section 2.4.2, there was overall a lack of toxicity data identified for nonlaboratory animals in the compiled terrestrial toxicity dataset. In addition, most of the available data were for laboratory rats and mice and there were very few endpoints reported for vegetation and soil invertebrates. It should be noted that the CCME (2006) protocol acknowledges that it is preferable to establish a guideline based on incomplete data (i.e., a provisional value) than to not establish a value at all; therefore, where possible, applicable guidelines were derived; however, the minimum data requirements outlined in CCME (2006) were never satisfied for soil and food ingestion. The modified approaches for the various components of the SQG are outlined in the following sections.

The guidelines derived by these methods were considered in the context of guidelines available for surrogates to select an appropriate guideline value that represents the available toxicity data, but considers the various uncertainties introduced by the derivation method while ensuring protection of the environment and human health. The specifics of the guideline derivation for this approach are provided in Section 4.2.1.

3.2.1 Soil Quality Guideline for Soil Contact (SQG_{SC})

The Soil Quality Guideline for soil contact (SGC_{SC}) protects soil-dependent organisms such as soil invertebrates and plants. The CCME (2006) derives a Threshold Effects Concentration (TEC) for agricultural or residential/parkland land use categories and an Effects Concentration – Low (ECL) for commercial and industrial land use categories. The CCME (2006) protocol provides three approaches to derive the TEC and ECL as discussed below.

The Weight of Evidence Method is the preferred approach and requires at least ten data points from three studies, including a minimum of two soil invertebrate data points and two crop/plant data points. The Lowest Observed Effect Concentration (LOEC) Method and Median Effects Method both require endpoints from at least three studies, including at least one plant and one soil invertebrate study. Per the CCME (2006) protocol, if minimum data requirements cannot be met, a guideline value for soil cannot be derived.

For most elements of interest in this study, the minimum data requirements to derive a soil contact SQG_{SC} were not met by the available terrestrial toxicity database. Acknowledging this deficiency, a modified approach for the development of the guideline using the Median Effects

Method was undertaken. The lowest median effect concentration was selected from the available data for toxic effects on plants and soil invertebrates and an uncertainty factor was applied to derive a TEC. The uncertainty factor was selected, based on consideration of the available data (number of studies, various taxon represented), duration of the test (short-term vs. long-term), the endpoint selected, and whether the CCME minimum requirements for deriving a guideline were met. Per the CCME (2006) protocol, an ECL (commercial and industrial land use) cannot be calculated using the Median Effects Method.

The additional species testing completed for rhodium and ruthenium by Aquatox (Appendix C.2) was selected based on satisfying the minimum criteria for the Lowest Observed Effect Concentration Method per the CCME (2006) protocol. Therefore, two plant species (*Medicago sativa, Hordeum vulgare*) and one soil invertebrate species (*Eisenia andrei*) were tested. Test methods satisfying the CCME (2006) protocol for chronic duration were also selected. The IC25 endpoints from the Aquatox studies were determined to be reasonable substitutes for LOEC values. Following the LOEC Method, the TEC for agricultural and parkland use was derived by selecting the lowest IC25 and applying an uncertainty factor of 3 (based on using minimum number of studies and assuming IC25 is equivalent to a LOEC). The ECL for commercial and industrial land use was derived, also following the LOEC Method, by calculating the geometric mean of the IC25 endpoints.

3.2.2 Soil Quality Guideline for Soil and Food Ingestion (SQGI)

The derivation of a SQG for primary consumers (SQG_{1C}) requires a minimum of three studies, including at least two oral mammalian studies (one of which must be a livestock species or grazing herbivore with a high ingestion rate to body weight ratio) and one oral avian study. A maximum of one laboratory rodent study may be included in the dataset if needed to fulfill the data requirements. Similar data requirements exist for deriving SQGs for secondary (SQG_{2C}) and tertiary (SGQ_{3C}) consumers, with a focus on predatory mammals and birds as opposed to herbivores.

Per the CCME (2006) protocol, the final SQG_I is the lowest of the values calculated for the primary, secondary and tertiary consumers, and, if minimum data requirements cannot be met, a guideline value for soil and food ingestion cannot be derived. Recognizing that the minimum data requirements were not met by the available terrestrial toxicity database for the elements of interest, a modified approach was developed to allow for the derivation of guidelines considering the available data.

The lowest effects dose was identified from the available oral laboratory rodent studies. An uncertainty factor of 500 was selected to account for the numerous uncertainties associated with the modified approach, including the CCME recommended factor of 5, an additional factor of 10 to account for intra-species variation and extrapolation to field conditions, and another factor of 10 because the CCME minimum requirements for guideline derivation were not met. The lowest effects dose was used with the uncertainty factor to derive a daily threshold effects dose (DTED). A meadow vole (*Microtus pennsylvanicus*), with the characteristics presented in Table 3-2, was identified as an appropriate primary consumer surrogate for the laboratory rodent and the calculated DTED was used to represent the DTED_{1C}.

Characteristic Value		Comment
Body weight	0.0349 kg	Government of Canada (2012)
Food ingestion rate – ww basis	0.012 kg ww/d	Calculated based on 0.33 kg wet food/kg wet BW/day, Government of Canada (2012)
Food ingestion rate – dw basis	0.003 kg dw/d	Calculated from food ingestion rate – ww basis, using an assumed moisture content of 70%
Incidental soil ingestion rate	2.4% of dry food ingestion rate	Government of Canada (2012)
Soil ingestion rate	0.0001 kg dw/d	Calculated from food ingestion rate – dw basis and incidental soil ingestion rate

 Table 3-2:
 Summary of Meadow Vole Characteristics

Notes: From FCSAP Guidance, Module 3 (Government of Canada 2012).

The bioavailability factor (BF) of a soil-absorbed element was assumed to be one and the soilto-plant bioconcentration factor (BCF) was obtained from literature (Baes et al. 1984) on an element-specific basis.

The calculation of the SQG_{1C} followed Equation (3-1), which was based on CCME (2006) protocol, Equation 11:

$$SQG_{1C} = \frac{0.75 \times DTED_{1C} \times BW_{1C}}{(SIR_{1C} \times BF) + (FIR_{1C} \times BCF)}$$
(3-1)

Where:		
SQG _{1C}	=	soil quality guideline derived for primary consumers (mg/kg dw)
DTED _{1C}	=	assumed derived daily threshold effects dose for primary consumers (mg/kg
		bw/d), element specific
BW _{1C}	=	body weight of primary consumer (kg), see Table 3-2
SIR _{1C}	=	soil ingestion rate of primary consumer (kg dw/d), see Table 3-2
BF	=	bioavailability factor (-), assumed 1
FIR _{1C}	=	food ingestion rate of primary consumer (kg dw/d), see Table 3-2
BCF	=	soil-to-plant bioconcentration factor (-), based on element-specific literature
DOI	_	
		data

Given the numerous uncertainties already inherent in the modified approach and the further uncertainties introduced with the transport of elements through the food chain, SQG for secondary and tertiary consumers were not calculated.

3.2.3 Soil Quality Guideline for Offsite Migration (SQG_{OM-E})

The movement of soil from industrial and commercial sites to adjacent more sensitive land uses is considered in the offsite migration check by the CCME (2006) to ensure that wind and water erosion of contaminated material from an industrial site does not cause unacceptable concentrations on adjacent properties. It is calculated as shown in Equation (3-2), based on Equation 3 of the CCME (2006, Appendix G) protocol:

\A/boroi		$SQG_{OM-E} = 14.3 \times SQG - 13.3 \times BSC$	(3-2)
Where: SQG _{OM-E}	=	Soil quality guideline check for offsite migration (mg/kg dw)	
SQG	=	Element-specific calculated SQG (mg/kg dw)	
BSC	=	Background concentration of element in the receiving soil (mg/kg), ass	sumed 0

For this study, the SQG used in the calculation of offsite migration was based on the lowest of the derived SQG_{SC} and SQG_{1C}, as available.

3.2.4 Soil Quality Guideline for Human Health

The CCME (2006) protocol includes consideration of the protection of human health in the development of SQG. The derivation of human health SQGs includes assessing the toxicological hazard or risk from a chemical; determining estimated daily intake (EDI) of the chemical from "background" exposure; and the integration of exposure and toxicity information to set SQGs. The protocol relies on information established by Health Canada for the guideline derivation. There is an allowance for toxicity reference values developed by other agencies, such as U.S. EPA IRIS and WHO; however, the appropriate toxicity information is not available for the elements of interest in this review. Therefore, consideration of the protection of human health was addressed through an evaluation of the human health portion of the SQG from surrogate elements.

3.3 GROUNDWATER QUALITY GUIDELINES

Criteria defined for groundwater are intended to be protective of drinking water, agricultural water uses (irrigation and livestock), and surface water bodies from groundwater baseflow. Consideration was given to developing groundwater quality guidelines following the CCME protocol (CCME 2015a); however, CCME has clarified that the protocol only applies to organic substances, due to the high level of uncertainty and variability in the fate and transport of inorganic substances in groundwater, including highly variable soil-water partitioning and contaminant transport rates which are dependent on soil chemistry. Thus this approach could not be used in this study.

In the derivation of soil and groundwater standards (MOE 2011a), the Ontario Ministry of the Environment and Climate Change (MOECC) account for dilution within the surface water in a mixing zone when deriving a value for protection of aquatic life. No dilution within the groundwater aguifer is considered which assumes that the contamination could be up to the edge of the surface water body. The acceptability of specific uses of mixing zones is captured in Policy 5 of the Blue Book (MOEE 1994). MOECC acknowledge that dilution will occur when groundwater discharges to surface water and selected a conservative, order of magnitude dilution factor of 10 to account for this (MOE 2011a). The application of a dilution factor of 10 adopted by the MOECC, was adopted for the derivation of groundwater guidelines based on protection of aquatic life in this document.

In the derivation of guidelines for potable groundwater conditions, both the MOECC and CCME consider available drinking water guidelines and default to the lower of the aguatic toxicity and drinking water guideline. Tungsten was the only element of interest in the current review with an available drinking water guideline; the lack of drinking water guidelines represents a significant

data gap for the derived groundwater quality guidelines. To address this data gap, the groundwater quality guidelines derived for elements with unknown human toxicity or suspected human toxicity were assumed to be equal to the derived surface water quality guideline for the protection of aquatic life, with no applied dilution factor. Although this does not account for potential human health effects, as discussed earlier, ecological effects on aquatic species are generally more restrictive than human health effects related to the consumption of water. Therefore, the derived groundwater quality guidelines for these elements are expected to also be protective of human health, in the absence of other data. For elements known to be non-toxic to humans, the applied dilution factor of 10 was considered to be a reasonable approach for the derivation of groundwater quality guidelines protective of human health.

3.4 SEDIMENT QUALITY GUIDELINES

The CCME (1995) provides a protocol for developing sediment quality guidelines based on either the National Status and Trends Program (NSTP) or spiked-sediment toxicity test (SSTT). The NSTP approach relies on a range of data sources and uses a weight-of-evidence approach to establish associations between concentrations of chemicals in sediments and adverse biological effects. The SSTT uses information on the responses of test organisms to specific sediment associated chemicals under controlled laboratory conditions. The CCME has set freshwater sediment quality guidelines using these approaches.

European Chemicals Agency (ECHA 2003) supports setting sediment protection levels (PNEC_{sed}) based on long-term toxicity test data for benthic organisms. However, to compensate for a lack of appropriate toxicity data the equilibrium partitioning method was proposed as a screening approach. This method uses the PNEC_{water} for aquatic organisms and the sediment/water partitioning coefficient. Results from this screening can be used as a trigger for determining whether whole-sediment tests with benthic organisms should be conducted. In the partitioning method, it is assumed that sediment-dwelling organisms and water column organisms are equally sensitive, that the concentration of the substance in sediment, interstitial water and benthic organisms are at equilibrium and that generic partition coefficients can be applied.

The approach used by ECHA, which considers the sediment/water partitioning coefficient (Kd) applied to the water quality guideline, was adopted for the derivation of sediment quality guidelines in this document. When a sediment/water partitioning coefficient was not available from the ERICA database (Brown et al. 2008), soil/water partitioning coefficients from Baes et al. (1984) were used. Consideration of surrogates and radiotoxicity were also used in the determination of appropriate sediment quality guidelines.

3.5 AIR QUALITY GUIDELINES

Criteria defined for air are intended to be protective of human health, the environment, and nuisance effects (like odour). The development of appropriate guidelines for air considered the procedure outlined in the MOECC (2011b) document *Ontario Air Standards for Uranium and Uranium Compounds* and included a review of available toxicological benchmarks and existing air standards. Existing air standards were located for most of the elements of interest. No available toxicological benchmarks were available for the remaining elements; therefore, consideration of surrogates and radiotoxicity were used in the determination of appropriate air quality guidelines.

4. DERIVATION OF ENVIRONMENTAL QUALITY GUIDELINES

4.1 SURFACE WATER QUALITY GUIDELINES

Table 4-1 summarizes the available surface water quality guidelines (WQG) from Medri (2015) and identifies the elements which require further investigation for the development of WQGs. As seen from the table, WQGs are only available for iodine and tungsten.

Element	WQG (µg/L)
Gold	
Bismuth	
Bromine	
lodine	100
Indium	
Iridium	
Osmium	
Palladium	
Platinum	
Rhodium	
Ruthenium	
Tellurium	
Tungsten	30

 Table 4-1:
 Summary of WQGs – Initial Stage

Notes: Values from Medri (2015). Shading indicates WQG derived in the following sections.

4.1.1 Jurisdictional Review

The first step for the derivation of WQGs for the elements identified in Table 4-1 was the completion of a jurisdictional review (Section 2.2). The jurisdictional review identified guidelines for five elements (bismuth, bromine, indium, palladium and tellurium) derived for the protection of aquatic life. These guidelines are summarized in Table 4-2.

Element	WQG (µg/L)	Remarks
Gold		
Bismuth	140	PNEC freshwater derived with an assessment factor of 1000 applied to 137 mg/L 4-d LC50 for fish (ECHA)
Bromine	2	UK Environment Agency (2011), lowest chronic value for aquatic life, NOEC or 5th percentile of SSD (depending on data availability) with appropriate uncertainty factor (ECCC, 2013)
lodine	100	Medri (2015)
Indium	40.6	PNEC freshwater derived from a sensitivity distribution (ECHA)
Iridium		
Osmium		
Palladium	0.027	PNEC freshwater derived with an assessment factor of 50 applied to a chronic value of 1.3 μ g/L based on an algal NOEC (ECHA)
Platinum		
Rhodium		
Ruthenium		
Tellurium	5.8	PNEC freshwater derived with an assessment factor of 1000 to an acute value of 5,790 µg/L based on an EC50 (mobility) for <i>Daphnia magna</i> (ECHA)
Tungsten	30	Medri (2015)

Table 4-2:	Summary of WQGs – Jurisdictional Review

Notes: PNEC – Probable No Effect Concentration from ECHA dossiers, represents a concentration below which adverse effects in the environment are not expected to occur. Shading indicates WQG derived in the following sections.

The WQG for bromine is based on non-statutory Environmental Quality Standards (EQSs) from the UK Environment Agency (2011). The guideline of 2 μ g/L is based on freshwater annual average concentration; an additional maximum acceptable concentration for freshwater (5 μ g/L) is available. However, the annual average standard value is considered to be consistent with the chronic levels of protection outlined in Medri (2015).

The PNEC derived for palladium by ECHA is based on the most toxic palladium compound diamminedichloropalladium which is an industrial catalyst and thus unlikely to be

environmentally relevant. Therefore, aquatic toxicity data compiled for other palladium compounds (Appendix B.1) were used for the derivation of a WQG for palladium.

The available aquatic toxicity data for the remaining elements (indicated with shading in Table 4-2) were compiled and evaluated for further derivation of water quality guidelines as discussed in the following section.

4.1.2 Toxicity Review – Aquatic Data

The elements gold, iridium, osmium, palladium, platinum, rhodium, and ruthenium were identified as requiring WQG derivation. The available aquatic toxicity data were compiled as described in Section 2.3, and the data were evaluated and scored as described in Section 2.4. The approach provided by CCME (2007) and described in Section 3.1.1 was followed to derive the guidelines protective of aquatic life. The results of the WQG derivation are provided in the following sections.

4.1.2.1 Gold

A total of eight studies on aquatic species, conducted between 1939 and 2005, were available for gold and its compounds (auric chloride and tetrachloroaurate). There were four chronic studies with reported EC16, EC50, LC50, LC100, and LOEC endpoints for mortality, growth, reproduction, and metabolism. These studies were reviewed and evaluated (Appendix A.1), and two studies received an acceptable (secondary) scoring and were considered in the guideline derivation, while one study (Jones 1939) was considered unacceptable due to a LC100 endpoint. One study (Robinson et al. 1997) was completed in the marine environment for a diatom and was not considered further for the guideline derivation.

The compiled dataset for gold aquatic toxicity data is provided in Appendix B.1. The acceptable chronic data comprises three aquatic invertebrate endpoints (EC16, EC50, LC50) and 1 aquatic plant endpoint (EC50). Table 4-3 summarizes the available chronic aquatic toxicity data for gold for consideration with guideline derivation data requirements.

Group	Requirements	Remarks
Fish	3 (Type A, B1)	None
F1511	2 (Type B2)	
Aquatic	3 (Type A, B1)	Daphnia magna
Invertebrates	2 (Type B2)	
Aquatic	1 (Type A, B1)	Scenedesmus acutiformis
Plants	0 (Type B2)	

 Table 4-3:
 Summary of Chronic Aquatic Toxicity Data – Gold

Notes: Other data requirements, such as salmonid and non-salmonid species and planktonic crustaceans, are not included in the table.

The data requirements for the derivation of a long-term exposure guideline for freshwater are not satisfied for any of the guideline derivation methods. However, the Type B2 approach was

used to derive a guideline with consideration of the available data for gold. The 21-d EC16 for reproduction in *Daphnia magna* (Biesinger and Christensen 1972) was identified as the lowest chronic value ($60 \mu g/L$) and a safety factor of 10 was applied to derive a long-term guideline of $6 \mu g/L$ for gold.

Due to the paucity of data for aquatic toxicity for gold, other surrogate guidelines were considered. Copper and silver were identified as potential surrogates for gold based on their location in the periodic table. Table 4-4 provides a summary of the available WQG from CCME (2017).

Element	WQG (µg/L)	μg/L) Remarks	
Copper	2 - 4	Varies based on hardness	
Silver	0.25	Toxic mode of action – effects on fish gill	

Table 4-4:	Summary of Available Surrogate WQG – Gold
------------	---

Notes: CCME WQG for the protection of aquatic life.

The WQG for copper is similar to the derived WQG for gold. Silver toxicity to aquatic species is known to occur through the accidental uptake across the gill in fish, which ultimately leads to death (CCME 2015b); however, the lowest available chronic toxicity value is for growth effects in *Oncorhynchus mykiss* (rainbow trout). Hadrup et al. (2015) conducted a review of elemental gold toxicity and found it to be of relatively low acute toxicity. Further study was identified to better assess whether gold ions released from the surface of elemental gold induce toxicity in the same way that has been demonstrated for silver.

Although there were no available chronic toxicity studies for effects on fish from gold, 6 acute LC50 endpoints were available for three fish species: *Thymallus arcticus*, *Oncorhynchus mykiss*, and *Oncorhynchus kisutch*. The concentrations associated with these 96-hr LC50s ranged from 9,100 μ g/L to 33,500 μ g/L. These values are significantly higher than the 96-hr LC50s for silver, which range from 1.5 μ g/L to 34.4 μ g/L (CCME 2015b). Therefore, it is considered unlikely that gold exhibits a similar toxic effect on fish species at the low concentrations demonstrated by silver. Although chronic toxicity data for fish species are not available for gold, the derived WQG of 6 μ g/L is considered reasonable. It is also well below toxic effects associated with acute exposure for fish.

4.1.2.2 Iridium

A total of two studies on aquatic species, conducted between 1994 and 2005, were available for iridium and its compounds (iridium chloride). The studies were considered acute tests and reported LC50, LOEC, and NOEC endpoints for mortality and growth effects. These studies were reviewed and evaluated (Appendix A.1) and received an acceptable (secondary) scoring. One study (Farago and Parsons 1994) was classified as secondary because NOEC and LOEC endpoints were inferred from the narrative description of the test results and the concentrations tested. The LOEC was assigned to the concentration at which effects were observed, while the NOEC was assigned the highest concentration that did not result in measurable effects.

As no chronic toxicity were available for iridium, the acute exposure data were considered for the derivation of the long-term guideline. The compiled dataset for iridium aquatic toxicity data is provided in Appendix B.1. The acceptable data comprises two aquatic invertebrate endpoints (LC50) for *Hyalella azteca* and two aquatic plant endpoints (NOEC, LOEC) for *Eichhornia crassipes*. The 7-d LC50 for *Hyalella azteca* (Borgmann et al. 2005) was identified as the lowest-effects acute value (>1,000 μ g/L) and a safety factor of 100 was applied to derive a long-term guideline of 10 μ g/L for iridium.

Iridium belongs to the Platinum Group Elements (PGE) and little is known of its toxicological characteristics (Nordberg et al. 2014). Other members of the PGE include platinum, osmium, ruthenium, rhodium, and palladium. Rhodium was identified as potential surrogate for iridium based on its location in the periodic table and also being a member of the PGE. Although there was a the lack of chronic aquatic toxicity data for iridium and only two acute studies from which to derive a guideline, the derived guideline of 10 μ g/L is consistent with the more robust guideline derived for rhodium (see Section 4.1.2.6) and therefore the guideline of 10 μ g/L is selected for iridium.

4.1.2.3 Osmium

A total of five studies on aquatic species, conducted between 1983 and 2009, were available for osmium and its compounds (osmium oxide, osmium sodium chloride). The studies were considered acute tests and reported EC50, LC50, LOEC, and NOEC endpoints for mortality, immobilization, and growth effects. These studies were reviewed and evaluated (Appendix A.1), and four studies received an acceptable (secondary) scoring, while one study (Bengtsson and Tarkpea 1983) was considered unacceptable due to lack of measured data and failure of the statistical test for osmium. One study (Farago and Parsons 1994) was classified as secondary because NOEC and LOEC endpoints were inferred from the narrative description of the test results and the concentrations tested. The LOEC was assigned to the concentration at which effects were observed, while the NOEC was assigned the highest concentration that did not result in measurable effects.

As no chronic toxicity were available for osmium, the acute exposure data were considered for the derivation of the long-term guideline. The compiled dataset for osmium aquatic toxicity data is provided in Appendix B.1. The acceptable data comprises seven aquatic invertebrate (*Hyalella azteca, Tubifex tubifex,* and *Cypris subglobosa*) endpoints (EC50, LC50) and two aquatic plant endpoints (NOEC, LOEC) for *Eichhornia crassipes*. The 96-hr EC50 for *Tubifex tubifex* immobilization (Khangarot 1991) was identified as the lowest-effects acute value (6.7 μ g/L) and a safety factor of 100 was applied to derive a long-term guideline of 0.067 μ g/L for osmium.

Osmium also belongs to the Platinum Group Elements (PGE); other members of the PGE include platinum, iridium, ruthenium, rhodium, and palladium. Although there was a lack of chronic aquatic toxicity data for osmium, the derived guideline of 0.067 μ g/L was selected for osmium, since it was based on element-specific toxicity data.

4.1.2.4 Palladium

A total of five studies on aquatic species, conducted between 1994 and 2017, were available for palladium and its compounds (palladium chloride and palladium dichloride). The studies were

considered acute tests and reported EC20, EC50, LC50, LOEC, and NOEC endpoints for mortality, immobilization, and growth effects. These studies were reviewed and evaluated (Appendix A.1), and received an acceptable (primary and secondary) scoring. One study (Farago and Parsons 1994) was classified as secondary because NOEC and LOEC endpoints were inferred from the narrative description of the test results and the concentrations tested. The LOEC was assigned to the concentration at which effects were observed, while the NOEC was assigned the highest concentration that did not result in measurable effects.

As no chronic toxicity were available for palladium, the acute exposure data were considered for the derivation of the long-term guideline. The compiled dataset for palladium aquatic toxicity data is provided in Appendix B.1. The acceptable data comprises 13 aquatic invertebrate (*Daphnia magna, Hyalella azteca, Tubifex tubifex,* and *Cypris subglobosa*) endpoints (EC20, EC50, LC50) and two aquatic plant endpoints (NOEC, LOEC) for *Eichhornia crassipes*. The 48-hr EC20 for *Daphnia magna* immobilization (Zimmerman et al. 2017) from exposure to palladium dichloride was identified as the lowest-effects acute value (6.8 µg/L) and a safety factor of 100 was applied to derive a long-term guideline of 0.068 µg/L for palladium.

A comparison of this derived long-term guideline for more environmentally relevant palladium compounds to the ECHA PNEC of 0.027 μ g/L for the most toxic palladium compound diamminedichloropalladium indicates that the derived WQG of 0.068 μ g/L is reasonably protective even though it is based on acute studies without the consideration of fish toxicity. In a chronic aquatic toxicity study of the terrestrial nematode *Caenorhabditis elegans*, Schertzinger et al. (2017) could not determine an exact EC50 for reproduction but the endpoint ranged between 10 and 100 μ g/L. In an aquatic study conducted by Vannini et al. (2011), algal growth was significantly diminished at 250 μ g/L and completely blocked at 500 μ g/L after a 72 hour exposure. These values are well above the derived WQG for palladium.

4.1.2.5 Platinum

A total of eight studies on aquatic species, conducted between 1972 and 2017, were available for platinum and its compounds (platinum chloride). There was 1 chronic study with reported EC16, EC50, and LC50 endpoints for mortality and reproduction. This study (Biesinger and Christensen 1972) was reviewed and evaluated (Appendix A.1) and received an acceptable (secondary) scoring.

The compiled dataset for platinum aquatic toxicity data is provided in Appendix B.1. The acceptable chronic study included three aquatic invertebrate endpoints (EC16, EC50, and LC50). Table 4-5 summarizes the available chronic aquatic toxicity data for platinum for consideration with guideline derivation data requirements.

Group	Requirements	Remarks	
Fieb	3 (Type A, B1)	None	
Fish	2 (Type B2)		
Aquatic	3 (Type A, B1)	Daphnia magna	
Invertebrates	2 (Type B2)		
Aquatic	1 (Type A, B1)	None	
Plants	0 (Type B2)		

 Table 4-5:
 Summary of Chronic Aquatic Toxicity Data – Platinum

Notes: Other data requirements, such as salmonid and non-salmonid species and planktonic crustaceans, are not included in the table.

The data requirements for the derivation of a long-term exposure guideline for freshwater are not satisfied for any of the guideline derivation methods. However, the Type B2 approach was used to derive a guideline with consideration of the available data for platinum. The 21-d EC16 for reproduction in *Daphnia magna* (Biesinger and Christensen 1972) was identified as the lowest chronic value (14 μ g/L) and a safety factor of 10 was applied to derive a long-term guideline of 1.4 μ g/L for platinum.

The CCME (2007) protocol allows for consideration of lowest-effects concentrations from shortterm exposure studies if the long-term exposure guideline is not considered to be sufficiently protective. This approach was considered for platinum due to the limited chronic toxicity data. There were seven acute studies that were reviewed and evaluated (Appendix A.1) and received an acceptable (primary and secondary) scoring. The acceptable data comprises 15 aquatic invertebrate endpoints, three fish endpoints, and two aquatic plant endpoints. The 96-hr EC50 for *Tubifex tubifex* immobilization (Khangarot 1991) was identified as the lowest-effects acute value (61 μ g/L) and a safety factor of 100 was applied to derive a long-term guideline of 0.61 μ g/L for platinum.

Platinum belongs to the Platinum Group Elements (PGE), therefore consideration of the existing guideline for palladium was given. The palladium guideline is based on a lowest chronic toxicity value of 1.3 μ g/L for an algal species. A 14-d NOEC endpoint of 500 μ g/L for platinum for the aquatic plant *Eichhornia crassipes* was available; this value is considerably above the lowest chronic value used for palladium. Furthermore, in a study of chronic aquatic toxicity for the terrestrial nematode *Caenorhabditis elegans*, Schertzinger et al. (2017) identified that palladium is more toxic than platinum. The dataset for platinum includes a chronic aquatic invertebrate study, an acute fish study, and a number of aquatic invertebrate and aquatic plants for acute exposure and was determined to be sufficient. Therefore, the lower of the derived values for platinum (0.61 μ g/L, based on acute studies) was selected for the WQG.

One study (Osterauer et al. 2009) completed on zebrafish (*Danio rerio*) and Ramshorn snail (*Marisa cornuarietis*) was considered for inclusion in the dataset. It was deemed to not provide acceptable endpoints for the platinum dataset, however the results for effects on embryonic development are considered as additional context for the derived WQG for platinum. Hatching success of the two species was affected at platinum concentrations of 36 and 73 μ g/L. For other observed endpoints, including mortality, no influence of platinum could be determined up to concentrations of 73 μ g/L. In a chronic aquatic toxicity study of the terrestrial nematode

Caenorhabditis elegans, Schertzinger et al. (2017) found an EC50 for reproduction of 497 μ g/L. The results from these additional studies are well above the derived WQG of 0.61 μ g/L for platinum.

4.1.2.6 Rhodium

A total of three studies on aquatic species, conducted between 1994 and 2017, were available for rhodium and its compounds (rhodium chloride). The studies were considered acute tests and reported EC20, EC50, LC50, LOEC, and NOEC endpoints for mortality, immobilization, and growth effects. These studies were reviewed and evaluated (Appendix A.1), and received an acceptable (primary and secondary) scoring. One study (Farago and Parsons 1994) was classified as secondary because NOEC and LOEC endpoints were inferred from the narrative description of the test results and the concentrations tested. The LOEC was assigned to the concentration at which effects were observed, while the NOEC was assigned the highest concentration that did not result in measurable effects.

Chronic toxicity data were available for rhodium from the AquaTox testing (Appendix C.1) and these data were used for the derivation of a long-term guideline, since chronic data were preferred. The compiled dataset for rhodium aquatic toxicity data is provided in Appendix B.1. The acceptable chronic data included IC/EC25 for two aquatic invertebrate species and two fish species. Table 4-6 summarizes the available chronic aquatic toxicity data for rhodium for consideration with guideline derivation data requirements.

Group	Requirements	Remarks
Fish	3 (Type A, B1) 2 (Type B2)	Pimephales promelas, Oncorhynchus mykiss
Aquatic Invertebrates	3 (Type A, B1) 2 (Type B2)	Ceriodaphnia dubia, Hyalella azteca
Aquatic Plants	1 (Type A, B1) 0 (Type B2)	None

Table 4-6: Summary of Chronic Aquatic Toxicity Data – Rhodium

Notes: Other data requirements, such as salmonid and non-salmonid species and planktonic crustaceans, are not included in the table.

The data requirements for the derivation of a long-term exposure guideline for freshwater are satisfied for the Type B2 approach, including consideration of salmonid/non-salmonid species and planktonic crustaceans. Endpoints for all species were identified as >100 μ g/L and this was selected as the lowest chronic value (100 μ g/L) and a safety factor of 10 was applied to derive a long-term guideline of 10 μ g/L for rhodium.

Schertzinger et al (2017) completed chronic aquatic toxicity testing on the terrestrial nematode *Caenorhabditis elegans*. The study found that rhodium showed no inhibition at any endpoint studied (reproduction, fertility, and growth) between concentrations of 100 to 10,000 μ g/L. The derived guideline of 10 μ g/L is therefore protective of this nematode in the aquatic environment. The guideline derived for rhodium from chronic data is considered to be appropriate and

remains conservative since endpoints were reported as ">" concentrations and conservatively assumed to be equal to the concentrations.

4.1.2.7 Ruthenium

Two acute studies completed for ruthenium aquatic species were available. One study conducted in 2005 reported LC50 endpoints for mortality in the aquatic invertebrate *Hyalella azteca*. The other study was conducted in 2018 on effects from ruthenium complexes on zebrafish embryos. Chronic toxicity data were available for ruthenium from the AquaTox testing (Appendix C.1) and these data were used for the derivation of a long-term guideline, since chronic data were preferred. The compiled dataset for ruthenium aquatic toxicity data is provided in Appendix B.1. The acceptable chronic data included IC/EC25 for two aquatic invertebrate species and two fish species. Table 4-7 summarizes the available chronic aquatic toxicity data for ruthenium for consideration with guideline derivation data requirements.

 Table 4-7:
 Summary of Chronic Aquatic Toxicity Data – Ruthenium

Group	Requirements	Remarks
Fish	3 (Type A, B1)	Pimephales promelas, Oncorhynchus mykiss
1 1511	2 (Type B2)	
Aquatic	3 (Type A, B1)	Ceriodaphnia dubia, Hyalella azteca
Invertebrates	2 (Type B2)	
Aquatic	1 (Type A, B1)	None
Plants	0 (Type B2)	

Notes: Other data requirements, such as salmonid and non-salmonid species and planktonic crustaceans, are not included in the table.

The data requirements for the derivation of a long-term exposure guideline for freshwater are satisfied for the Type B2 approach, including consideration of salmonid/non-salmonid species and planktonic crustaceans. Endpoints for all species were identified as >100 μ g/L and this was selected as the lowest chronic value (100 μ g/L) and a safety factor of 10 was applied to derive a long-term guideline of 10 μ g/L for ruthenium.

The guideline of 10 μ g/L derived for ruthenium is considered to be appropriate and remains conservative since endpoints were reported as ">" concentrations and conservatively assumed to be equal to the concentrations.

4.1.3 Summary

Table 4-8 provides a summary of the WQGs for the elements of interest in the current literature review.

	18	
Element	WQG (µg/L)	Remarks
Gold	6	Derived Type B2 Guideline
Bismuth	140	ECHA PNEC
Bromine	2	UK Environment Agency (2011)
lodine	100	Medri (2015)
Indium	41	ECHA PNEC
Iridium	10	Derived Type B2 Guideline
Osmium	0.067	Derived Type B2 Guideline
Palladium	0.068	Derived Type B2 Guideline with consideration of ECHA PNEC
Platinum	0.61	Derived Type B2 Guideline
Rhodium	10	Derived Type B2 Guideline
Ruthenium	10	Derived Type B2 Guideline
Tellurium	5.8	ECHA PNEC
Tungsten	30	Medri (2015)
	Gold Bismuth Bromine Iodine Indium Iridium Osmium Osmium Palladium Platinum Rhodium Ruthenium Tellurium	ElementWQG (µg/L)Gold6Bismuth140Bromine2Iodine100Indium41Iridium10Osmium0.067Palladium0.61Rhodium10Ruthenium10Tellurium5.8

Table 4-8:Summary of WQGs

Notes: PNEC – Probable No Effect Concentration from ECHA dossiers, represents a concentration below which adverse effects in the environment are not expected to occur.

4.2 SOIL QUALITY GUIDELINES

Table 4-9 summarizes the available soil quality guidelines (SQGs) from Medri (2015) and identifies the elements which require further investigation for the development of SQGs. The available terrestrial toxicity data for the remaining elements (indicated with shading in Table 4-9) were compiled and evaluated for further derivation of soil quality guidelines.

Element	SQG (µg/g)
Gold	
Bismuth	20
Bromine	10
lodine	4
Indium	
Iridium	
Osmium	
Palladium	
Platinum	
Rhodium	
Ruthenium	
Tellurium	250
Tungsten	400

Table 4-9: Summary of SQGs – Initial Stage

Notes: Values from Medri (2015). Shading indicates guideline derived in the following sections.

4.2.1 Toxicity Review – Terrestrial Data

The elements gold, indium, iridium, osmium, palladium, platinum, rhodium, and ruthenium were identified as requiring SQG derivation. The available terrestrial toxicity data were compiled as described in Section 2.3, and the data were evaluated and scored as described in Section 2.4. The approach provided by CCME (2006) and described in Section 3.2 was followed. The results of the SQG derivation are provided in the following sections.

4.2.1.1 Gold

One study on a soil invertebrate species, conducted in 2014, was available for gold and its compounds (Gold (III) chloride hydrate). Three endpoints received an acceptable scoring and were selected for deriving the soil quality guideline.

The compiled dataset for gold terrestrial toxicity data is provided in Appendix B.2 and includes an EC10 and an EC50 for reproductive effects, as well as an LC50 in oligochaetes. Table 4-11 summarizes the available terrestrial toxicity data for indium for consideration with guideline derivation data requirements.

Pathway	Requirements	Remarks	
Soil Contact (SQG _{SC})	3 endpoints, including 1 Plant and 1 Soil Invertebrate	3 endpoints, all soil invertebrate	
Soil and Food Ingestion (SQG _{1C})	2 Mammalian, 1 Avian	No data	

Table 4-10: Summary of Selected Terrestrial Toxicity Data – Gold

Notes: Other data requirements, such as livestock species, are not included in the table. Soil contact (SQG_{SC}) requirements are shown for the LOEC and Median Effects Methods only.

The data requirements for the derivation of a SQG for direct contact and soil and food ingestion are not satisfied. Nevertheless, a guideline for direct contact was derived with consideration of the available data for gold. The procedure outlined in Section 3.2.1 was followed for the calculation of a SQG_{sc}. The EC50 of 35.5 μ g/g soil for exposure to *Enchytraeus buchholzi* was selected as the median effective concentration. A multiplicative uncertainty factor of 375 was applied to the modified approach as follows: 5 to account for the CCME minimum requirements not being met; 5 to account for the lowest datum being an EC50, 5 to account for the study being short-term, 3 to account for the minimum number of studies not being reached and only one taxon represented; resulting in a total uncertainty factor of 375. The application of this factor resulted in a SQG_{sc} of 0.1 μ g/g soil for gold. The offsite migration check was completed by multiplying the lowest SQG by 14.3 (Section 3.2.3). Table 4-11 summarizes the derived guidelines for gold based on the available terrestrial toxicity.

Cuidalina (ug/g)	Land Use			
Guideline (µg/g)	Agricultural	Res/Parkland	Commercial	Industrial
Soil Contact (SQG _{SC})	0.1	0.1	-	-
Soil and Food Ingestion (SQG _{1C})	ND	ND	ND	ND
Nutrient and Energy Cycling (SQG _{NEC})	NC ^a	NC ^a	NC ^a	NC ^a
Groundwater – Freshwater Life (SQG _{FL})	NC ^b	NC ^b	NC ^b	NC ^b
Groundwater – Agricultural, Irrigation (SQG_{IR})	NC ^b	-	-	-
Groundwater – Agricultural, Livestock (SQG_{LW})	NC ^b	-	-	-
Off-site migration check (SQG _{OM-E})	-	-	1.4	1.4
SQG _E		0.1		

Table 4-11: Summary of Derived Environmental SQG – Gold

Notes: ND – no data; NC – not calculated.

a – Data are insufficient/inadequate to calculate the nutrient and energy cycling check.

b – Applies to organic compounds and not calculated for metal contaminants.

Due to the paucity of data for terrestrial toxicity for gold, other surrogate guidelines were considered. Silver was identified as potential surrogate for gold based on its location in the

periodic table. Table 4-12 provides a summary of the available SQG from CCME (2017). The silver guideline was derived in 1991 and the basis of the guideline is not available.

Element	SQG _E (µg/g)	SQG _{нн} (µg/g)	Remarks
Silver	20	20	SQG, basis unknown

Table 4-12: Summary of Available Surrogate SQG – Gold

Notes: CCME SQG for the protection of environmental and human health.

The EC10 of 24.3 μ g/g for reproductive effects in soil invertebrates for gold is similar to the silver CCME SQG of 20 μ g/g, however, data are lacking on potential effects on plants and wildlife, therefore, the value of 0.1 μ g/g is selected. The derived soil guideline is above the average gold concentration in the upper soil layer of approximately 0.004 μ g/g (Nordberg et al. 2014) and thus is determined to be a reasonable SQG.

Due to a lack of appropriate human health toxicity information, the derived guideline does not consider human health effects. Levels of human exposure to gold from air, food, and water are very low. Measurable exposure can be caused by dental alloys, however, this type of exposure apparently has little toxicological significance (Nordberg et al. 2014). A positive correlation has been observed between gold allergy and the presence of dental gold. Based on this information, the SQG of 0.1 μ g/g based on ecological endpoints is considered to be likely protective of human health.

4.2.1.2 Indium

ECHA dossiers derived a PNEC of 7.3 μ g/g dw soil which represents a concentration below which adverse effects in the environment are not expected to occur. ECHA derived the PNEC using an assessment factor of 10; supporting information suggested the PNEC was derived for soil contact for soil microorganisms from a long-term EC10. In the selection of the PNEC for indium, ECHA also considered toxicity data available for terrestrial arthropods and plants. Toxicity to soil microorganisms was the limiting consideration.

One study on terrestrial species, conducted in 1996, was available for indium and its compounds (indium phosphide). Two endpoints received an acceptable scoring and were selected for deriving the soil quality guideline.

The compiled dataset for indium terrestrial toxicity data is provided in Appendix B.2, and include a NOEC and LOEC for blood chemistry effects in laboratory ICR mice.

Table 4-13 summarizes the available terrestrial toxicity data for indium for consideration with guideline derivation data requirements.

Pathway	Requirements	Remarks
Soil Contact (SQG _{SC})	3 endpoints, including 1 Plant and 1 Soil Invertebrate	None
Soil and Food Ingestion (SQG _{1C})	2 Mammalian, 1 Avian	Laboratory Rodent

 Table 4-13:
 Summary of Selected Terrestrial Toxicity Data – Indium

Notes: Other data requirements, such as livestock species, are not included in the table. Soil contact (SQG_{SC}) requirements are shown for the LOEC and Median Effects Methods only.

The data requirements for the derivation of a SQG for direct contact and soil and food ingestion are not satisfied. Nevertheless, a guideline for soil and food ingestion was derived with consideration of the available data for indium. The procedure outlined in Section 3.2.2 was followed for the calculation of a SQG₁. The LOEC of 3938 μ g/g bw for one-time oral exposure to a laboratory mouse was selected as the lowest effects dose. An uncertainty factor of 500 was applied to account for the various uncertainties related to the selected modified approach. This resulted in a DTED_{1C} of 7.9 μ g/g bw/d. Following the CCME (2006) protocol, and consideration of the soil and food ingestion rates for a meadow vole (*Microtus pennsylvanicus*) and a soil-to-plant BCF of 0.004 from Baes et al. (1984), a SQG_{1C} of 2100 μ g/g was derived for indium. The offsite migration check was completed by multiplying the lowest SQG by 14.3 (Section 3.2.3). Table 4-14 summarizes the derived guidelines for indium based on the available terrestrial toxicity.

Cuideline (us/s)		Land Use			
Guideline (µg/g)	Agricultural	Res/Parkland	Commercial	Industrial	
Soil Contact (SQG _{SC})	7.3ª	7.3ª	7.3 ^a	7.3ª	
Soil and Food Ingestion (SQG _{1C})	2,100	2,100	-	-	
Nutrient and Energy Cycling (SQG _{NE}	c NC ^b	NC ^b	NC ^b	NC ^b	
Groundwater – Freshwater Life (SQG _{FL})	NC ^c	NC°	NC°	NC°	
Groundwater – Agricultural, Irrigation (SQG _{IR})	NC ^c	-	-	-	
Groundwater – Agricultural, Livestock (SQG _{LW})	NC ^{bc}	-	-	-	
Off-site migration check (SQG _{OM-E})	-	-	30,000	30,000	
SQG _E		7.3	3		

 Table 4-14:
 Summary of Derived Environmental SQG – Indium

Notes: ND – no data; NC – not calculated.

a – PNEC for Indium derived by ECHA.

b – Data are insufficient/inadequate to calculate the nutrient and energy cycling check.

c – Applies to organic compounds and not calculated for metal contaminants.

The derived guideline of 7.3 μ g/g for indium is based on the ECHA PNEC for soil contact. Consideration of the available mammalian data for indium indicates that the selected guideline is protective of mammals coming into contact with and ingesting soils.

Indium is present at very low concentrations in background soils of 0.011 μ g/g (Nordberg et al., 2014). With consideration of the uncertainties (only one toxicity test result for a laboratory rodent) in the derived guidelines for indium, the derived guideline of 7.3 μ g/g is considered to be appropriate.

Due to a lack of appropriate human health toxicity information, the derived guideline does not consider human health effects. Indium is considered to be a nonessential element. Indium compounds are poorly absorbed when ingested. The International Agency for Research on Cancer (IARC, 2006) has determined that indium phosphide, used in the microelectronics industry, is a probable human carcinogen. Exposure to indium, indium arsenide and indium chloride has been shown to produce a number of effects on gene-expression patterns. The marked inhibitory effects of indium on protein synthesis may play a role in altering the activities of DNA repair enzymes and the expression of proteins involved in regulating apoptosis (IARC 2006). This reinforces that a conservative approach, as used above, should be adopted for the derivation of the indium guideline.

4.2.1.3 Iridium

No terrestrial toxicity data were available to derive soil quality guidelines for iridium. With an average concentration of 0.05 ng/g ($5 \times 10^{-5} \mu g/g$), iridium is one of the least abundant elements in the Earth's crust.

Iridium belongs to the Platinum Group Elements (PGE); other members of the PGE include platinum, osmium, rhodium, ruthenium, and palladium. Rhodium was identified as potential surrogate for iridium based on its location in the periodic table and also being a member of the PGE. A guideline for rhodium was derived based on available terrestrial toxicity data, as described in Section 4.2.1.7. Therefore, due to the absence of terrestrial toxicity data for iridium, the guideline of 2.2µg/g dw soil for agricultural and park land use for rhodium is adopted for iridium.

Due to a lack of appropriate human health toxicity information, the derived guideline does not consider human health effects. Current data relating to environmental iridium concentrations in air, soil, roadside dust, water, and foods indicate quite low levels that are not thought to pose a serious threat to human health (Nordberg et al. 2014). Based on this information, the SQG based on ecological endpoints is considered to be likely protective of human health.

4.2.1.4 Osmium

No terrestrial toxicity data were available to derive soil quality guidelines for osmium. Osmium belongs to the Platinum Group Elements (PGE); other members of the PGE include iridium, platinum, rhodium, ruthenium, and palladium. Ruthenium was identified as potential surrogate for osmium based on its location in the periodic table and also being a member of the PGE. A guideline for ruthenium was derived based on available terrestrial toxicity data, as described in

Section 4.2.1.8. Therefore, due to the absence of terrestrial toxicity data for osmium, the guideline 1 μ g/g dw soil for agricultural and park land use for ruthenium is adopted for osmium.

4.2.1.5 Palladium

ECHA dossiers derived a PNEC of 0.012 μ g/g dw soil which represents a concentration below which adverse effects in the environment are not expected to occur. ECHA derived the PNEC using the equilibrium partitioning extrapolation method; supporting information suggested the PNEC was derived for soil contact for soil microorganisms. The PNEC derived for palladium by ECHA is based on the most toxic palladium compound diamminedichloropalladium which is an industrial catalyst and is unlikely to be environmentally relevant.

The literature review identified three studies on terrestrial species for palladium and its compounds (palladium chloride, palladium sulfate and palladium oxide). Seven endpoints received an acceptable scoring and were selected for deriving the soil quality guideline.

The compiled dataset for palladium terrestrial toxicity data is provided in Appendix B.2, and include a LD10, LD50, and LD90 for mortality in mice and rat species. Table 4-19 summarizes the available terrestrial toxicity data for palladium for consideration with guideline derivation data requirements.

Pathway	Requirements	Remarks
Soil Contact (SQG _{SC})	3 endpoints, including 1 Plant and 1 Soil Invertebrate	None available
Soil and Food Ingestion (SQG _{1C})	2 Mammalian, 1 Avian	7 Mammalian (laboratory rodent)

 Table 4-15:
 Summary of Selected Terrestrial Toxicity Data – Palladium

Notes: Other data requirements, such as livestock species, are not included in the table. Soil contact (SQG_{SC}) requirements are shown for the LOEC and Median Effects Methods only.

The data requirements for the derivation of a SQG for direct contact and soil and food ingestion are not satisfied. Nevertheless, a guideline for soil and food ingestion was derived with consideration of the available data for palladium. The procedure outlined in Section 3.2.2 was followed for the calculation of a SQG₁. The LD10 of 166 μ g/g bw/d for 14-d oral exposure to laboratory rat was selected as the lowest effects dose. An uncertainty factor of 500 was applied to account for the various uncertainties related to the selected modified approach. This resulted in a DTED_{1C} of 0.33 μ g/g bw/d. With consideration of the soil and food ingestion rates for a meadow vole (*Microtus pennsylvanicus*) and a soil-to-plant BCF of 0.15 from Baes et al. (1984), a SQG_{1C} of 14 μ g/g was derived for palladium. The offsite migration check was completed by multiplying the lowest SQG by 14.3 (Section 3.2.3). Table 4-20 summarizes the derived guidelines for palladium based on the available terrestrial toxicity.

Cuideline (ug/g)	Land Use			
Guideline (µg/g)	Agricultural	Res/Parkland	Commercial	Industrial
Soil Contact (SQG _{SC})	0.012ª	0.012 ^a	0.012ª	0.012ª
Soil and Food Ingestion (SQG _{1C})	14	14	-	-
Nutrient and Energy Cycling (SQG _{NEC})	NC ^b	NC ^b	NC ^b	NC ^b
Groundwater – Freshwater Life (SQG _{FL})	NC℃	NC°	NC ^c	NC°
Groundwater – Agricultural, Irrigation (SQG _{IR})	NC ^c	-	-	-
Groundwater – Agricultural, Livestock (SQG _{LW})	NC ^c	-	-	-
Off-site migration check (SQG _{OM-E})	-	-	0.17	0.17
SQG _E		0.01	2	

 Table 4-16:
 Summary of Derived Environmental SQG – Palladium

Notes: ND – no data; NC – not calculated.

a – PNEC for Palladium derived by ECHA.

b – Data are insufficient/inadequate to calculate the nutrient and energy cycling check.

c – Applies to organic compounds and not calculated for metal contaminants.

The derived guideline of $0.012 \ \mu g/g$ for palladium is based on the ECHA PNEC for soil contact. As noted previously, the PNEC is based on the most toxic palladium compound which is unlikely to be environmentally relevant; however, it is the only value available for soil contact. Consideration of the available mammalian data for palladium indicates that the selected guideline is protective of mammals coming into contact with and ingesting soils.

The derived guideline is above background concentrations in soil. Palladium concentrations are increasing in the general environment because of its increased use in automobile catalysts (Nordberg et al. 2014). The palladium concentration in an area around a platinum group metal mine in Sudbury, Ontario was determined to be 0.002 to 0.0045 μ g/g and thus the derived guideline of 0.012 μ g/g is considered to be appropriate.

Due to a lack of appropriate human health toxicity information the derived guideline does not consider human health effects. Environmental levels of palladium in water, soil, and ambient air are not high, and environmental exposure and intake from food are not significant. The oral toxicity of palladium is believed to be low, although it does depend on the water solubility of the palladium compounds. Skin or mucosal contact with palladium-containing jewelry and dental alloys appears to be an important route of exposure. Palladium is associated with contact allergic reactions. No data are available on its carcinogenicity, reproductive toxicity, or other effects in humans (Nordberg et al. 2014). Based on this information, the SQG of 0.012 μ g/g based on ecological endpoints is considered to likely be protective of human health.

4.2.1.6 Platinum

Two studies on terrestrial species, conducted in 1976 and 1984, were available for platinum and its compounds (platinum chloride, platinum oxide, platinum sulphate, and platinum tetrachloride). Ten endpoints received an acceptable scoring and were selected for deriving the soil quality guideline.

The compiled dataset for platinum terrestrial toxicity data is provided in Appendix B.2, and include LD10, LD50, and LD90 for mortality in Sprague-Dawley rats. Table 4-17 summarizes the available terrestrial toxicity data for platinum for consideration with guideline derivation data requirements.

Pathway	Requirements	Remarks	
Soil Contact (SQG _{SC})	3 endpoints, including 1 Plant and 1 Soil Invertebrate	None	
Soil and Food Ingestion (SQG _{1C})	2 Mammalian, 1 Avian	Laboratory Rodent	
tes: Other data requirements, such as livestock species, are not included in the table. Soil			

 Table 4-17:
 Summary of Selected Terrestrial Toxicity Data – Platinum

Notes: Other data requirements, such as livestock species, are not included in the table. Soil contact (SQG_{SC}) requirements are shown for the LOEC and Median Effects Methods only.

The data requirements for the derivation of a SQG for direct contact and soil and food ingestion are not satisfied. Nevertheless, a guideline for soil and food ingestion was derived with consideration of the available data for platinum. The procedure outlined in Section 3.2.2 was followed for the calculation of a SQG₁. The lowest LD10 of 60 μ g/g bw/d for 14-d oral exposure to laboratory rat was selected as the lowest effects dose. An uncertainty factor of 500 was applied to account for the various uncertainties related to the selected modified approach. This resulted in a DTED_{1C} of 0.12 μ g/g bw/d. With consideration of the soil and food ingestion rates for a meadow vole (*Microtus pennsylvanicus*) and a soil-to-plant BCF of 0.095 from Baes et al. (1984), a SQG_{1C} of 7.6 μ g/g was derived for platinum. The offsite migration check was completed by multiplying the lowest SQG by 14.3 (Section 3.2.3). Table 4-18 summarizes the derived guidelines for platinum based on the available terrestrial toxicity.

There is no soil contact value available for platinum; however since it belongs to the Platinum Group Elements (PGE) and palladium is a potential surrogate due to its location in the periodic table, the existing guideline for palladium for soil contact was used as a surrogate and is included in Table 4-18.

Cuidalina (ug/g)		Land Use			
Guideline (μg/g)	Agricultural	Res/Parkland	Commercial	Industrial	
Soil Contact (SQG _{SC})	0.012 ^a	0.012 ^a	0.012ª	0.012ª	
Soil and Food Ingestion (SQG _{1C})	7.6	7.6	-	-	
Nutrient and Energy Cycling (SQG _{NEC})	NC ^b	NC ^b	NC ^b	NC ^b	
Groundwater – Freshwater Life (SQG _{FL})	NC ^c	NC°	NC°	NC℃	
Groundwater – Agricultural, Irrigation (SQG _{IR})	NC°	-	-	-	
Groundwater – Agricultural, Livestock (SQG _{LW})	NC°	-	-	-	
Off-site migration check (SQG $_{OM-E}$)	-	-	0.17	0.17	
SQG _E		0.01	2		

 Table 4-18:
 Summary of Derived Environmental SQG – Platinum

Notes: ND - no data; NC - not calculated.

a – PNEC for Palladium derived by ECHA

b – Data are insufficient/inadequate to calculate the nutrient and energy cycling check.

c – Applies to organic compounds and not calculated for metal contaminants.

The palladium guideline of 0.012 μ g/g dw soil is adopted for platinum. A consideration of the available mammalian data for platinum indicates that the selected guideline is protective of mammals coming into contact with and ingesting soils containing platinum. The derived guideline is also above the background concentration in soil, which is approximately 0.0027 μ g/g (Nordberg et al. 2014).

Due to a lack of appropriate human health toxicity information the derived guideline does not consider human health effects. The main health effect of platinum compounds is sensitization. Platinum salt sensitivity is manifested as conjunctivitis, rhinitis, and asthma. No health effects from environmental exposure to platinum have been reported (Nordberg et al. 2014). Based on this information, the SQG of 0.012 μ g/g based on ecological endpoints is considered to be protective of human health.

4.2.1.7 Rhodium

One study on terrestrial species, conducted in 2014, was available for rhodium and its compounds (rhodium chloride). Four endpoints received an acceptable scoring and were selected for deriving the soil quality guideline. Additional terrestrial toxicity testing for plants and soil invertebrates was completed by Aquatox (Appendix C.2) for rhodium and these data were considered in the derivation of the soil quality guideline.

The compiled dataset for rhodium terrestrial toxicity data is provided in Appendix B.2, and include LOAEC and NOAECs for renal function in Wistar rats. Table 4-19 summarizes the available terrestrial toxicity data for rhodium for consideration with guideline derivation data requirements.

Pathway	Requirements	Remarks
Soil Contact (SQG _{SC})	3 endpoints, including 1 Plant and 1 Soil Invertebrate	2 Plant, 1 Soil Invertebrate
Soil and Food Ingestion (SQG _{1C})	2 Mammalian, 1 Avian	Laboratory Rodent

 Table 4-19:
 Summary of Selected Terrestrial Toxicity Data – Rhodium

Notes: Other data requirements, such as livestock species, are not included in the table. Soil contact (SQG_{SC}) requirements are shown for the LOEC and Median Effects Methods only.

The data requirements for the derivation of a SQG for direct contact are satisfied, and therefore, as described in Section 3.2.1, a SQG_{SC} based on a TEC for agricultural and park land use and an ECL for commercial and industrial land use was derived for rhodium. The lowest IC25 of 6.6 μ g/g for reproductive effects on the earthworm *Eisenia andrei* was selected as a reasonable substitute for a LOEC and a TEC of 2.2 μ g/g was derived with the application of a factor of 3 (based on using minimum number of studies and assuming IC25 is equivalent to a LOEC). The ECL of 7.9 μ g/g was derived as the geometric mean of the IC25 endpoints for the two plant species (*Medicago sativa, Hordeum vulgare*) and one soil invertebrate species (*Eisenia andrei*).

From Table 4-19, the soil and food ingestion requirements are not satisfied. Nevertheless, a guideline for soil and food ingestion was derived with consideration of the available data for rhodium. The procedure outlined in Section 3.2.2 was followed for the calculation of a SQG_I. The lowest LOAEC of 0.1 mg/L for 14-d oral exposure to laboratory rat was selected as the lowest effects dose. The LOAEC represents the concentration in drinking water provided *ad libitum*; this was converted to a daily dose of rhodium using an assumed water ingestion rate of 0.046 L/day from Sample et al. (1996) and a body weight of 0.265 kg (lavicoli et al. 2014), which resulted in a value of 0.02 μ g/g bw/d. An uncertainty factor of 500 was applied to account for the various uncertainties related to the selected modified approach. This resulted in a DTED_{1C} of 0.00003 μ g/g bw/d. With consideration of the soil and food ingestion rates for a meadow vole (*Microtus pennsylvanicus*) and a soil-to-plant BCF of 0.15 from Baes et al. (1984), a SQG_{1C} of 0.002 μ g/g was derived for rhodium. The offsite migration check was completed by multiplying the lowest SQG by 14.3 (Section 3.2.3). Table 4-20 summarizes the derived guidelines for rhodium based on the available terrestrial toxicity.

Cuideline (un/n)	Land Use			
Guideline (µg/g)	Agricultural	Res/Parkland	Commercial	Industrial
Soil Contact (SQG _{SC})	2.2	2.2	7.9	7.9
Soil and Food Ingestion (SQG _{1C})	_a	_a	-	-
Nutrient and Energy Cycling (SQG _{NEC})	NC ^b	NC ^b	NC ^b	NC ^b
Groundwater – Freshwater Life (SQG _{FL})	NC ^c	NC°	NC ^c	NC℃
Groundwater – Agricultural, Irrigation (SQG _{IR})	NC ^c	-	-	-
Groundwater – Agricultural, Livestock (SQG _{LW})	NC°	-	-	-
Off-site migration check (SQG _{OM-E})	-	-	112	112
SQG _E	2.2	2.2	7.9	7.9

 Table 4-20:
 Summary of Derived Environmental SQG – Rhodium

Notes: ND – no data; NC – not calculated.

a – The SQG_{1C} derived from terrestrial toxicity data for rhodium of 0.002 μ g/g was based on an endpoint for renal effects, which is not a preferred endpoint for the derivation of guidelines and resulted in a value similar to background levels. It was therefore excluded from consideration of the SQG_E.

b – Data are insufficient/inadequate to calculate the nutrient and energy cycling check.

c – Applies to organic compounds and not calculated for metal contaminants.

Background levels of rhodium in soil are in the range of 0.0003 to 0.001 μ g/g (Nordberg et al. 2014). It is noted that road dust can contribute to measured levels in soil due to the use of catalytic converters in vehicles. Although the SQG_{1C} derived from terrestrial toxicity data for rhodium is below the SQG_{SC} for agricultural and park land use, the endpoint used to derive the SQG_{1C} is based on renal effects, which is not a preferred endpoint for the derivation of guidelines. The use of this endpoint results in a value similar to background levels. Therefore, the derived SQG_{SC} based on laboratory toxicity data for rhodium is selected for the SQG_E.

Due to a lack of appropriate information the derived guideline does not consider human health effects. Occupational allergic contact dermatitis, contact urticarial and asthma have been confirmed in subjects working in the jewelry trade and exposed to rhodium; however, no reactions were detected in non-occupationally exposed subjects, suggesting that the risk of developing hypersensitivity correlates with the intensity of the exposure (Nordberg et al. 2014). Rhodium in its metallic form is relatively inert but there is some limited data that demonstrate the cytotoxic and genotoxic effects of rhodium on cellular systems and the induction of immunological alterations in animals (Nordberg et al. 2014).

4.2.1.8 Ruthenium

One study on terrestrial species, conducted in 1976, was available for ruthenium and its compounds (ruthenium chloride). Three endpoints received an acceptable scoring and were selected for deriving the soil quality guideline. Additional terrestrial toxicity testing for plants and

soil invertebrates was completed by Aquatox (Appendix C.2) for ruthenium and these data were considered in the derivation of the soil quality guideline.

The compiled dataset for ruthenium terrestrial toxicity data is provided in Appendix B.2, and include a LD10, LD50, and LD90 for mortality in Sprague-Dawley rats. Table 4-21 summarizes the available terrestrial toxicity data for ruthenium for consideration with guideline derivation data requirements.

Pathway	Requirements	Remarks
Soil Contact (SQG _{SC})	3 endpoints, including 1 Plant and 1 Soil Invertebrate	2 Plant, 1 Soil Invertebrate
Soil and Food Ingestion (SQG _{1C})	2 Mammalian, 1 Avian	Laboratory Rodent

 Table 4-21:
 Summary of Selected Terrestrial Toxicity Data – Ruthenium

Notes: Other data requirements, such as livestock species, are not included in the table. Soil contact (SQG_{SC}) requirements are shown for the LOEC and Median Effects Methods only.

The data requirements for the derivation of a SQG for direct contact are satisfied, and therefore, as described in Section 3.2.1, a SQG_{SC} based on a TEC for agricultural and park land use and an ECL for commercial and industrial land use was derived for ruthenium. The lowest IC25 of 3.1 μ g/g for reproductive effects on the earthworm *Eisenia andrei* was selected as a reasonable substitute for a LOEC and a TEC of 1.0 μ g/g was derived with the application of a factor of 3 (based on using minimum number of studies and assuming IC25 is equivalent to a LOEC). The ECL of 6.8 μ g/g was derived as the geometric mean of the IC25 endpoints for the two plant species (*Medicago sativa, Hordeum vulgare*) and one soil invertebrate species (*Eisenia andrei*).

From Table 4-19, the soil and food ingestion requirements are not satisfied. Nevertheless, a guideline for soil and food ingestion was derived with consideration of the available data for ruthenium. The procedure outlined in Section 3.2.2 was followed for the calculation of a SQG₁. The LD10 of 180 μ g/g bw/d for 14-d oral exposure to laboratory rat was selected as the lowest effects dose. An uncertainty factor of 500 was applied to account for the various uncertainties related to the selected modified approach. This resulted in a DTED_{1C} of 0.36 μ g/g bw/d. With consideration of the soil and food ingestion rates for a meadow vole (*Microtus pennsylvanicus*) and a soil-to-plant BCF of 0.075 from Baes et al. (1984), a SQG_{1C} of 28 μ g/g was derived for ruthenium. The offsite migration check was completed by multiplying the lowest SQG by 14.3 (Section 3.2.3). Table 4-22 summarizes the derived guidelines for ruthenium based on the available terrestrial toxicity.

Guidalina (ug/g)	Land Use			
Guideline (μg/g)	Agricultural	Res/Parkland	Commercial	Industrial
Soil Contact (SQG _{SC})	1.0	1.0	6.8	6.8
Soil and Food Ingestion (SQG _{1C})	28	28	-	-
Nutrient and Energy Cycling (SQG _{NEC})	NC ^a	NC ^a	NC ^a	NC ^a
Groundwater – Freshwater Life (SQG _{FL})	NC ^b	NC ^b	NC ^b	NC ^b
Groundwater – Agricultural, Irrigation (SQG _{IR})	NC ^b	-	-	-
Groundwater – Agricultural, Livestock (SQG _{LW})	NC ^b	-	-	-
Off-site migration check (SQG _{OM-E})	-	-	97	97
SQG _E	1	1	6.8	6.8

Table 4-22: Summary of Derived Environmental SQG – Ruthenium

Notes: ND – no data; NC – not calculated.

a – Data are insufficient/inadequate to calculate the nutrient and energy cycling check.

b – Applies to organic compounds and not calculated for metal contaminants.

The guideline of 1 μ g/g dw soil for agricultural and park land use is adopted for ruthenium; consideration of the available mammalian data for ruthenium indicates that the selected guideline is protective of mammals coming into contact with and ingesting soils.

Due to a lack of appropriate human health toxicity information the derived guideline does not consider human health effects. Relatively little is known about the biokinetics of ruthenium (IARC 2009); however the limited data available suggest that it is poorly absorbed from the gut and is rapidly eliminated from the body (Nordberg et al. 2014). Based on this information, the SQG of 1 μ g/g based on ecological endpoints is considered to likely be protective of human health.

4.2.2 Summary

Table 4-23 provides a summary of the SQGs for the elements of interest in the current literature review.

Element	SQG (µg/g)	Remarks
Gold	0.1	Based on SQG _{SC} (derived)
Bismuth	20	Medri (2015)
Bromine	10	Medri (2015)
lodine	4	Medri (2015)
Indium	7.3	Based on SQG _{SC} (ECHA PNEC)
Iridium	2.2	Based on Rhodium SQG
Osmium	1	Based on Ruthenium SQG
Palladium	0.012	Based on SQG _{SC} (ECHA PNEC)
Platinum	0.012	Based on Palladium SQG
Rhodium	2.2	Based on SQG _{SC} (derived)
Ruthenium	1	Based on SQG _{SC} (derived)
Tellurium	250	Medri (2015)
Tungsten	400	Medri (2015)

Table 4-23:Summary of SQGs

Notes: PNEC – Probable No Effect Concentration from ECHA dossiers, represents a concentration below which adverse effects in the environment are not expected to occur.

4.3 GROUNDWATER QUALITY GUIDELINES

No groundwater quality guidelines (GQGs) were identified in Medri (2015) for the elements of interest. Therefore, GQGs are derived for all elements considered in the current review. A jurisdictional review did not identify any additional GQGs for the elements of interest. Therefore, GQGs based on protection of aquatic life were derived using the approach described in Section 3.3, as summarized in Table 4-24. As described in Section 3.3, in order to address the data gap due to the lack of drinking water guidelines for human health, for elements with unknown human toxicity or suspected toxicity, the surface water guidelines were adopted as GQGs; otherwise, a factor of 10 was applied to the surface water guideline for the protection of aquatic life to account for dilution when the groundwater discharges to surface water. Although the lack of drinking water guidelines remains a data gap for the derived GQGs, the values are expected to remain protective of human health, since ecological effects on aquatic species are generally more restrictive than human health effects related to the consumption of water.

Element	WQG (µg/L)	GQG (µg/L)	Rationale
Gold	6	60	Applied dilution factor of 10; considered non-toxic for humans
Bismuth	140	1,400	Applied dilution factor of 10; considered non-toxic for humans
Bromine	2	20	Applied dilution factor of 10; considered non-toxic for humans
lodine	100	100	Assumed equal to WQG
Indium	41	41	Assumed equal to WQG
Iridium	10	100	Applied dilution factor of 10; considered non-toxic for humans
Osmium	0.067	0.067	Assumed equal to WQG
Palladium	0.068	0.68	Applied dilution factor of 10; considered non-toxic for humans
Platinum	0.61	6.1	Applied dilution factor of 10; considered non-toxic for humans
Rhodium	10	10	Assumed equal to WQG
Ruthenium	10	100	Applied dilution factor of 10; considered non-toxic for humans
Tellurium	5.8	5.8	Assumed equal to WQG
Tungsten	30	16	Default U.S. EPA (2016) screening level value for tapwater

Table 4-24:Summary of GQGs

Notes: GQG derived using MOE (2011a) approach and applying a factor of 10 to the WQG, as outlined in Section 3.3

For gold, bismuth, bromine, iridium, palladium, platinum, and ruthenium, a dilution factor of 10 was applied to the WQG for the protection of aquatic life, since these elements are not considered to be a concern for human health. Gold is used in dental alloys, however, this type of exposure apparently has little toxicological significance (Nordberg et al. 2014); therefore, gold is considered to be non-toxic for humans. Although high levels of exposure to bismuth can have toxic effects in humans, most exposures occur through the therapeutic use of bismuth compounds (Nordberg et al. 2014). Therefore, bismuth is considered to not be a concern for human health in this context. WHO (2010) considers the bromine anion, bromide, to have a low degree of toxicity and derived drinking water concentrations based on acceptable daily intake levels that are unlikely to be encountered in drinking water supplies (concentrations of 2 mg/L and higher). Therefore, the derived GQG would be protective of human health for drinking water. Current data relating to environmental iridium concentrations in air, soil, roadside dust, water, and foods indicates that guite low levels that are not thought to pose a serious threat to human health (Nordberg et al. 2014). The oral toxicity of palladium is believed to be low, although it does depend on the water solubility of the palladium compounds (Nordberg et al. 2014). The main health effect of platinum compounds is sensitization. Platinum salt sensitivity is manifested as conjunctivitis, rhinitis, and asthma. No health effects from environmental exposure to platinum have been reported (Nordberg et al. 2014). Relatively little is known about

the biokinetics of ruthenium (IARC 2009); however the limited data available suggest that it is poorly absorbed from the gut and is rapidly eliminated from the body (Nordberg et al. 2014).

For indium, the WQG from Medri (2015) was adopted as the GQG, since the basis of the WQG was not known (possibly human health or other considerations.

For indium, osmium, rhodium, and tellurium, with consideration of human toxicity data, or the lack thereof, the WQG for the protection of aquatic life was selected as the GQG, with no consideration of further dilution in the environment. The International Agency for Research on Cancer (IARC 2006) has determined that indium phosphide, used in the microelectronics industry, is a probable human carcinogen. Exposure to indium, indium arsenide and indium chloride has been shown to produce a number of effects on gene-expression patterns. The marked inhibitory effects of indium on protein synthesis may play a role in altering the activities of DNA repair enzymes and the expression of proteins involved in regulating apoptosis (IARC 2006). Metallic osmium is known to be innocuous (McLaughlin et al. 1946), however the compound osmium tetroxide (which forms on exposure to air) is highly toxic to humans. Rhodium in its metallic form is relatively inert but there is some limited data that demonstrates the cytotoxic and genotoxic effects of rhodium on cellular systems and the induction of immunological alterations in animals (Nordberg et al. 2014). Although tellurium has not been reported to be a human or animal carcinogen and there have been no reports of workers dying from exposure to tellurium or tellurium compounds, accidental deaths have occurred following exposure to sodium tellurite (Nordberg et al. 2014).

For tungsten, the GQG selected is based on the protection of drinking water, since the U.S. EPA (2016) screening level value for tapwater was more restrictive than the aquatic life component.

4.4 SEDIMENT QUALITY GUIDELINES

No sediment quality guidelines (SedQGs) were identified in Medri (2015) for the elements of interest. Therefore, SedQGs are derived for all elements considered in the current review.

4.4.1 Jurisdictional Review

The first step for the derivation of SedQGs for the elements identified in Table 2-1 was the completion of a jurisdictional review (Section 2.2). The jurisdictional review identified guidelines for six elements (bismuth, bromine, indium, iodine, palladium, and tungsten) derived for sediment. These guidelines are summarized in Table 4-25.

Element	SedQG (µg/g)	Remarks			
Gold					
Bismuth	65,000	PNEC freshwater derived with a partition coefficient (ECHA)			
Bromine	20	RIVM (2000) target level of soil/sediment (SRNL, 2005)			
lodine	4	PNEC freshwater derived with equilibrium partitioning method (ECHA)			
Indium	5,050	PNEC freshwater derived with equilibrium partitioning method (ECHA)			
Iridium					
Osmium					
Palladium	0.27	PNEC freshwater derived with an assessment factor of 100 (ECHA)			
Platinum					
Rhodium					
Ruthenium					
Tellurium					
Tungsten	960	PNEC freshwater derived with equilibrium partitioning method and assessment factor of 10 (ECHA)			

 Table 4-25:
 Summary of SedQGs – Jurisdictional Review

Notes: PNEC – Probable No Effect Concentration from ECHA dossiers, represents a concentration below which adverse effects in the environment are not expected to occur. Shading indicates SedQG derived in the following sections.

The sediment quality guideline listed for bromine is a target value from the Dutch Ministry of the Environment (RIVM 2000); RIVM has set the same benchmarks for sediment and soil and should therefore be used with caution. Medri (2015) identified a soil quality guideline for bromine of 10 μ g/g. The RIVM value selected for the SedQG for bromine of 20 μ g/g is reasonable considering the lack of other available information.

The PNEC derived for palladium by ECHA is based on the most toxic palladium compound diamminedichloropalladium which is an industrial catalyst and thus unlikely to be environmentally relevant. Therefore, a SedQG was also derived for palladium using the Kd approach below.

SedQG were derived as discussed in the following section for the remaining elements of interest.

4.4.2 Sediment Quality Guideline Derivation

In the absence of any sediment-related toxicity data for the elements of interest, SedQG were derived using the approach described in Section 3.4. Sediment/water partitioning coefficients (Kds) for the elements of interest were taken from the ERICA database (Brown et al. 2008) where available and are summarized in Table 4-26; when a sediment/water Kd was not available from the ERICA database, soil/water partitioning coefficients from Baes et al. (1984) were used.

SedQGs were calculated as shown in Table 4-26 using the identified WQG (μ g/L) and applying the partition coefficient (L/g) to derive a SedQG (μ g/g). Consideration was also given to potential surrogates and radiotoxicity.

Element	WQG (µg/L)	Kd (L/g)	SedQG (µg/g)
Gold	6	25ª	150
Bismuth	140	_b	65,000
Bromine	2	_b	20
lodine	100	_b	4
Indium	41	_b	5,050
Iridium	10	266	2,700
Osmium	0.067	450 ^a	30
Palladium	0.068	60 ^a	4.1
Platinum	0.61	90 ^a	55
Rhodium	10	60 ^a	600
Ruthenium	10	39	390
Tellurium	5.8	5.3	31
Tungsten	30	_b	960

Table 4-26: Derivation of SedQGs

Notes: SedQG derived using the approach used by ECHA, as outlined in Section 3.4 a –in the absence of available sediment/water partitioning coefficient, soil/water partitioning coefficients from Baes et al. (1984) were used b – not applicable, SedQG available from jurisdictional review.

4.4.3 Summary

Table 4-27 provides a summary of the SedQGs for the elements of interest in the current literature review.

Element	SedQG (µg/g)	Remarks
Gold	150	Calculated using literature Kd (soil)
Bismuth	65,000	PNEC freshwater derived with a partition coefficient
Bromine	20	RIVM (2000) target level of soil/sediment
lodine	4	PNEC freshwater derived with equilibrium partitioning method
Indium	5,050	PNEC freshwater derived with equilibrium partitioning method
Iridium	2,700	Calculated using literature Kd
Osmium	30	Calculated using literature Kd (soil)
Palladium	4.1	Calculated using literature Kd (soil)
Platinum	55	Calculated using literature Kd (soil)
Rhodium	600	Calculated using literature Kd (soil)
Ruthenium	390	Calculated using literature Kd
Tellurium	31	Calculated using literature Kd
Tungsten	960	PNEC freshwater derived with equilibrium partitioning method and assessment factor of 10

Table 4-27: Summary of SedQGs

Notes: PNEC – Probable No Effect Concentration from ECHA dossiers, represents a concentration below which adverse effects in the environment are not expected to occur.

4.5 AIR QUALITY GUIDELINES

Table 4-28 summarizes the available air quality guidelines (AQGs) from Medri (2015) and identifies the elements which require further investigation for the development of AQGs in this study.

Element	AQG (µg/m³)
Gold	
Bismuth	100
Bromine	20
lodine	0.67
Indium	
Iridium	
Osmium	
Palladium	
Platinum	0.2
Rhodium	
Ruthenium	
Tellurium	10
Tungsten	67

Table 4-28: Summary of AQGs – Initial Stage

Notes: Values from Medri (2015). Shading indicates guideline derived in the following sections.

4.5.1 Jurisdictional Review

The first step for the derivation of AQGs for the elements identified in Table 4-28 was the completion of a jurisdictional review (Section 2.2). The jurisdictional review identified six additional guidelines (gold, indium, osmium, palladium, rhodium, and ruthenium), as summarized in Table 4-29.

	Element	AQG (µg/m³)	Remarks
•	Gold	2.5	TCEQ (2016), interim long-term ESL for health
	Bismuth	100	Medri (2015)
	Bromine	20	Medri (2015)
	lodine	0.67	Medri (2015)
	Indium	0.1	TCEQ (2016), interim long-term ESL for health
	Iridium		
	Osmium	0.002	TCEQ (2016), interim long-term ESL for health
	Palladium	5	TCEQ (2016), interim long-term ESL for health
	Platinum	0.2	Medri (2015)
	Rhodium	0.1	TCEQ (2016), interim long-term ESL for health
	Ruthenium	3	TCEQ (2016), interim long-term ESL for health
	Tellurium	10	Medri (2015)
_	Tungsten	67	Medri (2015)

 Table 4-29:
 Summary of AQGs – Jurisdictional Review

Notes: ESL – Effects Screening Level from TCEQ (2016), represents a concentration below which adverse effects in the environment are not expected to occur. Shading indicates AQG derived in the following sections.

TCEQ (2016) provided Effects Screening Levels (ESLs) for a number of elements of interest, as indicated in Table 4-29. The ESLs are based on health effects data, potential nuisance odours, and effects on vegetation; however, they are screening levels and not ambient air standards. Therefore, if an air concentration exceeds the screening level, a more detailed review should be conducted. If the screening level is not exceeded, then adverse health and welfare effects are not expected. The ESLs presented in Table 4-29 are long-term values and apply to an annual averaging period.

The Ontario MOECC (2019) has published a 24-hr ambient air quality criteria for palladium of 10 μ g/m³ based on health effects. This value is provided for consideration, however the ESL from TCEQ (2016) is selected for the guideline, since the ESL represents an annual averaging period.

The review of toxicity data for the remaining elements of interest to this study are provided in the following section.

4.5.2 Toxicity Review

Toxicity data related to potential chemical effects from exposure to iridium were not found. Therefore, the following sections provide a qualitative discussion for the derivation of appropriate AQGs for this element.

4.5.2.1 Iridium

Iridium belongs to the Platinum Group Elements (PGE) and little is known of its toxicological characteristics (Nordberg et al. 2014). Current data relating to environmental iridium concentrations in air, soil, roadside dust, water, and foods indicate quite low levels that are not thought to pose a serious threat to human health. Authorities such as the Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), and the German Research Foundation (Deutsche Forschungsgemeinshaft) have not established threshold values for iridium in air (Nordberg et al. 2014). In contrast with other PGE, which have shown an increasing trend in airborne concentrations, iridium concentrations in air over the past few decades have remained relatively stable (Nordberg et al. 2014). Measured iridium concentrations in air have been reported as high as 3.73 pg/m^3 (or $3.73 \times 10^{-6} \text{ µg/m}^3$).

Considering the lack of information related to potential negative effects from exposure to iridium in air, the established guideline for rhodium was identified as potential surrogate for iridium based on its location in the periodic table and also being a member of the PGE. This guideline is several orders of magnitude above measured concentrations in the environment, as reported in Nordberg et al. (2014).

4.5.3 Summary

Table 4-30 provides a summary of the AQGs for the elements of interest in the current literature review.

Element	AQG (µg/m³)	Remarks
Gold	2.5	TCEQ (2016), interim long-term ESL for health
Bismuth	100	Medri (2015)
Bromine	20	Medri (2015)
lodine	0.67	Medri (2015)
Indium	0.1	TCEQ (2016), interim long-term ESL for health
Iridium	0.1	Adopted AQG for surrogate (rhodium)
Osmium	0.002	TCEQ (2016), interim long-term ESL for health
Palladium	5	TCEQ (2016), interim long-term ESL for health
Platinum	0.2	Medri (2015)
Rhodium	0.1	TCEQ (2016), interim long-term ESL for health
Ruthenium	3	TCEQ (2016), interim long-term ESL for health
Tellurium	10	Medri (2015)
Tungsten	67	Medri (2015)

Table 4-30. Summary OF AQOS	Table 4-30:	Summary of AQGs
-----------------------------	-------------	-----------------

Notes: ESL – Effects Screening Level from TCEQ (2016), represents a concentration below which adverse effects in the environment are not expected to occur.

5. DISCUSSION

Table 5-1 provides a summary of the various aspects considered for the derived criteria for each environmental media. As shown in the table, human health data were limited with the exception of air. Additionally, data were limited to consider potential effects on agricultural and drinking water uses. Thus, the criteria were generally derived based on ecological endpoints. In Table 5-1, an overall level of uncertainty was assigned to the criteria developed for each media; this designation was assigned based on professional judgement and primarily reflects the lack of information on human health and the relevance of this pathway for a particular guideline. Drinking water guidelines, a component of the derivation for both surface water and groundwater, were not available for the elements of interest; this is considered a more significant data gap for groundwater ("high" level of uncertainty) than surface water ("medium" level of uncertainty) for the reasons discussed in Section 3.1. Human health data were not available for consideration in the derivation of soil criteria. Qualitative information available regarding possible human health effects for exposure to the elements of interest were considered in the context of the soil guideline derivations; therefore, this data gap was considered to result in a "medium" level of uncertainty for the derived guidelines. For sediment guidelines, the sediment exposure pathway is typically not significant for human exposures; the derived guidelines were based on ecological data, which is considered more relevant for sediment guidelines. Therefore, the lack of human health effects was considered to result in a "medium" level of uncertainty for the derived sediment guidelines. Finally, air guality guidelines were based largely on jurisdictional values that considered potential negative effects on human health; this was considered to result in a "low" level of uncertainty for the air guidelines.

Media	Sur	face Wa	ater ^a	Gro	oundw	ater		Soil	Ş	Sedime	nt		Air	
Element	Drinking Water	Aquatic Life	Agricultural Uses	Drinking Water	Agricultural Uses	Surface Water	Ecological Health	Human Health	Aquatic Life	Human Health	Environment	Human Health	Environment	Nuisance (odour)
Gold	Х	\checkmark	Х	Х	Х	\checkmark		Х	\checkmark	Х	\checkmark		\checkmark	
Bismuth	Х	\checkmark	Х	Х	Х	\checkmark		b	\checkmark	Х			b	
Bromine	Х	\checkmark	Х	Х	Х	\checkmark		b	Х	Х	\checkmark		b	
lodine		b		Х	Х	\checkmark		b	\checkmark	Х			b	
Indium	Х	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х		\checkmark	\checkmark	\checkmark
Iridium	Х	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	Х	Х
Osmium	Х	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Palladium	Х	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Platinum	Х	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark		b	
Rhodium	Х	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Ruthenium	Х	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark
Tellurium	Х	\checkmark	Х	Х	Х	\checkmark		b	\checkmark	Х	\checkmark		b	
Tungsten		b		\checkmark	Х	\checkmark		b	\checkmark	Х	\checkmark		b	
Level of Uncertainty ^c		Medium	ו		High		M	edium	-	Mediun	n		Low	

 Table 5-1:
 Aspects Considered for Derived Criteria

Notes: X – not considered; $\sqrt{-\text{considered}}$.

a - recreational and aesthetic uses are not appropriate for the elements of interest.

b – value from Medri (2015).

c – overall level of uncertainty was assigned to the criteria developed for each media; this designation was assigned based on professional judgement and primarily reflects the lack of information on human health and the relevance of this pathway for a particular guideline. See text for additional detail.

Table 5-2 provides an accounting of the various data gaps and uncertainties involved in the derivation of the guidelines for each element in the current review. In Table 5-2, an overall level of uncertainty was assigned to the criteria developed for each media; this designation was assigned based on professional judgement and consideration of the data gaps included in the derived guidelines. Typically, guidelines that were based on jurisdictional values or considered some element-specific data were considered to have a lower level of uncertainty than guidelines that were based entirely on surrogate assumptions or methods using default (non-element specific) parameters. It is not possible to discern at this time how the derived guidelines would change with additional element-specific toxicity data; however the uncertainty in the derived values will be less when more relevant data become available.

Guideline	Uncertainty/ Data Gap	Level of Uncertainty	Element			
	Use of ECHA PNEC	Low	Bismuth, Tellurium, Indium			
	Use of UK EA lowest chronic value	Low	Bromine			
Water Quality	Use of Limited Dataset with consideration of ECHA PNEC	Low	Palladium			
	Derived Type B2 guideline	Low	Rhodium, Ruthenium			
	Use of Limited Dataset with consideration of acute and chronic data	Low	Platinum			
	Use of Limited Dataset – no chronic toxicity data	Medium	Gold, Iridium			
	Use of Limited Dataset – no fish data or chronic toxicity data	High	Osmium			
	Use of U.S. EPA screening level for tapwater	Low	Tungsten			
Groundwater Quality	Use of Default Factor of 10	High	Gold, Bismuth, Bromine, Iridium, Palladium, Platinum, Ruthenium			
	Use of WQG	High	lodine, Indium, Osmium, Rhodium, Tellurium			
	Use of ECHA PNEC	Low	Indium, Palladium			
	Derived SQG _E	Low	Rhodium, Ruthenium			
Soil Quality	Use of Limited Dataset – no ingestion pathway data	Medium	Gold			
	Use of Surrogate	High	Iridium, Osmium, Platinum			
	Use of ECHA PNEC	Low	Bismuth, Indium, Iodine, Tungsten			
Sediment Quality	Use of RIVM	Medium	Bromine			
	Use of Literature Kd	Medium	Iridium, Tellurium, Ruthenium			
	Use of Literature Kd (soil)	High	Gold, Osmium, Palladium, Platinum, Rhodium			
Air Quality	Use of TCEQ	Low	Gold, Indium, Osmium, Palladium, Rhodium, Ruthenium			
	Use of Surrogate	High	Iridium			

 Table 5-2:
 Summary of Data Gaps and Limitations

6. CONCLUSIONS

The derived interim acceptance criteria for the elements of interest are provided in Table 6-1. These criteria were derived based on the existing jurisdictional values and the available toxicity data compiled from a literature search. Effort was made to derive appropriate values for each media and element but there are some residual gaps and the values are associated with varying levels of uncertainty (see Section 5).

Element	Surface Water (µg/L)	Groundwater (μg/L)	Soil (µg/g)	Sediment (µg/g)	Air (µg/m³)
Gold	6	60	0.1	150	2.5
Bismuth	140	1,400	20	65,000	100
Bromine	2	20	10	20	20
lodine	100	100	4	4	0.67
Indium	41	41	7.3	5,050	0.1
Iridium	10	100	2.2	2,700	0.002
Osmium	0.067	0.067	1	30	0.1
Palladium	0.068	0.68	0.012	4.1	5
Platinum	0.61	6.1	0.012	55	0.2
Rhodium	10	10	2.2	600	0.1
Ruthenium	10	100	1	390	3
Tellurium	5.8	5.8	250	31	10
Tungsten	30	16	400	960	67

Table 6-1:	Summary	of Interim	Acceptance Criteria
------------	---------	------------	---------------------

Notes: Shading indicates guideline derived in the current review. Unshaded values from Medri (2015).

REFERENCES

- Baes, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. Oak Ridge National Laboratory. ORNL-5786. Oak Ridge, USA.
- Bengtsson,B.E., and M. Tarkpea, 1983. The Acute Aquatic Toxicity of Some Substances Carried by Ships. Mar. Pollut. Bull, 14(6): 213-214.
- Biesinger,K.E., and G.M. Christensen, 1972. Effects of Various Metals on Survival, Growth, Reproduction and Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700.
- Borgmann,U., Y. Couillard, P. Doyle, and D.G. Dixon, 2005. Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.
- Brown, J.E., B. Alfonso, R. Avila, N.A. Beresford, D. Copplestone, G. Prohl, and A. Ulanovsky. 2008. The ERICA Tool. Journal of Environmental Radioactivity 99(9):1371–1383.
- Buhl,K.J., and S.J. Hamilton, 1991. Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics. Ecotoxicol. Environ. Saf., 22: 184-197.
- Carneiro, M.L.B., C.A.P. Lopes, A.L. Miranda-Vilela, G.A. Joanitti, I.C.R. da Silva, M.R. Mortari, A.R. de Souza, S.N. Báo, 2015. Acute and subchronic toxicity of the antitumor agent rhodium (II) citrate in Balb/c mice after intraperitoneal administration. Toxicology Reports, 2: 1086-1100.
- CCME. 1995. Protocol for the Derivation of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. CCME EPC-98E. Prepared by Environment Canada, Guidelines Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines. Winnipeg, Canada. Accessed January 2015 at http://ceqgrcqe.ccme.ca/download/en/226.
- CCME. 1999a. Protocols for Deriving Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water). Excerpt from Publication No. 1299. Canadian Council of Ministers of the Environment. Winnipeg, Canada. Accessed January 2015 at http://cegg-rcge.ccme.ca/download/en/131.
- CCME. 1999b. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Thallium. Canadian Council of Ministers of the Environment. Winnipeg, Canada.
- CCME. 2006. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. Canadian Council of Ministers of the Environment. PN 1332. Winnipeg, Canada.. Accessed January 2015 at http://www.ccme.ca/files/cegg/en/sg_protocol_1332_e.pdf.
- CCME. 2007. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment. Winnipeg, Canada. Accessed January 2015 at http://ceqg-rcqe.ccme.ca/download/en/220.

- CCME. 2015a. A Protocol for the Derivation of Groundwater Quality Guidelines for use at Contaminated Sites. Canadian Council of Ministers of the Environment. PN 1533. Winnipeg, Canada.. Accessed January 2015 at http://ceqgrcqe.ccme.ca/download/en/348.
- CCME 2015b. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Silver. Canadian Council of Ministers of the Environment. Winnipeg, Canada.
- CCME. 2017. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment. Winnipeg, Canada. Available at ceqg-rcqe.ccme.ca/en/index.html.
- De Jong,L.E.D., 1965. Tolerance of Chlorella vulgaris for Metallic and Non-Metallic Ions. Antonie van Leeuwenhoek (Gedrukt), 31: 301-313.
- ECCC. 2013. Database of Environmental Quality Guidelines. Environment and Climate Change Canada. Ottawa, Canada. http://open.canada.ca/data/en/dataset/ece7204f-c486-4ed9b318-ddf61935f02c
- ECHA. 2003. Technical Guidance Document on Risk Assessment. Part II. European Chemicals Agency. Helsinki, Finland. Available at: https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf
- Egorova, K.S., A.A. Sinjushin, A.V. Posvyatenko, D.B. Eremin, A.S. Kashin, A.S. Galushko, V.P. Ananikov. 2019. Evaluation of phytotoxicity and cytotoxicity of industrial catalyst components (Fe, Cu, Ni, Rh and Pd): A case of lethal toxicity of a rhodium salt in terrestrial plants. Chemosphere 223: 738-747
- Farago, M.E. and P.J. Parsons, 1994. The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec. Bioavail, 6(1): 43070.
- Ferreira, P.F. and R.E. Wolke. 1979. Acute Toxicity of Platinum to Coho Salmon (Oncorhynchus kisutch). Marine Pollution Bulletin, Vol. 10, pp. 79-83.
- Gad, S.C. 2005. Encyclopedia of Toxicology (Second Edition): Radium. Academic Press. Cambridge, USA. Pages 615-617.
- Government of Canada. 2012. Federal Contaminated Sites Action Plan (FCSAP), Ecological Risk Assessment Guidance, Module 3: Standardization of Wildlife Receptor Characteristics. Government of Canada. Ottawa, Canada.
- Harry,H.W., and D.V. Aldrich, 1963. The Distress Syndrome in Taphius glabratus (Say) as a Reaction to Toxic Concentrations of Inorganic Ions. Malacologia, 1(2): 283-289.
- Holbrook, D.J., 1976. Assessment of toxicity of automotive metallic emissions, Vol. I: Assessment of fuel additives emission toxicity via selected assays of nucleic and protein synthesis. Environmental Health Criteria 125. United States Environmental Protection Agency. Research Triangle Park, USA.

- IAEA, 2009. Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. International Atomic Energy Agency. TECDOC1616. Vienna, Austria.
- IARC, 2006. IARC Monograph No. 86. Cobalt in hard-metals and cobalt sulfate, gallium arsenide, indium phosphide, and vanadium pentoxide. International Agency for Research on Cancer. IARC Press. Lyon, France.
- IARC, 2009. A Review of human carcinogens. Part D: Radiation. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Monograph No. 100D International Agency for Research on Cancer. WHO Press. Geneva, Switzerland.
- Iavicoli, I., V. Leso, L. Fontana, A. Marinaccio, A. Bergamaschi, E.J. Calabrese, 2014. The effects of rhodium on the renal function of female Wistar rats. Chemosphere, 104: 120-125.
- Jones, J.R.E., 1939. The Relation between the Electrolytic Solution Pressures of the Metals and Their Toxicity to the Stickleback (Gasterosteus aculeatus L.). J. Exp. Biol., 16(4): 425-437.
- Jones, J.R.E., 1940. A Further Study of the Relation between Toxicity and Solution Pressure, with Polycelis nigra as Test Animal. J. Exp. Biol., 17: 408-415.
- Kabe, I., Omae, K., Nakashima, H., Nomiyama, T., Uemura, T., Hosoda, K., Ishizuka, C., Yamazaki, K. & Sakurai, H., 1996. In vitro solubility and in vivo toxicity of indium phosphide. J. occup. Health, 38: 6–12.
- Khangarot,B.S., 1991. Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912.
- Khangarot,B.S., and S. Das, 2009. Acute Toxicity of Metals and Reference Toxicants to a Freshwater Ostracod, Cypris subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models. J. Hazard. Mater., 172: 641-649.
- Landolt, R.R., Berk, H.W., Russell, H.T., 1972. Studies on the toxicity of rhodium trichloride in rats and rabbits.. Toxicol Appl Pharmacol., 21(4): 589-90.
- McLaughlin, A.I.G., R. Milton, and K.M.A. Perry. 1946. Toxic Manifestations of Osmium Tetraoxide. Br. J. Ind. Med. July 1. <u>https://oem.bmj.com/</u>
- Medri, C. Non-Radiological Interim Acceptance Criteria for the Protection of Persons and the Environment. NWMO TR-2015-03. Nuclear Waste Management Organization. January.
- Mello-Andrade, F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PR, Lima AP, Oliveira R, Ferraz IBM, Grisolia CK, Almeida MAP, Batista AA and Silveira-Lacerda EP. 2018. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos. Biomedicine & Pharmacotherapy 107: 1082–1092.
- MOECC. 2019. Ontario's Ambient Air Quality Criteria. Standards Development Branch. Ministry of the Environment and Climate Change. Toronto, Canada. Published December 9,

2016, Updated April 30, 2019. <u>https://www.ontario.ca/page/ontarios-ambient-air-quality-criteria-sorted-contaminant-name</u>

- MOE. 2011a. Rationale for the Development of Soil and Ground Water Standards for Use at Contaminated Site in Ontario. Standards Development Branch. Minister of the Environment. Toronto, Canada.
- MOE 2011b. Ontario Air Standards for Uranium and Uranium Compounds. Standards Development Branch. Minister of the Environment, Toronto, Canada.
- MOEE. 1994. Water Management. Policies, Guidelines, Provincial Water Quality Objectives, PIBS 3303e Ministry of Environment and Energy. Toronto, Canada.
- Moore, W., D. Hysell, L. Hall, K. Campbell, and J. Stara, 1975. Preliminary studies on the toxicity and metabolism of palladium and platinum. Environ Health Perspect, 10: 63-71.
- Nordberg, G.F., B.A. Fowler, and M. Nordberg. 2014. Handbook on the Toxicology of Metals. Fourth Edition. Academic Press. Cambridge, USA.
- Osterauer, R., N. Haus, B. Sures and H.-R. Köhler. 2009. Uptake of platinum by zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis) and resulting effects on early embryogenesis. Chemosphere 77: 975–982.
- Osterauer, R., H.-R. Köhler and R. Triebskorn. 2010a. Histopathological alterations and induction of hsp70 in ramshorn snail (Marisa cornuarietis) and zebrafish (Danio rerio) embryos after exposure to PtCl2. Aquatic Toxicology 99: 100–107.
- Osterauer, R., L. Marschner, O. Betz, M. Gerberding, B. Sawasdee, P. Cloetens, N. Haus and B. Sures. 2010b. Turning snails into slugs: induced body plan changes and formation of an internal shell. Evolution & amp; Development / Volume 12, Issue 5.
- Osterauer, R., C. Faßbender, T. Braunbeck and H.-R. Köhler. 2011. Genotoxicity of platinum in embryos of zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis). Science of the Total Environment 409 (2011) 2114–2119.
- Voua Otomo, P. Wepener and M.S. Maboeta, 2014. Single and mixture toxicity of gold nanoparticles and gold(III) to Enchytraeus buchholzi (Oligochaeta). Applied Soil Ecology, 84: 231-234.
- RIVM. 2000. Circulaire streefwaarden en interventiewaarden bodemsanering. Stcr. 2000, nr. 39 DBO 2000022567. Netherlands National Institute for Publiv Health and the Environment. http://www.esdat.net/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Envir onmental%20Standards.pdf
- Robinson, M.G., Brown, L.N., and Hall, B.D. 1997. Effect of gold(III) on the fouling diatom Amphora coffeaeformis: uptake, toxicity and interactions with copper. Biofouling, 11: 59-79.
- Ropp, R.C. 2013. Encyclopedia of the Alkaline Earth Compounds, Chapter 3 Group 16 (O, S, Se, Te) Alkaline Earth Compounds, Pages 105-197.

- Roshchin, A.V., Veselov, V.G. and Panova, A.I., 1984. Industrial toxicology of metals of the platinum group. J. Hyg. Epidemiol. Microbiol. Immunol., 28: 17-24.
- Sample, B.E., D.M. Opresko, G.W. Suter II 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. ES/ER/TM-86/R3. Prepared for the US Department of Energy. Oak Ridge, USA.
- Schertzinger, G., S. Zimmerman, D. Grabner and B. Sures. 2017. Assessment of sublethal endpoints after chronic exposure of the nematode *Caenorhabditis elegans* to palladium, platinum and rhodium. Environmental Pollution, 230: 31-39.
- Speranza, A., K. Leopold, M. Maier, A.R. Taddei, and V. Scoccianti, 2010. Pd-Nanoparticles Cause Increased Toxicity to Kiwifruit Pollen Compared to Soluble Pd(II). Environ. Pollut., 158(3): 873-882.
- SRNL. 2005. Ecological Screening Values for Surface Water, Sediment, and Soil: 2005 Update. Savannah River National Laboratory. Aiken, USA. http://sti.srs.gov/fulltext/2004/tr2004227.pdf
- Stokes, P.M. 1981. Multiple Metal Tolerance in Copper Tolerant Green Algae. J. Plant Nutr.3 (1-4):, 3: 667-678.
- TCEQ. 2014. Conducting Ecological Risk Assessments at Remediation Sites in Texas. Revised Draft January. https://www.tceq.texas.gov/assets/public/remediation/trrp/rg263-draft.pdf
- TCEQ. 2016. Effects Screening Levels Used in the Review of Air Permitting Data, November. https://www.tceq.texas.gov/toxicology/esl/list_main.html/
- UK Environment Agency. 2011. Surface Water. UK Environmental Agency. UK. http://evidence.environment-agency.gov.uk/ChemicalStandards/home.aspx,
- U.S. EPA. 2016. Regional Screening Level (RSL) Summary Table. US EPA> <u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016</u>. USA.
- Vannini, C., G. Domingo, M. Marsoni, A. Fumagalli, R. Terzaghi, M. Labrac, F. De Mattiac, E. Onellid and M. Bracale. 2011. Physiological and molecular effects associated with palladium treatment in Pseudokirchneriella subcapitata. Aquatic Toxicology 102: 104–113.
- Veltz, I., F. Arsac, S. Biagianti-Risbourg, F. Habets, H. Lechenault, G. Vernet. 1996. Effects of Platinum (Pt 4+) on Lumbriculus variegatus Miiller (Annelida, Oligochaetae): Acute Toxicity and Bioaccumulation. Arch. Environ. Contain. Toxicol. 31, 63-67.
- WHO. 1991. Environmental Health Criteria 125: Platinum. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. Geneva, Switzerland.
- WHO. 2002. Environmental Health Criteria 226: Palladium. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour

Organization and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. Geneva, Switzerland.

- WHO. 2010. Bromide in drinking water. Background document for the development of WHO guidelines for drinking water quality. WHO/HSE/WSH/09.01/6.
- Williams, M.W., J.D. Hoeschele, J.E. Turner, K.B. Jacobson, N.T. Christie, C.L. Paton, L.H. Smith, H.R. Witschi, and E.H. Lee, 1982. Chemical softness and acute metal toxicity in mice and Drosophila. Toxicol Appl Pharmacol, 63: 461-469.
- Yutaka, K., S-K. Yohko, D. Hiroshi, 1988. The effect of intraperitoneally administered gold thioglucose on growth, food consumption and accumulation of gold in various organs of the chicken (Gallus domesticus). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 90(2): 461-464.
- Zimmermann,S., C. Wolff, B. Sures, 2017. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, 224: 368-376.

ACRONYMS

AQG	Air Quality Guideline
BCF	Soil-to-Plant Bioconcentration Factor
BF	Bioavailability Factor
BW	Body Weight
CCME	Canadian Council of Ministers of the Environment
DTED	Daily Threshold Effects Dose
ECx	Effects Concentration – x %
ECCC	Environment and Climate Change Canada
ECHA	European Chemicals Agency
ECL	Effects Concentration – Low
EDI	Estimated Daily Intake
ESL	Effects Screening Level
FCSAP	Federal Contaminated Sites Action Plan
FIR	Food Ingestion Rate
GQG	Groundwater Quality Guideline
HSDB	Hazardous Substances Data Bank
IAEA	International Atomic Energy Agency
IARC	
ICx	International Agency for Research on Cancer Inhibition Concentration – x %
IRIS	
ITER	Integrated Risk Information System
	International Toxicity Estimates for Risk
Kd	Sediment/Water Partitioning Coefficient Lethal Concentration – x %
LCx	Lowest Observable Adverse Effects Concentration
LOAEC	
LOEC	Lowest Observable Effects Concentration
MATC	Maximum Acceptable Toxicant Concentration
MOE	Ontario Ministry of the Environment
MOECC	Ontario Ministry of the Environment and Climate Change
NC	Not Calculated
ND	No Data
NIOSH	National Institute for Occupational Safety and Health
NOAEC	No Observable Adverse Effects Concentration
NOEC	No Observable Effects Concentration
NSTP	National Status and Trends Program
NWMO	Nuclear Waste Management Organization
OSHA	Occupational Safety and Health Administration
PGE	Platinum Group Elements
PNEC	Probable No Effects Concentration
RIVM	Dutch Ministry of the Environment
SedQG	Sediment Quality Guideline
SIR	Soil Ingestion Rate
SQG	Soil Quality Guideline
SQGE	Soil Quality Guideline for Environment
SQG _{FL}	Soil Quality Guideline for Freshwater Life
SQGHH	Soil Quality Guideline for Human Health
SQGI	Soil Quality Guideline for Soil and Food Ingestion
SQGIF	Soil Quality Guideline for Agricultural Irrigation Uses
SQG _{LW}	Soil Quality Guideline for Agricultural Livestock Watering

SQG _{NEC}	Soil Quality Guideline for Nutrient and Energy Cycling
SQG _{OM-E}	Soil Quality Guideline for Offsite Migration
SQG _{SC}	Soil Quality Guideline for Soil Contact
SQG _{1C}	Soil Quality Guideline for Primary Consumers
SQG _{2C}	Soil Quality Guideline for Secondary Consumers
SQG _{3C}	Soil Quality Guideline for Tertiary Consumers
SRNL	Savannah River National Laboratory
SSD	Species Sensitivity Distribution
SST	Spiked-Sediment Toxicity Test
TCEQ	Texas Commission on Environmental Quality
TEC	Threshold Effects Concentration
U.S. EPA	United States Environmental Protection Agency
WHO	World Health Organization
WQG	Water Quality Guideline

APPENDIX A.1: AQUATIC TOXICITY STUDY EVALUATION FORMS

Score: 3

 Bengtsson, B.E., and M. Tarkpea, 1983. The Acute Aquatic Toxicity of Some Substances

 Ref:
 Carried by Ships. Mar. Pollut. Bull, 14(6): 213-214.

	Medium: Substance CAS RN:	Saltwater Osmium tetroxide			Unacceptable very little information provided and statistical test failed for osmium, units assumed based on AQUIRE, no measured data
Purity/formulated product:		NR Test Organisms: Nitocra spinipes			
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	0	No information provided	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	0	Details on testing procedures have been published previously by Linden et al. (1979), from which some data are included in the present report, for the sake of completeness.	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	0	No information provided	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	0	No information provided	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	Acute (96-hr)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	0	No information provided	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0		EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC _x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	LC50 with 95% confidence limits	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	0	No information provided	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	3		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: KJW Evaluation Date: 10/03/2017

Other notes:

Biesinger,K.E., and G.M. Christensen, 1972. Effects of Various Metals on Survival, Growth, Reproduction and Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700.

	Substance CAS RN:	Freshwater Gold Platinum	Au (III) Pt(IV)	Justification:	Acceptable (secondary) Old study but robust methodology; nominal concentrations
	Purity/formulated product:	Reagant grac			Daphnia magna (water flea)
Criterion 1	Description Test completed under conditions of high bioavailability	Points 2	Score 2	Comment considered physicochemical properties and solubility	Guidance Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2		Standard test method not cited, but detailed design provided, 5 to 12 concentrations tested	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	assume nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	Control measures applied, results not reported	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	2	3-week (chronic)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	reagent grade used	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	2		EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2		ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	from laboratory clone	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	15		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 05/04/2017

Other notes:

Borgmann,U., Y. Couillard, P. Doyle, and D.G. Dixon, 2005. Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652. Medium: Fresh water Substance CAS RN: Bismuth 7440699 Cold 2000 Fresh water Bismuth Gold Indium Iridium

er	
	7440699
	7440575
	7440746
	7439885
	7440042
	7440053
	7440064
	7440166
ı	7440188
	13494809
	7440337
ative (varies); used l	ab standards,

Score: 13 Acceptability: Acceptable (secondary) Justification: Modified tox test, control measures considered, measured concentrations however, LC50 endpoints

		Iridium Osmium Palladium Platinum Rhodium Ruthenium Tellurium Tungsten in preservative (v	7439885 7440042 7440053 7440054 7440166 7440188 13494809 7440337 aries); used lab standards,		
[Purity/formulated product:	purity not reporte	ed	Test Organisms:	
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	1	Relatively large test volumes were used in order to reduce the surface area:volume ratio and decrease potential adsorption, and also to reduce pipetting variability from handling small volumes of stock solutions.	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	Modified classic toxicity test in order to test a large number of substances	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	2	Measured and nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	Only data from experiments with <=80% control survival were used.	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	1-week; considered by authors to be acute since insufficient for measuring reproduction effects	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Used lab standards in specified preservatives; used acid controls as necessary	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0	LC50s reported only	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	Trimmed Spearman-Karber method [9]. In cases where the confidence limits could not be computed reliably (e.g., if there were no partial effect concentrations), the concentrations tested on either side of the LC50 are listed; justification provided	ANOVA or other statistical test based on $P=0.05$ (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	in Borgmann et al.; for laboratory purposes 30	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	13		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: KJW uation Date: 22/02/2017 Evaluation Date:

Other notes:

Ref:

Ref:	Buhl,K.J., and S.J. Hamilton, 1991. Relative Sensiti Coho Salmon, and Rainbow Trout to Nine Inorgan			Score:	12
	Medium:	Freshwater		Acceptability	Acceptable (secondary)
	Substance CAS RN:	Gold		Justification	Std tox test, control measures considered, however nominal concentrations and LCS0 endpoints Arctic graying (Thymaflus arcticus), coho salmon (Oncorhynchus kisutch), and
	Purity/formulated product:		, Hydrochloride		rainbow trout (0. mykiss)
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	0	Not mentioned	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	2	Static acute toxicity tests were conducted in reconstituted soft water prepared as recommended by the American Society for Testing and Materials (ASTM, 1988). Static test procedures used in this study closely followed those outlined by ASTM (1988).	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal concentrations given here were expressed as the total inorganic toxicant added as determined from the certificate of analysis for each compound.	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	There was no mortality in the control treatments from the tests.	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	Acute (96 hr)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Yes	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0	LC50s	$EC_{10'}EC_{20}$ reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2		ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	Clear, Alaska, in 1985 and as eyed eggs from	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	12		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 10/03/2017

De Jong,LE.D., 1965. Tolerance of Chlorella vulgaris for Metallic and Non-Metallic Ions. Antonie van Leeuwenhoek (Gedrukt), 31: 301-313. Medium: Freshwater Ref:

Score: 12 Acceptability: Acceptable (secondary) Based on comments of authors to consider results as preliminary due to replication Justification: Issues

	Substance CAS RN:	Indium	InCl3	Justification:	Based on comments of authors to consider results as preliminary due to replication issues
	Purity/formulated product:	analytical gra	ade	Test Organisms:	Chlorella vulgaris (green algae)
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	2	Complications associated with use of metal salts and basal medium; study regarded as limited scope and exploration to further future work; additional consideration of using highest solubility salts	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	23 exposure concentrations (plus control) tested	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	Controls used but not reported	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	2	Chronic (3-month)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Medium and % concentrations tested	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	1		EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	0	No details on statistics presented	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	From the Laboratory of Microbiology, Technological University, Delft	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	12		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 05/04/2017

Farago,M.E., and P.J. Parsons, 1994. The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec. Bioavail, 6(1): 43070. Medium: Freshwater Substance CAS RN: Platinum Ref:

Rhodium NR

dium:		
stance CAS RN:		

Purity/formulated product:

Ruthenium ammonium compound not considered Iridium Osmium	Iridium	ammonium compound not considered
---	---------	----------------------------------

Justification:	6 Acceptable (secondary) inferred endpoints based on narrative description LOEC - first concentration with observed effect NOEC - next lowest concentration without observed effect
Test Organisms:	Eichhornia crassipes (water hyacinth)
omment	Guidance

1

Criterion	Description	Points	Score	Comment	Guidance
	Test completed under conditions of high bioavailability	2	0	Not mentioned	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	Growth and uptake experiments (numbers 5-10, 12-14 and 18) were carried out as described previously (Farago and Parsons, 1985, 1986). Score based on 4 exposure concentrations plus control.	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl.
3	Concentration of substance reported	2	1	Nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	Control plants were grown at the same time in half-strength nutrient solution only.	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	14-d exposure (not defined)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	Nutrient solution, but no other information provided	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0	No endpoints reported, inferred	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
	Statistical tests used to calculate the benchmark and levels of significance were described	2	0	No endpoints reported, inferred	ANOVA or other statistical test based on $P=0.05$ (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	1	Insufficient information	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	6		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 10/03/2017

	Medium:	Freshwater
Ref:	Reaction to Toxic Concentrations of Inorganic Io	ons. Malacologia, 1(2): 283-289.
	Harry, H.W., and D.V. Aldrich, 1963. The Distress	s Syndrome in Taphius glabratus (Say) as a

Purity/formulated product: Description Criterion Points Comment Guidance Score Test completed under conditions of high 2 Bioavailability and consideration of other toxicity modifying factors ioavailability Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl Experimental design documented and appropriate 2 control), or replicate test (1) Measured concentration reported (2), toxicity values based on nominal concentrations (1), al Concentration of substance reported 2 other (0) Standardized procedure and negative control values within guidelines (2), controls not reported 2 ontrol measures applied or ambiguous (1), control results not within acceptable range (>20% mortality) (0) Chronic or life cycle test was used 2 Chronic or life cycle test (2), acute (1), very short term exposure (0) 2 Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0) Chemical dosing procedure reported and appropriate EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3 but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC of A dose-response relationship reported or can be estimated from reported data 2 OEC reported (0) ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0) Statistical tests used to calculate the benchmark and levels of significance were described 2 ource and condition of test organisms known and described and from commercial, nor Drigin of the test organisms described 2 contaminated source (2), organisms obtained from non-commercial source not adequat lescribed, or insufficient information (1), organisms from known contaminated site (0) Total Sci 18 0

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: KJW Evaluation Date: 14/03/2017

Other notes:

Score: Not scored as could not locate paper Acceptability: Secondary (assumed) Justification: From AQUIRE, not able to locate paper, assume secondary

Test Organisms: Biomphalaria glabrata (snail)

Substance CAS RN:

Gold

Score: 8 Acceptability: Unacceptable Justification: No standard method; no endpoint; no measured data

Jones, J.R.E., 1939. The Relation Between the Electrolytic Solution Pressures of the

 Jones, J.R.C., 1939. In the Relation between the Electropytic Solution Pressures of the Metals and Their Toxicity to the Stickleback (Gasterosteus aculeatus L.). J. Exp. Biol., 16(4): 425-437.

 Medium:
 Freshwater

 Substance CAS RN:
 Gold

 HAUCI4
 Ref:

h	Purity/formulated product:			Test Organisms: Gasterosteus aculeatus (stickleback)		
Criterion	Description	Points	Score	Comment	Guidance	
1	Test completed under conditions of high bioavailability	2	2	Considered decomposition of gold salts in light and also stability of the compound	Bioavailability and consideration of other toxicity modifying factors	
2	Experimental design documented and appropriate	2	1	Experimental design based on previous studies (old study, no standard method menthioned)	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)	
3	Concentration of substance reported	2	0	Assume nominal, but lowest concentration tested produced toxic effects, so score 0	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)	
4	Control measures applied	2	1	Considered control survival	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)	
5	Chronic or life cycle test was used	2	2	10-d, does not satisfy CCME criteria for chronic, but based on control survival so consider chronic		
6	Chemical dosing procedure reported and appropriate	2	1	brief description of solution preparation provided	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)	
7	A dose-response relationship reported or can be estimated from reported data	2	0	LC100 inferred, lowest concentration tested resulted in toxic effects	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC _x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)	
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	0	no mention of statistical calculations	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)	
9	Origin of the test organisms described	2	1	no description provided	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)	
	Total Score	18	8			

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KIW Evaluation Date: 05/04/2017

Score: 7

Jones, J.R.E., 1940. A Further Study of the Relation Between Toxicity and Solution Pressure, Ref: with Polycelis nigra as Test Animal. J. Exp. Biol., 17: 408-415.

Ref:	with Polycelis nigra as Test Animal. J. Exp. Biol., 1			Score:	
	Medium:	Freshwater			: Acceptable (secondary)
	Substance CAS RN:	Gold	HAuCl4		No standard method; nominal conc; not many details provided
	Purity/formulated product:	analytical grade	reagent	Test Organisms:	: Polycelis nigra (worm)
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	1	Unstable salt solutions were renewed	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	Old study, so no standard methods presented, however two series of tests were completed - the first for 4 - 5 widely spaced concentrations and then the second based on a narrower concentration range with 10-15 concentrations	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	assume nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	no mention of controls other than in discussion of determining the threshold of toxicity	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	48-hr (acute)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	Reagant grade and brief description of solution preparation provided	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0	only a NOEC reported	EC_{10} , EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_{qv} difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	0	no details on statistical calculations provided	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	1	insufficient information	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	7		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: KJW Evaluation Date: 05/04/2017

Score: 14 Acceptability: Acceptable (secondary)

	Medium:	Freshwater		Acceptability:	Acceptable (secondary)
	Substance CAS RN:	Osmium oxi	loride (PtCl2)	Justification:	Standard method, control considerations; however, acute study, nominal concentrations and EC50 immobilization endpoint
	Purity/formulated product:		ent grade in quality	Test Organisms:	Tubifex tubifex (Muller), tubicifid worm
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	1	Consideration of solubility	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	2	Test concentrations were selected on a logarithmic scale as outlined in standard ethods (APHA et al. 1981)	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), al other (0)
4	Control measures applied	2	2		Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	Acute	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Stock solutions were prepared in distilled water	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	1	EC50	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3s but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	EC50 (effective concentration at which 50% immobilization response was recorded) values and 95% confidence limits were calculated by the moving average angle method (Harris 1959).	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level no provided or $P > 0.05$ if EC data precented but no 05% CI properties or 00% CI wood (1), no
9	Origin of the test organisms described	2	2	Tubificid worms, Tubifex tubifex, were collected from Gheru Campus of ITRC, Lucknow, from natural sources and acclimatized to laboratory conditions for 7 days prior to experiments. Toxicity research centre - assume non- contaminated	
	Total Scor	18	14		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: KJW Evaluation Date: 10/03/2017

Khangarot, B.S., and S. Das, 2009. Acute Toxicity of Metals and Reference Toxicants to a Freshwater Ostracod, Cypris subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models. J. Hazard. Mater., 172: 641-649. Medium: Freshwater

Substance CAS RN:	Bismuth	10361441
	Osmium	20816120
	Palladium	158898954
	Platinum	10025657
	Tungsten	13472452

Score: 12 Acceptability: Acceptable (secondary) Although test method not reported, thorough study design; however, acute study Justification: and EC50 for immobilization.

	Purity/formulated product:	Osmium oxic Platinum chle	ate, BI(NO3)3*5H2O; le; Palladium chloride; oride (PtCl2); Sodium NA2WO4*2H2O; 98% pure	Test Organisms:	Cypris subglobosa (crustacean)
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	1	Consideration of physicochemical properties and metal ion toxicity	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	I	Ostracods were exposed for 48 h to logarithmic series of concentrations (7–10) of metals and reference toxicants. Ten ostracods (C. subglobosa) were exposed to each test concentration in 20 ml glass petri dishes, and each concentration was tested in replicates of three. However, no methods/protocols cited.	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	A stock solution from each metal salt was prepared in double glass-distilled water. Serial dilutions were prepared from the respective stocks to the desired range; so all the concentrations referred in this paper are nominal.	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	In control tests, ostracods remain active throughout the test period.	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20%) (0)
5	Chronic or life cycle test was used	2	1	24-hr and 48-hr (acute)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	All the tested metallic salts were reagent grade (>98-99.9% purity) in quality and purchased from Sigma–Aldrich, BDH, SRL (India), and E. Merck (India); mixed with distilled water	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0	EC50 reported only	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	EC data presented with 95% CI	ANOVA or other statistical test based on $P=0.05$ (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	from fish ponds situated at Gheru Campus of	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	12		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Gui e for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: KJW Evaluation Date: 17/02/2017

Other notes:

Ref:

Score: 8

Ref:

Robinson, M.G., Brown, L.N., Hall, B.D., 1997. Effect of gold(III) on the fouling diatom Amphora coffeaeformis: uptake, toxicity and interactions with copper. Biofouling, 11: 59-79. Culture medium

	Medium:	(saltwater)		Acceptability:	Acceptable (secondary)
	Substance CAS RN:	(AuCl-4)		Justification:	nominal concentrations, no endpoints
	Purity/formulated product:			Test Organisms:	DIATOM AMPHORA COFFEAEFORMIS
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	1	Concentrated stocks were acidified to prevent complexation losses	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	5 exposures + control	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	Controls used	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	2	20-d exposure (chronic)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	Stocks were freshly prepared for each experiment to avoid losses due to reduction. Gold used in all toxicity and uptake experiments was tetrachloroaurate.	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0	inferred LOEC from results	$EC_{107}EC_{20}$ reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	0	no	ANOVA or other statistical test based on $P=0.05$ (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	1	was reduced to 4 x 1015 quanta cm"2s", and the	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	8		

 Itema Score
 10
 0

 Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

 Evaluation Date:
 13/03/2017

Stokes, P.M., 1981. Multiple Metal Tolerance in Copper Tolerant Green Algae. J. Plant Nutr.3(1-4):, 3: 667-678. Ref:

Ref:	Stokes, P.M., 1981. Multiple Metal Tolerance in (Nutr.3(1-4):, 3: 667-678. Medium: Substance CAS RN:	Copper Tolera Freshwater Gold	int Green Algae. J. Plant		9 Acceptable (secondary) Nominal concentrations, ">" endpoint
	Purity/formulated product:	NR		Test Organisms:	Scenedesmus acutiformis (green algae)
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	0	No information provided	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	replicate test	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	Controls were used, but not reported	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	2	Chronic (6-8 d)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	Some details on culture medium provided, but chemical details lacking	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	1	EC50, reported as ">"	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	0	No information provided	ANOVA or other statistical test based on $P=0.05$ (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	medium as described by Stokes (1975). The	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	9		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 10/03/2017

Zimmermann,S., C. Wolff, B. Sures, 2017. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, in press (Feb 2017)

	Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, in					
Ref:	press (Feb 2017)			Score		
	Medium:	Fresh water			Acceptable (primary)	
	Substance CAS RN:	Platinum (Pt(IV))		Justification:	Test completed under standardized method, measured concentrations,	
		Palladium (Pd(II))			control measures met.	
		Rhodium (Rh(III))				
	Purity/formulated product:	Single metal stand	ard solutions	Test Organisms:	Daphnia magna	
Criterion	Description	Points	Score	Comment	Guidance	
1	Test completed under conditions of high bioavailability	2	1	Oxidation state considered/tested	Bioavailability and consideration of other toxicity modifying factors	
2	Experimental design documented and appropriate	2	2	OECD Guideline 202, with modification for feeding	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)	
3	Concentration of substance reported	2	2	Measured concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)	
4	Control measures applied	2	2	not more than 10% effect in control and reference experiment was in good accordance with the expected range	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)	
5	Chronic or life cycle test was used	2	1	24-hr and 48-hr duration endpoints (acute)	Chronic or life cycle test (2), acute (1), very short term exposure (0)	
6	Chemical dosing procedure reported and appropriate	2	2	Test solutions prepared using OECD Guideline 202 and DIN EN ISO6341	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)	
7	A dose-response relationship reported or can be estimated from reported data	2	1	EC50 (immobility) and LC50 reported	$EC_{107}EC_{20}$ reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but <pre>c 10x (1), no reported EC_x, difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)</pre>	
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	Hill slope and 95% CI reported	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)	
9	Origin of the test organisms described	2	2	Test organisms from DaphToxKit (Laboratory for Environmental Toxicology and Aquatic Ecology)	Source and condition of test organisms known and described and from commercial, non contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)	
	- Total Score	18	15			

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 05/04/2017

Mello-Andrade F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PR, Lima AP, Oliveira R, Ferraz IBM, Grisolia

CK, Almeida MAP, Batista AA, Silveira-Lacerda EP. 2018. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos.Biomedicine

 Ref:
 & Pharmacotherapy 107 (2018) 1082–1092.

 Medium:
 Fresh water

[Ru(L-Met)(dppb)(bipy)]PF(

Substance CAS RN:

Score: 14 Acceptability: Acceptable (secondary) Justification: Test completed under standardized method, Nominal concentrations, control measures met. Test Organisms: Zebrafish eggs

	Purity/formulated product:	Single metal	standard	Test Organisms:	Zebrafish eggs
Criteri on	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	1	Yeilds considered, discussion if complexes are stable in medium	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	2	OECD Guidelines specified	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	positive and negative controls used	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	24-hr and 48-hr duration endpoints (acute)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Test solutions prepared using OECD Guideline	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	1	LD50/LC50 reported	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	ANOVA followed by the Tukey test. Statistical significance was considered at $p < 0.05$. Data were expressed as means and Standard Error of Means (SEM) or SD. All statistical analyses were performed using the statistical software GraphPad Prism, version 5 for Windows	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	The zebrafish eggs and adults used in this study were obtained from the ZebTech - Tecniplast (Varese, Italy) facility at the Laboratory of Toxicological Genetics, Department of Genetics and Morphology, University of Brasília (Brazil)	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	14		

Note:

Evaluator: NT

Evaluation Date: 26/04/2019

77

Ferreira and Wolke. 1979. Acute Toxicity of Platinum	

Ref:	to Coho Salmon (Oncorhynchus Bulletin, Vol. 10, pp. 79-83	5
	Medium: Substance CAS RN:	Fresh water PtCl42HCI: 6 H20
	Substance Chip Kitt	1 (01+21101, 0 1120

Score: 13 Acceptability: Acceptable (secondary) Justification: Test completed under standardized method, Nominal concentrations, control measures met. Test Organisms: Coho salmon fry

	Purity/formulated product:	Static renewa	l water acute	Test Organisms:	Coho salmon fry
Criteri on	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	2	DO, pH, and hardness considered	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	2	Bioassay procedures used for determining LC50 values were those recommended by APHA Standard Methods (1971); 7 exposure concentrations including a control	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	One control included	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	24-hr, 48-hr, 96-hr duration endpoints (acute, according to CCME)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	Form of solution stated (PtCi42HCI'6 H20)	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	1	LC0/LC50/LC100 reported	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	An analysis of variance ANOVA and mean separation test ($p = 0.05$)	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	reared at the University of Rhode Island	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	13		

Note:

Evaluator: NT **Evaluation Date:** 01/05/2019

I. Veltz ~, F. Arsac 2, S. Biagianti-Risbourg j, F. Habets ~-,
H. Lechenault 1, G. Vernet I. 1996. Effects of Platinum (Pt 4+) on Lumbriculus variegatus Miiller (Annelida,
Oligochaetae): Acute Toxicity and Bioaccumulation. Arch.

H2PtCI6, 4.5H20.

Ref:Oligochaetae): Acute Toxicity and Bioaccumulation. ARef:Environ. Contain. Toxicol. 31, 63-67 (1996)Medium:Fresh water

Substance CAS RN:

Score: 12 Acceptability: Acceptable (secondary) Justification: Test completed under standardized method, Nominal concentrations, control measures met. Test Organisms: Lumbriculus variegatus

	Purity/formulated product:	Static-exposu	re lethality	Test Organisms:	control measures met. Lumbriculus variegatus
Criteri on	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	2	DO, pH, and hardness considered, different water types tested	Bioavailability and consideration of other toxicity modifying factors
	Experimental design documented and appropriate	2	1	Standard protocol not used but conditions well described. 6 concs +control	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	One control included	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	1	24-hr, 48-hr, 72-hr, 96-hr duration endpoints (acute, according to CCME) can be inferred from graph but 96-hr reported.	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Pt 4+ stock solutions (20 _+ 0.01 rag/L, Sigma lot n ° 92H3525)	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	1	LC50 reported	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	1	96h LC50 were calculated, using the probit method, statstical methods used to calculate significance but not specified.	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
4	Origin of the test organisms described	2	2	L. var. (4.5-5.5cm long) were collected from an outdoor controlled mesocosm of the laboratory and acclimatized to laboratory conditions for 7 days. Test conditions specified.	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	12		

Note:

Evaluator: NT Evaluation Date: 01/05/2019

79

Raphaela Osterauer, Nadine Haus, Bernd Sures, Heinz-R. Köhler.
2009. Uptake of platinum by zebrafish (Danio rerio) and ramshorn
snail (Marisa cornuarietis) and resulting effects on early
embryogenesis. Chemosphere 77 (2009) 975–982

Freshwater

PtCL2

Platinum

Ref:

Medium:

Substance CAS RN:

Score: 12Acceptability:UnacceptableJustification:Endpoint not useable
zebratish (Danio rerio) and ramshorn snallTest Organisms:(Marisa cornuarietis)

	Purity/formulated product:			Test Organisms: (Marisa cornuarietis)				
Criterion	Description	Points	Score	Comment	Guidance			
1	Test completed under conditions of high bioavailability	2	0	Not discussed	Bioavailability and consideration of other toxicity modifying factors			
2	Experimental design documented and appropriate	2	2	Experimental design based on previous studies (Sures and Zimmermann, 2007). For fish, OECD Guideline 203, Annex 2 guideline used. 5 concs used and replicate tests	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl control), or replicate test (1)			
3	Concentration of substance reported	2	2	Measured, Aqueous concentrations of platinum as determined by inductively coupled plasma mass spectrometry and adsorptive cathodic stripping voltammetry in the exposure media used for tests with Danio rerio and Marisa ornuarietis. Data show means ± standard deviation of three aliquots.	Measured concentration reported (2), toxicity values based on nominal concentrations (1), a other (0)			
4	Control measures applied	2	1	Considered controls	Standardized procedure and negative control values within guidelines (2), controls not reporte or ambiguous (1), control results not within acceptable range (>20% mortality) (0)			
5	Chronic or life cycle test was used	2	2	The exposure period was 96 h for D. rerio. As embryonic development in M. cornuarietis is slower, snail eggs were exposed for 14 d.	Chronic or life cycle test (2), acute (1), very short term exposure (0)			
6	Chemical dosing procedure reported and appropriate	2	1	brief description of solution preparation provided, (platinum standard solution 1000 g/mL, Ultra Scientific, Wesel, Germany).	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)			
7	A dose-response relationship reported or can be estimated from reported data	2	0	bioaccumulation rate reported. Environmentally relevant concentrations are reported which maybe be helpful for context	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3 but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC of LOEC reported (0)			
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	multiple comparison Tukey-Kramer	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level no provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), n details on statistical calculations provided (0)			
9	Origin of the test organisms described	2	2	Test animals used in this study were D. rerio and M. cornuarietis. A zebrafish breeding stock (D. rerio, strain: WIK, ZFIN ID: ZDBGENO- 010531-2) was originally obtained from the Max-Planck- Institute for Developmental Biology, Tübingen, Germany (C. Nüsslein-Volhard group) and a breeding stock of ramshorn snail (M. cornuarietis) derived from Frankfurt/Main University, Germany (J. Oehlmann group).	Source and condition of test organisms known and described and from commercial, no contaminated source (2), organisms obtained from non-commercial source not adequatel described, or insufficient information (1), organisms from known contaminated site (0)			
	Total Score	18	12					

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT

Evaluation Date: 13/05/2019

Raphaela Osterauera, Heinz-R. Köhlera, R	Rita Triebskorn. 2010a.
Histopathological alterations and induction	of hsp70 in ramshorn
snail (Marisa cornuarietis) and zebrafish (l	Danio rerio) embryos
after exposure to PtCl2. Aquatic Toxicolog	gy 99 (2010) 100–107
Medium: Fresh	water

Platinum PtCL2

Ref:

Substance CAS RN:

Score: 11 Acceptability: Unacceptable Justification: Endpoint not useable zebratish (Danio rerio) and ramshorn snail Test Organisms: (Marisa cornuarietis)

	Purity/formulated product:	1000 ug/mL		Test Organisms:	zebratish (Danio rerio) and ramshorn snall (Marisa cornuarietis)		
Criterion	Description	Points	Score	Comment	Guidance		
1	Test completed under conditions of high bioavailability	2	0	Not discussed	Bioavailability and consideration of other toxicity modifying factors		
2	Experimental design documented and appropriate	2	1	eggs of fish (n = 4 replicates of 40 eggs each) or snails (n = 4 replicates of 20 eggs each),	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)		
3	Concentration of substance reported	2	1	Nominal.	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)		
4	Control measures applied	2	1	Considered controls	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)		
5	Chronic or life cycle test was used	2	2	The exposure period was 7 days for D. rerio. As embryonic development of M. cornuarietis is much slower than that of D. rerio, snail eggs were exposed for 26 days. D	Chronic or life cycle test (2), acute (1), very short term exposure (0)		
6	Chemical dosing procedure reported and appropriate	2	2	platinum standard solution 1000 g/mL, Ultra Scientific, Wesel, Germany	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)		
7	A dose-response relationship reported or can be estimated from reported data	2	0	Histopathological responses not applicable	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)		
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	normal distribution were tested using	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)		
9	Origin of the test organisms described	2		Germany (C. Nüsslein-Volhard group),			
	Total Score	18	11				

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT

Evaluation Date: 13/05/2019

Raphaela Osterauer, Leonie Marschner, Oliver Betz, Matthias Gerberding, Banthita Sawasdee, Peter Cloetens, Nadine Haus, Bernd Sures et al. 2010b. Turning snails into slugs: induced body plan changes and formation of an internal shell. Evolution & amp;

Ref:

Freshwater Substance CAS RN: Platinum PtCL2; PtCl, C

Score: 13 Acceptability: Unacceptable

Development / Volume 12, Issue 5 Medium:

Justification: Endpoint not useable treshwater snalls M. cornuarietis (Ampullariidae, prosobranch gastropod) and P. Test Organisms. corneus (Planorbidae, pulmonate).

	Purity/formulated product:	1000 ug/mL		Test Organisms: corneus (Planorbidae, pulmonate).					
Criterion	Description	Points	Score	Comment	Guidance				
1	Test completed under conditions of high bioavailability	2	1	Consideration given to the formulation and ions	Bioavailability and consideration of other toxicity modifying factors				
2	Experimental design documented and appropriate	2	1	The described effects occurred independently of using either tap/aquaria water or reconstituted water after the OECD Test Guideline 203 (1992)	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incontrol), or replicate test (1)				
3	Concentration of substance reported	2	2	Measured. Pt in the organisms was measured with adsorptive cathodic stripping voltammetry (ACSV) after digestion via high-pressure ashing according to Zimmermann et al. (2001, 2003) or with electrothermal atomic spectrometry (ET-AAS) after microwave-assisted digestion according to Sures et al. (1995)	Measured concentration reported (2), toxicity values based on nominal concentrations (1), a other (0)				
4	Control measures applied	2	1	Considered controls	Standardized procedure and negative control values within guidelines (2), controls not report or ambiguous (1), control results not within acceptable range (>20% mortality) (0)				
5	Chronic or life cycle test was used	2	2	Chronic exposure	Chronic or life cycle test (2), acute (1), very short term exposure (0)				
6	Chemical dosing procedure reported and appropriate	2	2	PtCl (Ultra Scienti □ c, Wesel, Germany), PdCl (Sigma Aldrich, München, Germany), LiCl (≥99%, Fluka, Buchs, Switzerland), and, in combination with PtCl, CaCl (Merck, Darmstadt, Germany)	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)				
7	A dose-response relationship reported or can be estimated from reported data	2	0	No endpoint not applicable	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 2 but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC LOEC reported (0)				
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	not corresponding to normal	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level no provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), n details on statistical calculations provided (0)				

				differences between the respective treatment groups and the control group. The alpha level was set at 0.05.	
)			corneus was gathered in a pond near Tübingen P corneus were kept in 30 l	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)	
Total Score		18	13		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT

Evaluation Date: 13/05/2019

Raphaela Osterauer a, Christopher Faßbender, Thomas Braunbeck b, Heinz-R. Köhler. 2011. Genotoxicity of platinum in embryos of zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis). Science of the Total Environment 409

(2011) 2114–2119Medium:FreshwaterSubstance CAS RN:PlatinumPtCL2; PtCl, C

Ref:

Score: 13 Acceptability: Unacceptable Justification: Endpoint not useable

	Purity/formulated product:	1000 ug/mL		zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis)	
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	2	Due to known precipitation of Pt during exposure (Sures and Zimmermann, 2007), real concentrations of Pt in the exposure media of identical exposure scenario as in the present study were determined as published by Osterauer et al. (2009, 2010b)	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	2	The described effects occurred independently of using either tap/aquaria water or reconstituted water after the OECD Test Guideline 203 (1992); comet assay according to the protocol of Kosmehl et al. (2006) and at adapting this protocol for testing the genotoxicity of identical PtCl2 concentrations in embryonic stages of the snail M. cornuarietis.	
3	Concentration of substance reported	2	1	Nominal concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1	Considered controls, and medium for controls considered	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)
5	Chronic or life cycle test was used	2	2	Following the procedure by Kosmehl et al. (2006), the exposure period was 96 h for D. rerio. However, M. cornuarietis has a much longer embryonic development. Therefore, the exposure period was 8 d for M. cornuarietis.	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	platinum standard solution of 1000 µg/ml in 2% HCl, Ultra Scientific, Wesel, Germany	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	0	No, endpoint not applicable. Genotoxicity	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	Normal distribution of data was checked with the Shapiro-Wilk test. Since not all data were normally distributed, they were analyzed for significance (ANOVA-on-ranks) using SigmaStat 3.1 software (Systat, Erkath, Germany), followed by a Dunnett post- hoc test (SigmaStat 3.1, Systat, Errath, Germany) to identify significant differences between the groups. Differences were considered to be significant for p \leq 0.05 (*).	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	1	origin of organisms not described but conditions well reported	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	13		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT **Evaluation Date:** 13/05/2019

Candida Vannini, Guido Domingo, Milena Marsoni, Alessandro

Fumagalli, Raffaele Terzaghi,

Ref:

Massimo Labrac, Fabrizio De Mattiac, Elisabetta Onellid, Marcella Bracale. 2011. Physiological and molecular effects associated with palladium treatment in Pseudokirchneriella

subcapitata. Aquatic Toxicology 102 (2011) 104-113 Medium: Freshwater

Score: 12 Acceptability: Unacceptable Justification: Endpoint not useable

	Substance CAS RN:	(99.9%, 1mm	K2PdCl4 n thick, 2.615		Endpoint not useable	
	Purity/formulated product:	g, 24.57 mm		0	Pseudokirchneriella subcapitata	
Criterion	Description	Points	Score	Comment	Guidance	
1	Test completed under conditions of high bioavailability	2	2	Consideration given to the solvent used to dissolved the Pd Foil	Bioavailability and consideration of other toxicity modifying factors	
2	Experimental design documented and appropriate	2	1	Standard method not used, but well outlined, only 3 exposure concs plus controls	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)	
3	Concentration of substance reported	2	2		Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)	
4	Control measures applied	2	1	Controls consisted of untreated cells	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (>20% mortality) (0)	
5	Chronic or life cycle test was used	2	2	72 hours, chronic as per CCME	Chronic or life cycle test (2), acute (1), very short term exposure (0)	
6	Chemical dosing procedure reported and appropriate	2	1	Pd foil dissolved, carrier not provided. Calibration standard solutions were prepared daily from 1000mgl–1 standard solutions of Pd purchased from J. T. Baker Instra-Analyzed.	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)	
7	A dose-response relationship reported or can be estimated from reported data	2	0	endpoint not usable, uptake	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)	
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	1	significant in Student's t-test at a level of 95%, statistical confidence considered	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)	
9	Origin of the test organisms described	2	2	of Algal Cultures, Göttingen, Germany	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)	

				goetungen.de/ntim/sag.ntim/.	
	Total Score	18	12		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT

Evaluation Date: 13/05/2019

APPENDIX A.2: TERRESTRIAL TOXICITY STUDY EVALUATION FORMS

Carneiro, M.L.B., C.A.P. Lopes, A.L. Miranda-Vilela, G.A. Joanitti, I.C.R. da Silva, M.R. Mortari, A.R. de Souza, S.N. Báo, 2015. Acute and subchronic toxicity of the antitumor agent rhodium (II) citrate in Balb/c mice after intraperitoneal administration. Toxicology Reports, 2: 1086-1100. Medium: Substance CAS RN: Rhodium (II) citrate

Ref:

Score: 12 Acceptability: Consulted Justification: Intraperitoneal exposure

a	Purity/formulated product:	NR		Test Organisms:	
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	0	This rhodium compound is known to be less toxic than others.	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	5 concentrations plus control	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2		Acute test: The rhodium (II) citrate (Rh2Cit) solution was injected via intraperitoneal route in mice in a single dose containing 107.5 mg/kg Rh2Cit or proportional doses of it as 80.7 (75%),53.8 (50%), 26.9 (25%) or 13.8 (12.5%), while the control group wasexposed to saline solution (0.9% w/v). Chronic test: The mice were treated with 300 L of solutioncontaining different concentrations of Rh2Cit (80, 60, 40, and 200r 10 mg/kg) or paclitaxel (57.8 mg/kg, equivalent to clinical doseused in humans). The negative control group was injected with thesame volume (300 L) of saline solution (0.9% w/v). The mice ofRh2Cit or saline experimental groups received repeated doses viaintraperitoneal injections every two days, totalizing five injections, and the total maximum accumulated dose of Rh2Cit vas 400 mg/Kg. The mice treated with paclitaxel received only two injections dur- ing all the experimental period (5th and 28th day), totalizing anaccumulated dose of 115.6 mg/kg.	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	Controls used and reported	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2	1	Acute and sub-chronic tests	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Rhodium (II) citrate (Rh2Cit) was prepared and characterized as previously described. Briefly Rh2Cit was synthesized by exchanging triflooroacetate ligands from the precursor rhodium (II)trifluoroacetate with citrate ligands. The compound was obtained as a green aqueous solution with a standardized concentration of 0.054 mol/L.	
7	A dose-response relationship reported or can be estimated from reported data	2	1	LD50	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	Statistical analysis was carried out using the SPSS (StatisticalPackage for the Social Sciences) version 17.0 and Prism version 5.0softwares. Data were expressed as mean ± SEM (standard error ofmean) and values of p < 0.05 were considered statistically signif-icant. Quantitative variables were tested for normal distributionwith the Shapiro-Wilk test. Possible differences among groupswere investigated by performing ANOVA or the Kruskal–Wallis test(data not normally distributed), followed respectively by Bonfer-roni's or Dunn's multiple comparison tests. The Wilcoxon test (datanot normally distributed) was used to verify differences betweeninitial and final body weight inside each group.	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	Science (Cemib) of the State University of	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	12		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: KJW Evaluation Date: 15/03/2017

HOLBROOK, D.J., Jr (1976a) Assessment of toxicity of automotive metallic emissions, Vol. I: Assessment of fuel additives emission toxicity via selected assays of nucleic and protein synthesis, Research Triangle Park, North Carolina, US Environmental Protection Agency, Office of Research and Development, Health Effects Research Laboratories, 67 pp (EPA/600/1-76/010a).

Ref:	(EPA/600/1-76/010a). Medium: oral Substance CAS RN: Platinum Purity/formulated product:			Score: Not scored as from a peer reviewed source (WHO) Acceptability: Selected Justification: From EHC 125, 1991 Test Organisms:			
Criterion	Description	Points	Score	Comment	Guidance		
1	Test completed under conditions of high bioavailability	2		vehicle (DMSO) considered	Bioavailability and consideration of other toxicity modifying factors		
2	Experimental design documented and appropriate	2			Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)		

2	Experimental design documented and appropriate	2		Toxicity); GLP Compliant	concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2		Measured	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2		Control animals used	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2		acute inhalation; dusts	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2		Name of test material (as cited in study report): iodine-Substance type: iodine ACS/USP/BP grade-Physical state: Solid, prill Analytical purity: 99.8%-	Form, carrier, homogeneity information provided (2), no details or cannot
7	A dose-response relationship reported or can be estimated from reported data	2		Only LC50 considered	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2		As this study was conducted as a limit test, no statistical analyses was required. Body weight data was statistically analysed following Student's 't test.	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2		TEST ANIMALS- Source: Animal Breeding Facility, Jai Research Foundation	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non- commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	0		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT

Evaluation Date: 03/03/2017

Other notes:

Score: Not scored as from a peer reviewed source (WHO)

lavicoli, I., V. Leso, L. Fontana, A. Marinaccio, A. Bergamaschi, E.J. Calabrese, 2014. The effects of rhodium on the renal function of female Wistar rats. Chemosphere, 104: 120-125. Medium: Oral

Ref:

Score: 15 Acceptability: Selected Statistical tests completed, well described protocol; measured

Justification:	concs; controls
Test Organisms:	Wistar rats

	Substance CAS RN: Purity/formulated product:	Rhodium NR		Statistical tests completed, well described protocol; measured Justification: concs; controls Test Organisms: Wistar rats		
Criterion	Description	Points	Score	Comment	Guidance	
1	Test completed under conditions of high bioavailability	2	1	Salt Considered	Bioavailability and consideration of other toxicity modifying factors	
2	Experimental design documented and appropriate	2	1	Three replicates; protocol well described but not a standard test procedure	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)	
3	Concentration of substance reported	2	2	Rh administration were: 0 (control group), 0.001, 0.01, 0.1, 0.25, 0.5, and 1 mg L 1, via water ad libitum	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)	
4	Control measures applied	2	2	Controls well outlined, procedure well outlined	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)	
5	Chronic or life cycle test was used	2	1	Sub-acute (14 Days)	Chronic or life cycle test (2), acute (1), very short term exposure (0)	
6	Chemical dosing procedure reported and appropriate	2	2	Rh (III) chloride hydrate (Alfa Aesar GmbH & Co., Karlsruhe, Germany)	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)	
7	A dose-response relationship reported or can be estimated from reported data	2	2	NOEC and LOECs were not explicitly reported but within range	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)	
8	Statistical tests used to calculate the benchmark and levels of significance were described	2		Statistical tests preformed to determine significance, including ANOVA. Firstly, the normal distribution of observed values was checked using the non-parametric Kolmogorov– Smirnov Z test. One-way analysis of variance (ANOVA) was then performed to test the significance of differences in parameter means in the exposed and control rat groups. The Dunnett post hoc multiple comparison test was used to test the significance (p value Dunnett t test <0.05) of differences in values for each parameter at different exposure levels against the control group. Box-plot or linear graphs were obtained for all analyzed parameters at different exposure levels.	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)	
9	Origin of the test organisms described	2	2	Experimental Animal Production Plant of the Catholic University of Sacred Heart (Rome, Italy)	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)	
	Total Score	18	15			

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT Evaluation Date: 03/03/2017

Kabe, I., Omae, K., Nakashima, H., Nomiyama, T., Uemura, T., Hosoda, K., Ishizuka, C., Yamazaki, K. & Sakurai, H., 1996. In vitro solubility and in vivo toxicity of indium phosphide. J. occup. Health, 38: 6–12.

Oral

Medium:

Ref:

Score: 13 Acceptability: Selected

	Substance CAS RN: Purity/formulated produc	Indium phosp	hide 100%		Justification: Not a standard protocol; but measured concs and controls Test Organisms: ICR Mice		
Criterion	Description	Points	Score	Comment	Guidance		
1	Test completed under conditions of high bioavailability	2	1	Physiological saline used; solubility considered	Bioavailability and consideration of other toxicity modifying factors		
2	Experimental design documented and appropriate	2	1	Not a standard protocol but 4 concentrations used including (0, 1,000, 3,000, or 5,000 mg/kg). No replicate test conducted	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)		
3	Concentration of substance reported	2	2	Measured	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)		
4	Control measures applied	2	1	Controls used but not a standardized procedure	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)		
5	Chronic or life cycle test was used	2	1	Acute	Chronic or life cycle test (2), acute (1), very short term exposure (0)		
6	Chemical dosing procedure reported and appropriate	2	2	Single-crystal InP wafers (99.999% purity, Furukawa Electric)	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)		
7	A dose-response relationship reported or can be estimated from reported data	2	1	LD0 >5,000 mg/kg at the highest dose tested; NOEC and LOEC can be derived, but for an Acute study	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)		
8	Statistical tests used to calculate the benchmark and levels of significance were described	2		Student's t-test or Welch's method were adopted for statistical testing of differences between means of the effect indices. The analysis of pathological findings was performed by Fisher's test.	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)		
9	Origin of the test organisms described	2		Four-week-old male ICR mice (SPF grade) were purchased from Nippon SLC and acclimatized for one week.	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non- commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)		
	Total Score	18	13	uidance for Developing Ecological Soil Screening Levels (Eco.SSLs) (OS			

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT

Evaluation Date: 11/04/2017

Landolt, R.R., Berk, H.W., Russell, H.T., 1972. Studies on the

toxicity of rhodium trichloride in rats and rabbits.. Toxicol Appl Ref: Pharmacol.. 21(4): 589-90.

Medium:	Intravenous
Substance CAS RN:	Rhodium

Score: 6 Acceptability: Consulted (intravenous)

	Substance CAS RN: Purity/formulated product:	Rhodium NR		Justification: Intravenous exposure, acute study, measured concentrations, cor Test Organisms: Sprague Dawley, New Zealand White Rabbits			
Cri teri on	Description	Points	Score	Comment	Guidance		
1	Test completed under conditions of high bioavailability	2	1	Buffering solution considered	Bioavailability and consideration of other toxicity modifying factors		
2	Experimental design documented and appropriate	2	0	No replicates; reference provided of method used	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)		
3	Concentration of substance reported	2	1	Ranges reported, measured	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)		
4	Control measures applied	2	1	Controls used	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)		
5	Chronic or life cycle test was used	2	1	Acute	Chronic or life cycle test (2), acute (1), very short term exposure (0)		
6	Chemical dosing procedure reported and appropriate	2	1	Ranges reported	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)		
7	A dose-response relationship reported or can be estimated from reported data	2	1	LD50 only reported	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)		
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	0	No stats provided	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)		
9	Origin of the test organisms described	2	0	Details on the organisms not provided.	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non- commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)		
	Total Score	18	6				

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT Evaluation Date: 03/03/2017

Moore, W., D. Hysell, L. Hall, K. Campbell, and J. Stara, 1975. Preliminary studies on the toxicity and metabolism of palladium and platinum. Environ Health Perspect, 10: 63-71.

Ref:	Health Perspect, 10: 63-71. Medium: Substance CAS RN:	Score: not scored as from a peer reviewed source (WHO) Acceptability: Consulted (intravenous) Justification: WHO					
	Purity/formulated product:	Palladium, Pl	latinum	Test Organisms:			
Criterion	Description	Points	Score	Comment	Guidance		
1	Test completed under conditions of high bioavailability	2			Bioavailability and consideration of other toxicity modifying factors		
2	Experimental design documented and appropriate	2			Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)		
3	Concentration of substance reported	2			Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)		
4	Control measures applied	2			Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)		
5	Chronic or life cycle test was used	2			Chronic or life cycle test (2), acute (1), very short term exposure (0)		
6	Chemical dosing procedure reported and appropriate	2			Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)		
7	A dose-response relationship reported or can be estimated from reported data	2			EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)		
8	Statistical tests used to calculate the benchmark and levels of significance were described	2			ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)		
9	Origin of the test organisms described	2			Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)		
	Total Score	18	0				

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 10/03/2017

Other notes:

ROSHCHIN, A.V., VESELOV, V.G., & PANOVA, A.I. (1984) Industrial toxicology of metals of the platinum group. J. Hyg. Epidemiol. Microbiol.

Ref: Immunol., 28: 17-24.

Medium: oral Substance CAS RN: Platinum
Purity/formulated produc

Score: Not scored as from a peer reviewed source (WHO) Acceptability: Selected

Justification: From EHC 125, 1991

	Purity/formulated produc				
Cri teri on	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2		vehicle (DMSO) considered	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2		OECD Guideline 403 (Acute Inhalation Toxicity); GLP Compliant	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2		Measured	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2		Control animals used	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2		acute inhalation; dusts	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2		Name of test material (as cited in study report): iodine- Substance type: iodine ACS/USP/BP grade- Physical state: Solid, prill Analytical purity: 99.8%-	Form, carrier, homogeneity information provided (2), no details or cannot be
7	A dose-response relationship reported or can be estimated from reported data	2		Only LC50 considered	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_{xx} difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2		As this study was conducted as a limit test, no statistical analyses was required. Body weight data was statistically analysed following Student's 't' test.	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2		TEST ANIMALS- Source: Animal Breeding Facility, Jai Research Foundation	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non- commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	0		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT Evaluation Date: 03/03/2017

Substance CAS RN: Palladium chloride (PdCl2)

Ref:

Purity/formulated product: 99% purity Test Organisms: kiwifruit pollen					kiwifruit pollen
Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	0	No information provided	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	Three replicates per concentration were performed for each type of test.	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	Controls	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2	0	Very short term exposure (90 min)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	made stock solution in ultra pure water, to obtain a final concentration of 0.1–15 mg L 1	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	2	EC50, LC50, LOEC	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2		ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	2	F. Liang et A. R. Ferguson growing in experimental plots of	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	12		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 10/03/2017

Other notes:

Score: 12 Acceptability: Not acceptable Justification: Good study, but exposure pathway and very short duration not useful

Voua Otomo, P., V. Wepener, M.S. Maboeta, 2014. Single and mixture toxicity of gold

Ref:	nanoparticles and gold(III) to Enchytraeus buch 84: 231-234. Medium: Substance CAS RN:	nolzi (Oligocha Soil Gold	aeta). Applied Soil Ecology, HAuCl4-3H2O	Score: Acceptability: Justification:	
a	Purity/formulated product:		m Sigma-Aldrich		Enchytraeus buchholzi (oligochaeta)
Criterion 1	Description Test completed under conditions of high bioavailability	Points 2	Score 1	Comment consideration of soil moisture content upper limit of 60% to not additionally stress test organisms	Guidance Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	2	reference throughout to OECD enchytraeic reproduction test	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl control), or replicate test (1)
3	Concentration of substance reported	2	1	nominal concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	Controls used	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2	2	Reproduction test (14-d)	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	test solutions added to soil as aqueous solutions	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2	2	EC10, EC50, LC50	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	ANOVA, p<0.05	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	1	adult specimens used, source not specified	Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	14		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 05/04/2017

Williams, M.W., J.D. Hoeschele, J.E. Turner, K.B. Jacobson, N.T. Christie, C.L. Paton, L.H. Smith, H.R. Witschi, and E.H. Lee, 1982. Chemical softness and acute metal toxicity in mice and Drosophila. Toxicol Appl Pharmacol, 63: 461-469.

Medium: Substance CAS RN:

Score: not scored from peer-reviewed source (WHO) Acceptability: Consulted (oral endpoint), Consulted (intraperitoneal) Justification: WHO

Criterion	Purity/formulated product: Description	Platinum, Rh Points	Score	Comment	: Mice and Drosophlia Guidance
1	Test completed under conditions of high bioavailability	2	Score	Comment	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2			Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2			Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2			Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2			Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2			Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
7	A dose-response relationship reported or can be estimated from reported data	2			EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2			ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or $P > 0.05$, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2			Source and condition of test organisms known and described and from commercial, non- contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	0		

Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November Evaluator: KJW Evaluation Date: 26/03/2017

Other notes:

Ref:

Yutaka, K., S-K. Yohko, D. Hiroshi, 1988. The effect of intraperitoneally administered gold thioglucose on growth, food consumption and accumulation of gold in various organs of the chicken (Gallus domesticus). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 90(2): 461-464. Medium: Intraperitoneal

NR

Substance CAS RN:

Purity/formulated product:

Ref:

Gold thioglucose (https://en.wikipe

Score: 10 Acceptability: Consulted (intraperitoneal)

Justification: Nominal concentrations (not measured) Single-Comb White Leghorn male and

Test Organisms: female chickens

Criterion	Description	Points	Score	Comment	Guidance
	Test completed under conditions of high bioavailability	2	1	Vehicle - dissolved in water	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	Not a standard test procedure, but there are 4 exposure concentrations	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	1	Nominal concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	1		Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2	1	Acute, one intraperitoneal injection	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	2	Gold thioglucose [(1-D-glucosylthio)gold, C,H, AuO, S], which was purchased from Sigma Chemical Company (St Louis, U.S.A.),	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)
	A dose-response relationship reported or can be estimated from reported data	2	1	NOEC and LOEC not explicitly reported. LD25 and LD100 can be derived	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
	Statistical tests used to calculate the benchmark and levels of significance were described	2	1	Statistical tests completed to determine significant difference among exposure groups	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
	Origin of the test organisms described	2	1	NR; from in-house (assumed)	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	10		

 Total Score
 18

 Note: study evaluation form based on U.S. EPA (2003) Attachment 3-2 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs). OSWER Directive 92857-55. November

Evaluator: NT

Evaluation Date: 11/04/2017

Other notes:

Unsure about this chemical, it is quite large

Mello-Andrade F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PR, Lima AP, Oliveira R, Ferraz IBM, Grisolia CK, Almeida MAP, Batista AA, Silveira-Lacerda EP. 2018. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos.Biomedicine & Pharmacotherapy 107 (2018) 1082–1092. Medium: a single dose by oral gavage

Substance CAS RN:

Ref:

a single dose by oral gavage [Ru(L-Met)(dppb)(bipy)]PF6(RuMet Score: 13

Acceptability: Unacceptable (complex, single dose) Justification: Test completed under standardized method, controls inc

	Purity/formulated product:	complex		Test Organisms: Swiss albino 6-8 week-old mice			
Criterion	Description	Points	Score	Comment	Guidance		
1	Test completed under conditions of high bioavailability	2	1	Yeilds considered, discussion if complexes are stable in medium	Bioavailability and consideration of other toxicity modifying factors		
2	Experimental design documented and appropriate	2	2	OECD Guidelines specified	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)		
3	Concentration of substance reported	2	2	nominal concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)		
4	Control measures applied	2	2	positive and negative controls used	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)		
5	Chronic or life cycle test was used	2	0	1 time does observed for 14 days after treatment	Chronic or life cycle test (2), acute (1), very short term exposure (0)		
б	Chemical dosing procedure reported and appropriate	2	2	Test solutions prepared using OECD Guideline	Form, carrier, homogeneity information provided (2), no details or cannot be inferred (0)		
7	A dose-response relationship reported or can be estimated from reported data	2	1	LD50/LC50 reported	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_x , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)		
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	ANOVA followed by the Tukey test. Statistical significance was considered at $p < 0.05$. Data were expressed as means and Standard Error of Means (SEM) or SD. All statistical analyses were performed using the statistical software GraphPad Prism, version 5 for Windows	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)		
9	Origin of the test organisms described	2	1	Swiss albino 6–8 week-old mice, with an average body weight of 25–35 g, were used for the experiments. Source not provided, but the lab conditions they were kept in were outlined	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non-commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)		
	Total Score	18	13				

Note:

Evaluator: NT

Evaluation Date: 26/04/2019

Other notes:

For complex

 Schertzinger G, Zimmermann S, Grabner D, Sures B. 2017.

 Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans to palladium, platinum and rhodium. Environmental Pollution 230 (2017) 31e39

 Medium:
 Single PGE standard solutions wei

Substance CAS RN:

Ref:

Pt, Pd, Rh

Score: 14 Acceptability: Consulted (aquatic toxicity) Justification: Details reported, measured concs

Test Organisms: nematode Caenorhabditis elegans Purity/formulated product: Solution riterion Description Points Score Commen Guidanc Test completed under conditions of Previous to metal toxicity tests, the sensitivity Bioavailability and consideration of other toxicity 2 1 high bioavailability and validity of the test system was checked nodifying factors aquatic toxicity tests were performed according to Standard methods or protocols cited (2); ANOVA, Experimental design documented and 2 2 ISO 10872 with some modifications, mode or 5 exposure concentrations (incl. control), o appropriate identified replicate test (1) qualified Measured concentration reported (2), toxicity value Nominal concentrations and Concentration of substance reported 2 2 concentrations (measured) based on nominal concentrations (1), all other (0) Standardized procedure and negative control value within guidelines (2), controls not reported o Control measures applied 2 2 positive and negative controls were used ambiguous (1), control results not within acceptable ange (0) Chronic or life cycle test (2), acute (1), very shor Chronic or life cycle test was used 2 96 hour endpoints (acute) 1 erm exposure (0) Form, carrier, homogeneity information provided Chemical dosing procedure reported Range finding tests were performed, no 2 1 and appropriate homogeneity (2), no details or cannot be inferred (0) EC10-EC20 reported or NOEC and LOEC within 32 A dose-response relationship of each other (2), NOEC and LOEC > 3x but < 10x 2 reported or can be estimated from 1 EC50 reported (1), no reported EC_x , difference > 10x for NOEC reported data and LOEC, or only a NOEC or LOEC reported (0) ANOVA or other statistical test based on P=0.05 The software GraphPad Prism 6 was used to (2), ANOVA completed but P level not provided or Statistical tests used to calculate the 2 create the graphs and to perform the statistical benchmark and levels of significance 2 P > 0.05, if EC data presented, but no 95% C were described analysis. Confidence intervales reported. reported or 90% CI used (1), no details on statistical calculations provided (0) The wild type strain N2 of C. elegans var. Bristo was cultivated from a Dauer larvae stock on Source and condition of test organisms known and nematode growth medium agar plates (NGM-agar described and from commercial, non-contaminated Origin of the test organisms plates) containing a lawn of Escherichia coli source (2), organisms obtained from non-2 2 OP50, uracil deficient strain) as food source. commercial source not adequately described, or lescribed insufficient information (1), organisms from known Both organisms were obtained from the Caenorhabditis Genetics Center (CGC) at the contaminated site (0) University of Minnesota Total Score 18

Note:

Evaluator: NT

Evaluation Date: 29/04/2019

Ksenia S. Egorova, Andrey A. Sinjushin, Alexandra V. Posvyatenko, Dmitry B. Eremin, Alexey S. Kashin, Alexey S. Galushko, Valentine P. Ananikov. 2019. Evaluation of phytotoxicity and cytotoxicity of industrial catalyst components (Fe, Cu, Ni, Rh and Pd): A case of lethal toxicity of a rhodium salt in terrestrial plants. Chemosphere 223 (2019) 738-747

Medium:
Substance CAS RN:

Purity/formulated product:

Ref:

Single PGE standard solutions were Rh Pd Score: 11

Acceptability: Unacceptable (growth medium, concentrations) Justification: Details reported

Pisum sativum, Lupinus angustifolius and

Test Organisms: Cucumis sativus

Criterion	Description	Points	Score	Comment	Guidance
1	Test completed under conditions of high bioavailability	2	2	Rh(acac)3 was synthesized according to the following procedure (Collins et al., 1995). Consideration to modifying factors	Bioavailability and consideration of other toxicity modifying factors
2	Experimental design documented and appropriate	2	1	Methods reported, but not a known protocol	Standard methods or protocols cited (2); ANOVA, 4 or 5 exposure concentrations (incl. control), or replicate test (1)
3	Concentration of substance reported	2	2	Measured Concentrations	Measured concentration reported (2), toxicity values based on nominal concentrations (1), all other (0)
4	Control measures applied	2	2	Controls used and reported	Standardized procedure and negative control values within guidelines (2), controls not reported or ambiguous (1), control results not within acceptable range (0)
5	Chronic or life cycle test was used	2	1	Acute and subacute	Chronic or life cycle test (2), acute (1), very short term exposure (0)
6	Chemical dosing procedure reported and appropriate	2	1	Metal salts used in the study (see Table S1) were obtained from 'Sigma-Aldrich', 'Acros', or 'Alfa Aesar', RhCl3xH2O was obtained from 'Sigma-Aldrich', 'Alfa Aesar' and 'Krastsvetmet' (Russia).	
7	A dose-response relationship reported or can be estimated from reported data	2	0	No andpoints for plants reported	EC_{10} - EC_{20} reported or NOEC and LOEC within 3x of each other (2), NOEC and LOEC > 3x but < 10x (1), no reported EC_{x} , difference > 10x for NOEC and LOEC, or only a NOEC or LOEC reported (0)
8	Statistical tests used to calculate the benchmark and levels of significance were described	2	2	Microsoft Excel 2010 (Microsoft). The significance of differences between samples was	ANOVA or other statistical test based on P=0.05 (2), ANOVA completed but P level not provided or P > 0.05, if EC data presented, but no 95% CI reported or 90% CI used (1), no details on statistical calculations provided (0)
9	Origin of the test organisms described	2	0	Origin unknown	Source and condition of test organisms known and described and from commercial, non-contaminated source (2), organisms obtained from non- commercial source not adequately described, or insufficient information (1), organisms from known contaminated site (0)
	Total Score	18	11		

Note:

Evaluator: NT

Evaluation Date: 29/04/2019

Other notes:

APPENDIX B.1: COMPILED AQUATIC TOXICITY DATA

Au

	Lit	erature Citation		Chemical I	dentity			Test Orga	nism(s)			E	xperimental Des	ign - Water Cor	nditions
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	рН	Test Conditions (Laboratory/Fi eld)	Hardness	Conductivity	Salinity
		Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem.,					Hyalella								
Borgmann et al.	2005	24(3): 641-652.	Gold	7440575	NR	Tap water	azteca	Amphipod	Partial	1-11 d	8.2	Laboratory	124	345	NA
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Gold Auric	7440575	NR	Soft water (deionized)	Hyalella azteca	Amphipod	Partial	1-11 d	7.39	Laboratory	18	66	NA
Buhl and Hamilton	1991	Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics. Ecotoxicol. Environ. Saf., 22: 184-197.	chloride, Hydrochlo ride Auric	10294-29-8	HAuC& - 3H20	deionized water	Thymallus arcticus	Arctic grayling	Partial	alevin	7.1-8	Laboratory	41	156	NA
		Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics. Ecotoxicol.	chloride, Hydrochlo		HAuC& -	deionized	Thymallus								
Buhl and Hamilton	1991	Environ. Saf., 22: 184-197.	ride	10294-29-8	3H20	water	arcticus	Arctic grayling	Partial	juvenile	7.1-8	Laboratory	41	156	NA
Buhl and Hamilton	1991	Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics. Ecotoxicol. Environ. Saf., 22: 184-197.	Auric chloride, Hydrochlo ride	10294-29-8	HAuC& - 3H20	deionized water	Oncorhynch us kisutch	Coho salmon	Partial	alevin	7.1-8	Laboratory	41	156	NA
Buhl and Hamilton	1991	Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics. Ecotoxicol. Environ. Saf., 22: 184-197.	Auric chloride, Hydrochlo ride	10294-29-8	HAuC& - 3H20	deionized water	Oncorhynch us kisutch	Coho salmon	Partial	juvenile	7.1-8	Laboratory	41	156	NA
Buhl and Hamilton	1991	Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics. Ecotoxicol. Environ. Saf., 22: 184-197.	Auric chloride, Hydrochlo ride	10294-29-8	HAuC& - 3H20	deionized water	Oncorhynch us mykiss	Rainbow trout	Partial	alevin	7.1-8	Laboratory	41	156	NA
	1001	Relative Sensitivity of Early Life Stages of Arctic Grayling, Coho Salmon, and Rainbow Trout to Nine Inorganics. Ecotoxicol.	Auric chloride, Hydrochlo	10204 20 0	HAuC& -	deionized	Oncorhynch	D.1	D (1)	,	710			154	
Buhl and Hamilton	1991	Environ. Saf., 22: 184-197.	ride	10294-29-8	3H20	water	us mykiss	Rainbow trout	Partial	juvenile	7.1-8	Laboratory	41	156	NA
Stokes	1981	Multiple Metal Tolerance in Copper Tolerant Green Algae. J. Plant Nutr.3(1-4):, 3: 667-678. Effect of gold(III) on the fouling diatom Amphora coffeaeformis:	Gold	7440575	NR	culture medium	Scenedesmu s acutiformis Amphora	Green algae	Full	NR	NR	Laboratory	NR	NR	NA
Robinson et al.	1997	uptake, toxicity and interactions with copper Biofouling, 11: 59 79.	Tetrachlor oaurate Auric	NR	AuCl4-	culture medium	coffeaeformi s	Diatom	Partial	NR	NR	Laboratory	NR	NR	NR
Biesinger and Christensen	1972	Effects of Various Metals on Survival, Growth, Reproduction and Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700.	chloride,	16903358	HAuCl4- 3H2O	lake water	Daphnia magna	Water flea	NR	12 hr	7.74	Laboratory	45.3	NR	NA
Biesinger and Christensen	1972	Effects of Various Metals on Survival, Growth, Reproduction and Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700.	Auric chloride, Hydrochlo ride	16903358	HAuCl4- 3H2O	lake water	Daphnia magna	Water flea	NR	12 hr	7.74	Laboratory	45.3	NR	NA
Biesinger and Christensen	1972	Effects of Various Metals on Survival, Growth, Reproduction an Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700.		16903358	HAuCl4- 3H2O	lake water	Daphnia magna	Water flea	NR	12 hr	7.74	Laboratory	45.3	NR	NA
Harry and Aldrich	1963	The Distress Syndrome in Taphius glabratus (Say) as a Reaction to Toxic Concentrations of Inorganic Ions. Malacologia, 1(2): 28: 289.	Auric chloride, Hydrochlo ride	16903358	NR	NR	Biomphalari a glabrata	Snail	NR	Adult	NR	Laboratory	NR	NR	NA
Jones	1939	The Relation Between the Electrolytic Solution Pressures of the Metals and Their Toxicity to the Stickleback (Gasterosteus aculeatus L.) J. Exp. Biol., 16(4): 425-437.	Auric chloride, Hydrochlo ride	16903358	HAuCl4	tap water	Gasterosteus aculeatus	Threespine Stickleback	NR	NR	6-6.8	Laboratory	NR	NR	NA
Jones	1940	A Further Study of the Relation Between Toxicity and Solution Pressure, with Polycelis nigra as Test Animal. J. Exp. Biol., 17: 408-415.	Auric chloride, Hydrochlo ride	16903358	HAuCl4	distilled water	Polycelis nigra	Planarian	NR	NR	6	Laboratory	NR	NR	NA

NA NR Not applicable (i.e., salinity is not applicable to freshwater studies) Not reported in the study

	Experimen	ntal Design				Res	sults		CanNorth	Team		Classification		1
Freshwater or Marine	Exposure	Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/L)	Ranking of Study	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group	Acute/Chronic	
Freshwater	Static non- renewal	7 d	Mortality	LC50	>3.15	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	KJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	authors, acute designati
Freshwater	Static non- renewal	7 d	Mortality	LC50	0.446	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Completed for Bismuth, Gold, Indium, Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	кJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, acute designati n
Freshwater	Static	96 hr	Mortality	LC50	16.8	Secondary	Std tox test, control measures considered, however nominal concentrations and LC50 endpoints	NA	кјw	10/03/2017	Secondary	Fish	Acute	
Freshwater	Static	96 hr	Mortality	LC50	14.4	Secondary	Std tox test, control measures considered, however nominal concentrations and LC50 endpoints	NA	KJW	10/03/2017	Secondary	Fish	Acute	
							Std tox test, control measures considered, however nominal							
Freshwater	Static	96 hr	Mortality	LC50	33.5	Secondary	concentrations and LC50 endpoints Std tox test, control measures considered, however normal	NA	KJW	10/03/2017	Secondary	Fish	Acute	
Freshwater	Static	96 hr	Mortality	LC50	14.1	Secondary	concentrations and LC50 endpoints Std tox test, control measures considered, however nominal	NA	KJW	10/03/2017	Secondary	Fish	Acute	
Freshwater	Static	96 hr	Mortality	LC50	9.1	Secondary	concentrations and LC50 endpoints Std tox test, control measures considered, however nominal	NA	KJW	10/03/2017	Secondary	Fish	Acute	
Freshwater	Static	96 hr 7 d	Mortality	LC50 EC50	10.7	Secondary	concentrations and LC50 endpoints Low score, nominal concentrations, ">"	NA NA	KJW KJW	10/03/2017	Secondary	Fish	Acute	
Freshwater Marine	Culture Culture	20 d	Growth Metabolism	LOEL	0.17	Secondary Secondary	endpoint Low score, nominal concentrations, endpoint	inferred endpoint from results discussion	KJW	13/03/2017	Secondary Secondary	Algae Marine Diatom		
Freshwater	Renewal	21 d	Mortality	LC50	1.05	Secondary	Old study but robust methodology; nominal concentrations	NA	KJW	05/04/2017	Secondary	Aquatic invertebrate	Chronic	
Freshwater	Renewal	21 d	Reproduction	EC16	0.06	Secondary	Old study but robust methodology; nominal concentrations	NA	KJW	05/04/2017	Secondary	Aquatic invertebrate	Chronic	
							Old study but robust methodology;	NA	KJW	05/04/2017		Aquatic	Chronic	
Freshwater		21 d	Reproduction	EC50	0.18	Secondary	nominal concentrations not scored - assumed secondary from				Secondary	invertebrate Aquatic		
Freshwater	Static	1 d	Behaviour	NOEC	10	Secondary	AQUIRE (literature not obtained)	inferred NOEC from no effects observed	KJW	14/03/2017	Secondary	invertebrate	Acute	
Freshwater	Renewal	10 d	Mortality	LC100	0.4	Not acceptable	Low score, endpoint	inferred LC100 - 100% mortality	кјw	14/03/2017	Unacceptable	Fish	Chronic	
Freshwater	Renewal	2 d	Mortality	NOEC	0.6	Secondary	Low score, old paper, not many details provided	inferred NOEC - 0% mortality	KJW	05/04/2017	Secondary	Aquatic invertebrate	Acute	

103 ^{Au}

I	04	
	Ir	

	Li	terature Citation		Chemical I	dentity			Test Orga	nism(s)			E	xperimental Des	ign - Water Co	nditions
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	рН	Test Conditions (Laboratory/Fi eld)	Hardness	Conductivity	Salinity
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Iridium	7439885	NR		Hyalella azteca	Amphipod	Partial	1-11 d	8.3	Laboratory	124	515	NA
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Iridium	7439885		Soft water (deionized)	Hyalella azteca	Amphipod	Partial	1-11 d	7.71	Laboratory	18	235	NA
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec. Bioavail, 6(1): 43070.	Iridium	NR		Nutrient		Water- Hyacinth	Partial	NR	NR	Laboratory	NR	NR	NR
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec. Bioavail, 6(1): 43070.	Iridium	NR		Nutrient solution		Water- Hyacinth	Partial	NR	NR	Laboratory	NR	NR	NR

Not applicable (i.e., salinity is not applicable to freshwater studies) Not reported in the study

NA NR

	Experimen	tal Design				Res	sults		CanNorth 7	Гeam		Classification		
Freshwater or Marine	Exposure	Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/L)	Ranking of Study	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group	Acute/Chronic	
	Static non- renewal	7 d	Mortality	LC50	>3.15		Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	KJW	22/02/2017		Aquatic invertebrate	Acute	authors, acute designatio
	Static non- renewal		Mortality	LC50	>1		Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Completed for Bismuth, Gold, Indium, Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	кJW	22/02/2017		Aquatic invertebrate	Acute	per authors, acute designatio n
Freshwater	Renewal		Growth (slight drop in yield at 2.5 ug mL-1. No vegetative reproduction, young roots stunted and blackened.)	LOEC	2.5		inferred endpoints based on narrative description and concentrations tested	accumulation study	кJW	10/03/2017	Secondary	Aquatic plant	Acute	uncertain
			Growth (slight drop in yield at 2.5 ug mL-1. No vegetative reproduction, young roots stunted and				inferred endpoints based on narrative							
Freshwater	Renewal	14 d	blackened.)	NOEC	0.5	Secondary	description and concentrations tested	accumulation study	KJW	10/03/2017	Secondary	Aquatic plant	Acute	uncertain

	Lit	terature Citation		Chemical I	dentity			Test Orga	nism(s)			E	xperimental De	sign - Water Co	nditions
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	рН	Test Conditions (Laboratory/Fi eld)	Hardness	Conductivity	Salinity
Khangarot,B.S., and S. Das	2009	Acute Toxicity of Metals and Reference Toxicants to a Freshwater Ostracod, Cypris subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models. J. Hazard. Mater., 172: 641-649.	Osmium oxide	20816120	OsO4	Distilled water	Cypris subglobosa	Ostracod	Partial	NR	7.6 (7.4–7.7)	Laboratory	245 (230-250)	NR	NA
Khangarot, B.S., and S. Das	2009	Acute Toxicity of Metals and Reference Toxicants to a Freshwater Ostracod, Cypris subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models. J. Hazard. Mater., 172: 641-649.	Osmium oxide	20816120	OsO4	Distilled water	Cypris subglobosa	Ostracod	Partial	NR	7.6 (7.4–7.7)	Laboratory	245 (230–250)	NR	NA
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Osmium	7440042	NR	Tap water	Hyalella azteca	Amphipod	Partial	1-11 d	8.3	Laboratory	124	515	NA
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Osmium	7440042	NR	Soft water (deionized)	Hyalella azteca	Amphipod	Partial	1-11 d	7.71	Laboratory	18	235	NA
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec. Bioavail, 6(1): 43070.	Osmium sodium chloride	NR	Na2[OsCl 6]	Nutrient solution	Eichhornia crassipes	Water- Hyacinth	Partial	NR	NR	Laboratory	NR	NR	NA
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec. Bioavail, 6(1): 43070.	Osmium sodium chloride	NR	Na2[OsCl 6]	Nutrient solution	Eichhornia crassipes	Water- Hyacinth	Partial	NR	NR	Laboratory	NR	NR	NA
Khangarot	1991	Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912.	Osmium oxide	20816120	OsO4	Distilled water	Tubifex tubifex	Tubificid Worm	Partial	NR	7.6	Laboratory	245	NR	NA
Khangarot	1991	Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ, Contam. Toxicol., 46: 906-912.	Osmium oxide	20816120	OsO4	Distilled water	Tubifex tubifex	Tubificid Worm	Partial	NR	7.6	Laboratory	245	NR	NA
Khangarot	1991	Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912.	Osmium	20816120	OsO4	Distilled	Tubifex tubifex	Tubificid Worm		NR	7.6	Laboratory	245	NR	NA
Bengtsson and Tarkpea	1991	The Acute Aquatic Toxicity of Some Substances Carried by Ships. Mar. Pollut. Bull, 14(6): 213-214.	Osmium oxide	20816120	OsO4	NR	Nitocra spinipes	Harpacticoid Copepod	Partial	NR	NR	NR	NR	NR	0.07%

Not applicable (i.e., salinity is not applicable to freshwater studies) Not reported in the study

NA NR

	Experime	ntal Design				Re	sults		CanNorth	Team	r	Classification		1
Freshwater or Marine		Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/L)	Ranking of Study	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group	Acute/Chronic	
Freshwater	Short- term static renewal	24 hr	Immobilization	EC50	0.011	Secondary	Although test method not reported, thorough study design; however, acute study and EC50 for immobilization.	Completed for Bismuth, Osmium, Palladium, Platinum, Tungsten	кјw	17/02/2017	Secondary	Aquatic invertebrate	Acute	
Freshwater	Short- term static renewal	2 48 hr	Immobilization	EC50	0.007	Secondary	Although test method not reported, thorough study design; however, acute study and EC50 for immobilization.	Completed for Bismuth, Osmium, Palladium, Platinum, Tungsten	KJW	17/02/2017	Secondary	Aquatic invertebrate	Acute	
Freshwater	Static non- renewal	7 d	Mortality	LC50	0.057	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	KJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	authors, acute designat
Freshwater	Static non- renewal	7 d	Mortality	LC50	0.081	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Completed for Bismuth, Gold, Indium, Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	КJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, acute designat n
Freshwater	Renewal	14 d	Growth (growth restricted a 10 ug mL-1)	LOEC	10	Secondary	inferred endpoints based on narrative description and concentrations tested	accumulation study	KJW	10/03/2017	Secondary	Aquatic plant	Acute	uncerta
Freshwater	Renewal	14 d	Growth (growth restricted a 10 ug mL-1)	NOEC	2.5	Secondary	inferred endpoints based on narrative description and concentrations tested	accumulation study	KJW	10/03/2017	Secondary	Aquatic plant	Acute	uncertai
Freshwater	Renewal	24 hr	Immobilization	EC50	0.014	Secondary	Standard method, control considerations; however, nominal concentrations and EC50 immobilization endpoint	-	KJW	10/03/2017	Secondary	Aquatic invertebrate	Acute	
Freshwater	Renewal	48 hr	Immobilization	EC50	0.009	Secondary	Standard method, control considerations; however, nominal concentrations and EC50 immobilization endpoint	-	KJW		Secondary	Aquatic invertebrate	Acute	
Freshwater		96 hr	Immobilization	EC50	0.0067	Secondary	Standard method, control considerations; however, nominal concentrations and EC50 immobilization endpoint		KJW	10/03/2017	Secondary	Aquatic	Acute	
Saltwater	NR	96 hr	Mortality	LC50	0.01	Not acceptable	very little information provided and statistical test failed for osmium, units assumed based on AQUIRE		KJW		Unacceptable	Aquatic invertebrate	Acute	

107 _{Os}

	Lite	erature Citation		Chemical Id	lentity			Test Orga	unism(s)			E	operimental Des	sign - Water Co	nditions
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	рН	Test Conditions (Laboratory/Fi eld)	Hardness	Conductivity	Salinity
Khangarot,B.S., and S. Das	2009	649.	Palladium chloride	158898954	PdC1	Distilled water	Cypris subglobosa	Ostracod	Partial	NR	7.6 (7.4–7.7)	Laboratory	245 (230-250)	NR	NA
Khangarot,B.S., and S. Das	2009	Acute Toxicity of Metals and Reference Toxicants to a Freshwatt Ostracod, Cypris subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models. J. Hazard. Mater., 172: 641- 649.	Palladium chloride	158898954	PdC1	Distilled water	Cypris subglobosa	Ostracod	Partial	NR	7.6 (7.4–7.7)	Laboratory	245 (230–250)	NR	NA
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Palladium	7440053	NR	Tap water	Hyalella azteca	Amphipod	Partial	1-11 d	8.2	Laboratory	124	345	NA
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Palladium	7440053	NR	Soft water (deionized)		Amphipod	Partial	1-11 d	7.39	Laboratory	18	66	NA
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Plan	Palladium	NR	K2[PdC14]	Nutrient so	Eichhornia c	Water-Hyacint	l Partial	NR	NR	Laboratory	NR	NR	NA
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Plan	Palladium	NR	K2[PdC14]	Nutrient so	Eichhornia c	Water-Hyacint	Partial	NR	NR	Laboratory	NR	NR	NA
Khangarot	1991	Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912.	Palladium	7647101	PdCl 2	Distilled water	Tubifex tubifex	Tubificid Worm	Partial	NR	7.6	Laboratory	245	NR	NA
Khangarot	1991	Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912.	Palladium	7647101	PdC1 2	Distilled water	Tubifex tubifex	Tubificid Worm	Partial	NR	7.6	Laboratory	245	NR	NA
Khangarot	1991	Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912.	Palladium	7647101	PdCl 2	Distilled water	Tubifex tubifex	Tubificid Worm	Partial	NR	7.6	Laboratory	245	NR	NA
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna	Palladium	NR	Pd Cl	Standard fi	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna i	Palladium	NR	Pd Cl	Standard fi	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna i	Palladium	NR	Pd Cl	Standard f	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna i	Palladium	NR	Pd Cl	Standard f	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna i	Palladium	NR	Pd Cl	Standard f	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna i	Palladium	NR	Pd Cl	Standard f	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA

Not applicable (i.e., salinity is not applicable to freshwater studies) Not reported in the study

NA NR

	Experimen	tal Design				Res	mlts		CanNorth	Team		Classification		1
Freshwater or Marine		Duration	Observed Adverse Effect (%	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/L)	Ranking of Study	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group	Acute/Chronic	
Freshwater	Short- term static renewal	24 hr	Immobilization	EC50	0.351	Secondary	Although test method not reported, thorough study design; however, acute study and EC50 for immobilization.	Completed for Bismuth, Osmium, Palladium, Platinum, Tungsten	ĸJW	17/02/2017	Secondary	Aquatic invertebrate	Acute	
Freshwater	Short- term static renewal	48 hr	Immobilization	EC50	0.195	Secondary	Although test method not reported, thorough study design; however, acute study and EC50 for immobilization.	Completed for Bismuth, Osmium, Palladium, Platinum, Tungsten	KJW	17/02/2017	Secondary	Aquatic invertebrate	Acute	
Freshwater	Static non- renewal	7 d	Mortality	LC50	0.57	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten Completed for Bismuth, Gold, Indium,	кјw	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, designation
Freshwater	Static non- renewal	7 d	Mortality Growth (chlorosis and drop	LC50	>1	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	KJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, designation
Freshwater	Renewal	14 d	in yield) Growth (chlorosis and drop	LOEC	2.5	Secondary	inferred endpoints based on narrative de	accumulation study	кјw	10/03/2017	Secondary	Aquatic plant	Acute	uncertain
Freshwater	Renewal	14 d 24 hr	in yield) Immobilization	NOEC EC50	0.5	Secondary	inferred endpoints based on narrative de Standard method, control considerations; however, nominal concentrations and EC50 immobilization endpoint	accumulation study	KJW KJW	10/03/2017	Secondary	Aquatic plant Aquatic invertebrate	Acute	uncertain
Freshwater	Renewal	48 hr	Immobilization	EC50	0.142	Secondary	Standard method, control considerations; however, nominal concentrations and EC50 immobilization endpoint Standard method, control	-	кјw	10/03/2017	Secondary	Aquatic invertebrate	Acute	-
Freshwater	Renewal	96 hr	Immobilization	EC50	0.092	Secondary	considerations; however, nominal concentrations and EC50 immobilization endpoint	-	кJW	10/03/2017	Secondary	Aquatic invertebrate Aquatic	Acute	-
Freshwater	Static non-	24 hr	Immobilization	EC50	0.019	Primary	Test completed under standardized met	Completed for Pt, Pd, Rh	КЈW	05/04/2017	Primary	invertebrate Aquatic	Acute	-
Freshwater	Static non-		Immobilization Lethality	EC50 LC50	0.013	Primary Primary	Test completed under standardized met	• • •	KJW KJW	05/04/2017	Primary Primary	invertebrate Aquatic invertebrate	Acute	-
Freshwater	Static non-		Lethality	LC50	0.014	Primary	Test completed under standardized met		KJW	05/04/2017	Primary	Aquatic invertebrate	Acute	-
Freshwater	Static non-	24 hr	Immobilization	EC20	0.011	Primary	Test completed under standardized met	Derived from tox curve	КЈW	05/04/2017	Primary	Aquatic invertebrate Aquatic	Acute	-
Freshwater	Static non-	48 hr	Immobilization	EC20	0.007	Primary	Test completed under standardized met	Derived from tox curve	KJW	05/04/2017	Primary	invertebrate	Acute	

109 Pd

Pt

Literature Citation			Chemical	Identity			Test Organism	n(s)			Experimenta	al Design - Wat	er Conditions				Experimen	tal Design	Results
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS		Carrier Solvent	Species Latin Name	Common	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	рН	Test Conditions (Laboratory/F eld)	Hardness	Conductivity		Freshwater or Marine	Exposure	Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)
Khangarot,B.S., and S. Das	2009	Acute Toxicity of Metals and Reference Toxicants to a Freshwater Ostracod, Cypris subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models. J. Hazard. Mater., 172: 641-649.	Platinum chloride	10025657	PtCl	Distilled water	Cypris subglobosa	Ostracod	Partial	NR	7.6 (7.4–7.7)	Laboratory	245 (230–250)	NR	NA	Freshwater	Short- term static renewal	24 hr	Immobilization
Khangarot,B.S., and S. Das	2009	Acute Toxicity of Metals and Reference Toxicants to a Freshwater Ostracod, Cypris subglobosa Sowerby, 1840 and Correlation to EC50 Values of Other Test Models. J. Hazard. Mater., 172: 641-649.	Platinum chloride	10025657	PtCl	Distilled water	Cypris subglobosa	Ostracod	Partial	NR	7.6 (7.4–7.7)	Laboratory	245 (230–250)	NR	NA	Freshwater	Short- term static renewal	48 hr	Immobilization
		Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem.,					Hyalella										Static non-		
Borgmann et al.		24(3): 641-652. Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem.,	Platinum			Tap water Soft water (deionize	Hyalella	Amphipod	Partial	1-11 d	8.2	Laboratory	124	345		Freshwater	renewal Static non-	7 d	Mortality
Borgmann et al.		24(3): 641-652. The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec.	Platinum	7440064	NR	d) Nutrient	azteca Eichhornia	Water-	Partial	1-11 d	7.39	Laboratory	18	66		Freshwater		7 d	Mortality Growth (chlorosis and drop
Farago and Parsons Farago and Parsons	1994 1994	Bioavail, 6(1): 43070. The Effects of Various Platinum Metal Species on the Water Plant Eichhornia crassipes (MART.) Solms. Chem. Spec. Bioavail, 6(1): 43070.	chloride Platinum chloride	NR	K2[PtC14] K2[PtC14]	solution Nutrient so	crassipes Eichhornia cra	Hyacinth Water-Hyacintl	Partial Partial	NR	NR NR	Laboratory Laboratory	NR	NR		Freshwater Freshwater	Renewal	14 d 14 d	in yield) Growth (chlorosis and drop in yield)
		Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex	Platinum			Distilled	Tubifex	Tubificid											
Khangarot		tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912. Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912.	chloride Platinum chloride	10025657		water Distilled water	tubifex Tubifex tubifex	Worm Tubificid Worm	Partial	NR		Laboratory		NR		Freshwater		24 hr 48 hr	Immobilization
Khangarot		Toxicity of Metals to a Freshwater Tubificid Worm, Tubifex	Platinum	10025657			Tubifex	Tubificid	Partial	NR				NR		Freshwater		48 hr	Immobilization
Khangarot Zimmerman et al.	2017	tubifex (Muller). Bull. Environ. Contam. Toxicol., 46: 906-912. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, in press (Feb 2017)		10025657		water Standard f	Daphnia	Worm Water flea	Partial	Neonates	6-9	Laboratory Laboratory	NR 245	NR		Freshwater Freshwater	Renewal Static non- renewal		Immobilization Immobilization
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, in press (Feb 2017)	Platinum	NR	PtC16	Standard f	Daphnia	Water flea	Partial	Neonates	6.0	Laboratory	NR	NR	NA	Freshwater	Static non- renewal	48 hr	Immobilization
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, in press (Feb 2017)	Platinum IV	NR	PtCl6	Standard f	Daphnia	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR		Freshwater	Static non- renewal	48 hr	Lethality
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, in press (Feb 2017)	Platinum IV	NR	PtC16	Standard f	Daphnia magna	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA	Freshwater	Static non- renewal	24 hr	Immobilization
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environmental Pollution, in press (Feb 2017) Effects of Various Metals on Survival, Growth, Reproduction and	Platinum IV	NR	PtC16	Standard f	Daphnia magna	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA	Freshwater	Static non- renewal	48 hr	Immobilization
Biesinger and Christensen	1972	Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700. Effects of Various Metals on Survival, Growth, Reproduction and	Platinum	NR	H2PtCl6- 6H2O	lake water	Daphnia magna	Water flea	NR	12 hr	7.74	Laboratory	45.3	NR	NA	Freshwater	Renewal	21 d	Mortality
Biesinger and Christensen	1972	Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700. Effects of Various Metals on Survival, Growth, Reproduction and		NR	H2PtCl6- 6H2O	lake water	Daphnia magna	Water flea	NR	12 hr	7.74	Laboratory	45.3	NR	NA	Freshwater	Renewal	21 d	Reproduction
Biesinger and Christensen	1972	Metabolism of Daphnia magna. J. Fish. Res. Board Can., 29(12): 1691-1700.		NR	H2PtC16- 6H2O	lake water	Daphnia magna	Water flea	NR	12 hr	7.74	Laboratory	45.3 55.9 +/- 3.5	NR	NA	Freshwater	Renewal	21 d	Reproduction
Ferreira and Wolke	1979	Acute Toxicity of Platinum to Coho Salmon (Oncorhynchus kisutch)	Platinum IV	NR	6 H20	Distilled water	Oncorhynchus kisutch	Coho Salmon	Partial	1.5 months post hatch	6.5 +/- 0.4	Laboratory	mg/L (as CaCo3) 55.9 +/- 3.5	NR	NA	Freshwater	Static rene	24 hr	Survival
Ferreira and Wolke	1979	Acute Toxicity of Platinum to Coho Salmon (Oncorhynchus kisutch) Acute Toxicity of Platinum to Coho Salmon (Oncorhynchus	Platinum IV Platinum	NR	6 H20	Distilled water Distilled	Oncorhynchus kisutch Oncorhynchus	Coho Salmon	Partial	1.5 months post hatch 1.5 months	6.5 +/- 0.4	Laboratory	mg/L (as CaCo3) 55.9 +/- 3.5 mg/L (as	NR	NA	Freshwater	Static rene	48 hr	Survival
Ferreira and Wolke	1979	Acute Toxicity of Platinum to Coho Salmon (Oncorhynchus kisutch) Effects of Platinum (Pt 4+) on Lumbriculus variegatus Miiller	Platinum IV Platinum	NR		Distilled water Distilled	Oncorhynchus kisutch Lumbriculus	Coho Salmon	Partial	4.5-5.5cm	6.5 +/- 0.4	Laboratory	mg/L (as CaCo3) 0 mg/L	NR	NA	Freshwater	Static rene	96-hr	Survival
Veltz et al.	1996	(Annelida, Oligochaetae): Acute Toxicity and Bioaccumulation Effects of Platinum (Pt 4+) on Lumbriculus variegatus Miiller	IV Platinum	NR	4.5H20 H2PtCI6,	water Reconstit uted	variegatus Lumbriculus	Worm	Partial	4.5-5.5cm	7.6 ± 0.4	Laboratory	CaCO3 250 +/- 25	NR		Freshwater	Static	96-hr	Survival
Veltz et al.	1996	(Annelida, Oligochaetae): Acute Toxicity and Bioaccumulation Effects of Platinum (Pt 4+) on Lumbriculus variegatus Miiller	IV Platinum	NR	4.5H20 H2PtCI6,	Water Cristaline	variegatus Lumbriculus	Worm	Partial	long 4.5-5.5cm	7.6 ± 0.4	Laboratory	mg/L CaCO3 300 +/- 10	NR		Freshwater	Static	96-hr	Survival
Veltz et al. NA		(Annelida, Oligochaetae): Acute Toxicity and Bioaccumulation able (i.e., salinity is not applicable to freshwater studies)	IV	NR	4.5H20	Water	variegatus	Worm	Partial	long	7.6 ± 0.4	Laboratory	mg/L CaCO3	NR	NA	Freshwater	Static	96-hr	Survival

Not applicable (i.e., salinity is not applicable to freshwater studies) Not reported in the study

NA NR

					CanNorth Team		Classification]
Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/L)	Ranking of Study	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group	Acute/Chronic	
EC50	0.114	Secondary	Although test method not reported, thorough study design; however, acute study and EC50 for immobilization.	Completed for Bismuth, Osmium, Palladiu	ĸJW	17/02/2017	Secondary	Aquatic inverteb	Acute	-
			Although test method not reported, thorough study design; however, acute							-
EC50	0.095	Secondary	study and EC50 for immobilization. Modified tox test, control measures considered, measured concentrations;	Completed for Bismuth, Osmium, Palladiu	KJW	17/02/2017	Secondary	Aquatic inverteb	Acute	
LC50	0.221	Secondary	however, LC50 endpoints Modified tox test, control measures	Completed for Bismuth, Gold, Indium, Irio	KJW	22/02/2017	Secondary	Aquatic inverteb	Acute	per authors, acute designation
LC50	0.11	Secondary	considered, measured concentrations; however, LC50 endpoints	Completed for Bismuth, Gold, Indium, Irie	клw	22/02/2017	Secondary	Aquatic invertebr	Acute	per authors, acute designation
LOEC	2.5	Secondary	inferred endpoints based on narrative description and concentrations tested	accumulation study	KJW	10/03/2017	Secondary	Aquatic plant	Acute	uncertain
NOEC	0.5	Secondary	inferred endpoints based on narrative description and concentrations tested	accumulation study	KJW	10/03/2017	Secondary	Aquatic plant	Acute	uncertain
			Standard method, control considerations; however, nominal concentrations and EC50					Aquatic		
EC50	0.095	Secondary	immobilization endpoint Standard method, control considerations; however, nominal	-	KJW	10/03/2017	Secondary	invertebrate	Acute	
EC50	0.086	Secondary	concentrations and EC50 immobilization endpoint Standard method, control	-	KJW	10/03/2017	Secondary	Aquatic invertebrate	Acute	
EC50	0.061	Secondary	considerations; however, nominal concentrations and EC50 immobilization endpoint	•	KJW	10/03/2017	Secondary	Aquatic invertebrate	Acute	
EC50	0.276	Primary	Test completed under standardized method, measured concentrations, control measures met	Completed for Pt, Pd, Rh	KJW	05/04/2017	Primary	Aquatic invertebrate	Acute	
EC50	0.11	Primary	Test completed under standardized method, measured concentrations, control measures met	Completed for Pt, Pd, Rh	KJW	05/04/2017	Primary	Aquatic invertebrate	Acute	
LC50	0.157	Primary	Test completed under standardized method, measured concentrations, control measures met	Completed for Pt, Pd, Rh	KJW	05/04/2017	Primary	Aquatic invertebrate	Acute	
EC20	0.178	Primary	Test completed under standardized method, measured concentrations, control measures met	Derived from tox curve	KJW	05/04/2017	Primary	Aquatic invertebrate	Acute	
EC20	0.063	Primary	Test completed under standardized method, measured concentrations, control measures met	Derived from tox curve	ĸJW	05/04/2017	Primary	Aquatic invertebrate	Acute	
LC50	0.52	Secondary	Old study but robust methodology; nominal concentrations	-	ĸJW	05/04/2017		Aquatic invertebrate	Chronic	
EC16		Secondary	Old study but robust methodology; nominal concentrations	-	кјw	05/04/2017		Aquatic invertebrate	Chronic	
EC50		Secondary	Old study but robust methodology; nominal concentrations	-	кJW	05/04/2017		Aquatic invertebrate	Chronic	
LC50	15.5	Secondary	Test completed under standardized method, Nominal concentrations, control measures met		NT	01/05/2019	Secondary	Fish	Acute	
LC50	5.2	Secondary	Test completed under standardized method, Nominal concentrations, control measures met		NT	01/05/2019	Secondary	Fish	Acute	
LC50	2.5	Secondary	Test completed under standardized method, Nominal concentrations, control measures met		NT	01/05/2019	Secondary	Fish	Acute	
LC50	0.397	Secondary	Test completed under standardized method, Nominal concentrations, control measures met		NT	08/05/2019	Secondary	Aquatic invertebrate	Acute	
LC50	4	Secondary	Test completed under standardized method, Nominal concentrations, control measures met		NT	08/05/2019	Secondary	Aquatic invertebrate	Acute	
LC50	30	Secondary	Test completed under standardized method, Nominal concentrations, control measures met		NT	08/05/2019	Secondary	Aquatic invertebrate	Acute	

	Lite	erature Citation		Chemical I	dentity			Test Orga	nism(s)			E	perimental De	sign - Water Co	nditions	
								2	Life Stage	Life		Test				
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Species Latin Name	Species Common Name	Exposure (full, partial in vitro)	Cycle Stage (age)	pН	Conditions (Laboratory/F ield)	Hardness	Conductivity	Salinity	Freshwater or Marine
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Rhodium	7440166	NR	Tap water	Hyalella azteca	Amphipod	Partial	1-11 d	8.3	Laboratory	124	515	NA	Freshwater
Borgmann et al.	2005	Toxicity of Sixty-Three Metals and Metalloids to Hyalella azteca at Two Levels of Water Hardness. Environ. Toxicol. Chem., 24(3): 641-652.	Rhodium	7440166	NR	Soft water (deionized)	Hyalella azteca	Amphipod	Partial	1-11 d	7.71	Laboratory	18	235	NA	Freshwater
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Pl	Rhodium	NR	Na3[RhCl6]:	Nutrient solution	Eichhornia c	Water-Hyacintl	Partial	NR	NR	Laboratory	NR	NR	NR	Freshwater
Farago and Parsons	1994	The Effects of Various Platinum Metal Species on the Water Pl	Rhodium	NR	Na3[RhCl6]:	Nutrient solution	Eichhornia c	Water-Hyacintl	Partial	NR	NR	Laboratory	NR	NR	NR	Freshwater
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magn	Rhodium	NR	RhC13-3H2O	Standard freshwater	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA	Freshwater
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magn	Rhodium	NR	RhCl3-3H2C	Standard freshwater	Daphnia maş	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA	Freshwater
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magn	Rhodium	NR	RhC13-3H2O	Standard freshwater	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA	Freshwater
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magn	Rhodium	NR	RhCl3-3H2C	Standard freshwater	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA	Freshwater
Zimmerman et al.	2017	Toxicity of platinum, palladium and rhodium to Daphnia magn	Rhodium	NR	RhCl3-3H2O	Standard freshwater	Daphnia mag	Water flea	Partial	Neonates	6-9	Laboratory	NR	NR	NA	Freshwater
Aquatox	2017		Rhodium	NR	Rh in 5% HCl	Well water	Ceriodaphni a dubia	Water flea	Partial	<9hr	7.9-8.2	Laboratory	260	722-728	NA	Freshwater
Aquatox	2017		Rhodium	NR	Rh in 5% HCl Rh in 5%	Well water	Ceriodaphni a dubia Pimephales	Water flea	Partial	<9hr	7.9-8.2	Laboratory	260	722-728	NA	Freshwater
Aquatox	2017		Rhodium	NR	HC1	Well water	promelas	Fathead Minno	Partial	<24 hr	7.9-8.3	Laboratory	260	722-728	NA	Freshwater
Aquatox	2017		Rhodium	NR	Rh in 5% HCl	Well water	Pimephales promelas	Fathead Minno	Partial	<24 hr	7.9-8.3	Laboratory	260	722-728	NA	Freshwater
Aquatox	2017		Rhodium	NR	Rh in 5% HCl	Well water	Hyalella azteca	Amphipod	Partial	5-8 days old	7.9-8.4	Laboratory	NR	785-810	NA	Freshwater
Aquatox	2017		Rhodium	NR	Rh in 5% HCl	Well water	Hyalella azteca	Amphipod	Partial	5-8 days old	7.9-8.4	Laboratory	NR	785-810	NA	Freshwater
Aquatox	2018		Rhodium	NR	Rh in 5% HCl	Well water	Oncorhynch us mykiss	Rainbow Trout	Partial	embryo	7.9-8.3	Laboratory	NR	739-761	NA	Freshwater
Aquatox	2018		Rhodium	NR	Rh in 5% HCl	Well water	Oncorhynch us mykiss	Rainbow Trout	Partial	embryo	7.9-8.3	Laboratory	NR	739-761	NA	Freshwater

Not applicable (i.e., salinity is not applicable to freshwater studies) Not reported in the study

NA NR

112 Rh

							Rh						
Experime	ntal Design				Res	ults	Rh	CanNorth	Team		Classification		1
Exposure	Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/L)	Ranking of Study	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group	Acute/Chronic	
Static non renewal	7 d	Mortality	LC50	>3.15	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	KJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, acute designation
Static non renewal	7 d	Mortality	LC50	0.804	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Completed for Bismuth, Gold, Indium, Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	КJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, acute designation
Renewal	14 d	Growth (Plants appeared healthy and large, no toxic effects at 10 ug mL -1, plants also grown in 20 and 30 ug mL-1. where some mild chlorosis was noted. Enhanced pigmentation in roots compared with controls.)	LOEC	20	Secondary	inferred endpoints based on narrative c	accumulation study.	KJW	10/03/2017	Secondary	Aquatic plant	Acute	uncertain
A CHE WIL		Growth (Plants appeared healthy and large, no toxic effects at 10 ug mL -1, plants also grown in 20 and 30 ug mL-1. where some mild chlorosis was noted. Enhanced pigmentation in roots compared with		~		nueres supplins outer on narraity e	acconduction and y			3000	- spane pratt		
Renewal	14 d	controls.)	NOEC	10	Secondary	inferred endpoints based on narrative of Test completed under standardized	accumulation study	КЈW	10/03/2017	Secondary	Aquatic plant	Acute	uncertain
						method, measured concentrations,					Aquatic		
Static non	24 hr	Immobilization	EC50	83.8	Primary	control measures met Test completed under standardized	Completed for Pt, Pd, Rh	KJW	05/04/2017	Primary	invertebrate	Acute	
						method, measured concentrations,					Aquatic		
Static non	48 hr	Immobilization	EC50	12.3	Primary	control measures met Test completed under standardized	Completed for Pt, Pd, Rh	KJW	05/04/2017	Primary	invertebrate	Acute	
						method, measured concentrations,					Aquatic		
Static non	48 hr	Lethality	LC50	56.8	Primary	control measures met	Completed for Pt, Pd, Rh	KJW	05/04/2017	Primary	invertebrate	Acute	
						Test completed under standardized method, measured concentrations,					Aquatic		
Static non	24 hr	Immobilization	EC20	50.119	Primary	control measures met	Derived from tox curve	кјw	05/04/2017	Primary	invertebrate	Acute	
						Test completed under standardized							
Static non	48 hr	Immobilization	EC20	5.370	Primary	method, measured concentrations, control measures met	Derived from tox curve	KJW	05/04/2017	Primary	Aquatic invertebrate	Acute	
											Aquatic		1
Renewal	7 d	Reproduction	IC25	>0.1	Primary			KJW	02/21/2019	Primary	invertebrate Aquatic	Chronic	
Renewal	7 d	Survival	LC50	>0.1	Primary			KJW	02/21/2019	Primary	invertebrate	Chronic	
Static renewal	7 d	Growth (from biomass)	IC25	>0.1	Primary			KJW	02/21/2019	Primary	Fish	Chronic	
Static	7.4	· · · · · · · · · · · · · · · · · · ·	1.050					2.002					1
renewal Static	7 d	Survival	LC50	>0.1	Primary			KJW	02/21/2019	Primary	Fish Aquatic	Chronic	1
renewal	14 d	Growth	IC25	>0.1	Primary			КJW	02/21/2019	Primary	invertebrate	Chronic	
Static renewal	14 d	Survival	LC50	>0.1	Primary			KJW	02/21/2019	Primary	Aquatic invertebrate	Chronic	
Static													
renewal E test	7 d	Reproduction	EC25	>0.1	Primary			кјw	02/21/2019	Primary	Fish	Chronic	
Static renewal E test	7 d	Reproduction	EC50	>0.1	Primary			KJW	02/21/2019	Primary	Fish	Chronic	

	Lite	erature Citation		Chemical I	dentity			Test Orga	nism(s)			E	xperimental Des	sign - Water Co	nditions	
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation Form	/ Carrier Solvent	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	рН	Test Conditions (Laboratory/F ield)	Hardness	Conductivity	Salinity	Freshwater or Marine
Borgmann et al.	2005		Rutheniu m	7440188	NR	Tap water	Hyalella azteca	Amphipod	Partial	1-11 d	8.3	Laboratory	124	515	NA	Freshwater
Borgmann et al.	2005		Rutheniu m	7440188	NR	Soft water (deionized)	Hyalella azteca	Amphipod	Partial	1-11 d	7.71	Laboratory	18	235	NA	Freshwater
Aquatox	2018		Rutheniu m	NR	in 5% HCl	Well water	Oncorhynch us mykiss	Rainbow Trou	Partial	embryo	7.9-8.3	Laboratory	NR	742-825	NA	Freshwater
Aquatox	2018		Rutheniu m	NR	in 5% HCl	Well water	Oncorhynch us mykiss	Rainbow Trou	Partial	embryo	7.9-8.3	Laboratory	NR	742-825	NA	Freshwater
Aquatox	2018		Rutheniu m	NR	in 5% HCl	Well water		Rainbow Trou	tPartial	embryo	7.9-8.3	Laboratory	NR	742-825	NA	Freshwater
Aquatox	2017		Rutheniu m Rutheniu	NR	in 5% HCl	Well water	Ceriodaphni a dubia Ceriodaphni	Water flea	Partial	<9hr	7.9-8.3	Laboratory	260	722-730	NA	Freshwater
Aquatox	2017		m Rutheniu	NR		Well water	a dubia Pimephales	Water flea	Partial	<9hr	7.9-8.3	Laboratory		722-730	NA	Freshwater
Aquatox	2017		m Rutheniu m	NR	in 5% HCl		promelas Pimephales promelas	Fathead Minno		<24 hr	7.8-8.1 7.8-8.1	Laboratory Laboratory	1	723-733	NA NA	Freshwater
Aquatox	2017		Rutheniu m	NR		Well water	Hyalella azteca	Amphipod	Partial	5-8 days old	7.9-8.4	Laboratory	NR	728-748	NA	Freshwater
Aquatox	2017		Rutheniu m	NR	in 5% HCl	Well water	Hyalella azteca	Amphipod	Partial	5-8 days old 30 min	7.9-8.4	Laboratory	NR	728-748	NA	Freshwater
Mello-Andrade et al.	2018	Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos.Biomedicine & Pharmacotherapy 107 (2018) 1082–1092.		NR	NR	Water	Zebrafish eggs	Zebrafish eggs		after natural mating	pH at 7.0 ± 0.5	Laboratory	NR	750 ± 50 μS/cm	NR	Freshwater
Mello-Andrade et al.		Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos. Biomedicine & Pharmacotherapy 107 (2018) 1082–1092.		NR	NR	Water	Zebrafish eggs	Zebrafish eggs	Partial	30 min after natural mating	pH at 7.0 ± 0.5	Laboratory	NR	750 ± 50 μS/cm	NR	Freshwater

NA NR Not applicable (i.e., salinity is not applicable to freshwater studies) Not reported in the study

114 Ru

Experimen	tal Design				Res	ults		CanNorth	Team		Classification		1
Exposure		Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/L)	Ranking of Study	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group	Acute/Chronic	
Static non- renewal	7 d	Mortality	LC50	>3.15		Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	KJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, acute designation
Static non- renewal	7 d	Mortality	LC50	>1		Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	Completed for Bismuth, Gold, Indium, Iridium, Osmium, Palladium, Platinum, Rhodium, Ruthenium, Tellurium, Tungsten	KJW	22/02/2017	Secondary	Aquatic invertebrate	Acute	per authors, acute designation
Static renewal E- test	7 d	Reproduction	EC10	>0.1	Primary		Selected endpoint with correction for control effects	KJW	02/21/2019	Primary	Fish	Chronic	
Static renewal E- test	7 d	Reproduction	EC25	>0.1	Primary			кJW	02/21/2019	Primary	Fish	Chronic	
Static renewal E- test	7 d	Reproduction	EC50	>0.1	Primary			KJW	02/21/2019	Primary	Fish	Chronic	
Renewal	7 d	Reproduction	IC25	>0.1	Primary			КJW	02/21/2019	Primary	Aquatic invertebrate Aquatic	Chronic	
Renewal	7 d	Survival	LC50	>0.1	Primary			KJW	02/21/2019	Primary	invertebrate	Chronic	
Static renewal	7 d	Growth (from biomass)	IC25	>0.1	Primary			KJW	02/21/2019	Primary	Fish	Chronic	
Static renewal	7 d	Survival	LC50	>0.1	Primary			KJW	02/21/2019	Primary	Fish	Chronic	
Static renewal	14 d	Growth	IC25	>0.1	Primary			KJW	02/21/2019	Primary	Aquatic invertebrate	Chronic	
Static renewal	14 d	Survival	LC50	>0.1	Primary			КJW	02/21/2019	Primary	Aquatic invertebrate	Chronic	
Static	96 hour	Survival	LC50	>100	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	For complexes	NT	04/29/2019	Secondary	Fish	Acute	
Static	96 hour	Survival	LC50	47.8	Secondary	Modified tox test, control measures considered, measured concentrations; however, LC50 endpoints	For complexes	NT	04/29/2019	Secondary	Fish	Acute	

APPENDIX B.2: COMPILED TERRESTRIAL TOXICITY DATA

	Li	iterature Citation		Chem	nical Identity				Test Organ	nism(s)		Experimental 1
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Background Concentration	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	Exposure
Williams et al.	1982	Toxicol Appl Pharmacol, 63: 461-469.	Sodium tetrachloroaurate(III)	NR	NaAuCl4	NR	NR	BALB/c	Mouse	NR	NR	Intraperitoneal
Voua Otomo et al.	2014	Single and mixture toxicity of gold nanoparticles and gold(III) to Enchytraeus buchholzi (Oligochaeta). Applied Soil Ecology, 84: 231-234.	Gold (III) chloride hydrate	NR	HAuCl4- 3H2O	NR		Enchytraeus buchholzi	Oligochae ta	NR	Adult	Amended soil
Voua Otomo et al.	2014	Single and mixture toxicity of gold nanoparticles and gold(III) to Enchytraeus buchholzi (Oligochaeta). Applied Soil Ecology, 84: 231-234.	Gold (III) chloride hydrate	NR	HAuCl4- 3H2O	NR		Enchytraeus buchholzi	Oligochae ta	NR	Adult	Amended soil
Voua Otomo et al. Yataka et al.	2014	Single and mixture toxicity of gold nanoparticles and gold(III) to Enchytraeus buchholzi (Oligochaeta). Applied Soil Ecology, 84: 231-234. administered gold thioglucose on	Gold (III) chloride hydrate Gold thioglucose	NR NR	HAuCl4- 3H2O glucosylthio)	NR Water		Enchytraeus buchholzi NR	Oligochae ta Comb	NR Partial	Adult Old	Amended soil Intraperitoneal
Yataka et al.	1988	The effect of intraperitoneally administered gold thioglucose on growth, food consumption and accumulation of gold in various organs of the chicken (Gallus domesticus). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 90(2): 461-464.		NR	[(1 -D- glucosylthio) gold, C,H, , AuO, S],		NR	NR	Single- Comb White Leghorn chickens		10 Days Old	Intraperitoneal
Yataka et al.	1988	The effect of intraperitoneally administered gold thioglucose on growth, food consumption and accumulation of gold in various organs of the chicken (Gallus domesticus). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 90(2): 461-464.	Gold thioglucose	NR	[(1 -D- glucosylthio) gold, C,H, , AuO, S],	Water	NR	NR	Single- Comb White Leghorn chickens	Partial	10 Days Old	Intraperitoneal

118 ^{Au}

Design				Results			CanNo	orth Team	C	lassification
Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration	Ranking of Study (Selected, Consulted, Not Acceptable)	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation	Data Categorization	Group
14 d	Mortality	LD50	39.4 ug/g bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
14 d	Reproduction	EC10	24.3 ug/g soil		Study details provided	wet/dry weight not specified	KJW	05/04/2017	Selected	Invertebrate
14 d	Reproduction	EC50	35.5 ug/g soil		Study details provided	wet/dry weight not specified	KJW	05/04/2017	Selected	Invertebrate
			>37.5 ug/g soil	Selected	Study details provided			05/04/2017	Selected	Invertebrate
Once	Mortality (M/F)	LD100	0.8 mg/g	Consulted	Intraperitoneal	Not statistically significant	NT	11/04/2017	Consulted	Bird
Once	Mortality (M)	LD25	0.4 mg/g	Consulted	Intraperitoneal	Not statistically significant	NT	11/04/2017	Consulted	Bird
			0.2 mg/g		Intraperitoneal	Not statistically significant		11/04/2017	Consulted	Bird

119 ^{Au}

	L	iterature Citation		Chen	nical Identity				Test Organ	uism(s)		Experimental	Design
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Background Concentration	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	Exposure	Duration
Williams et al.	1982	Toxicol Appl Pharmacol, 63: 461-469.	Indium (III) chloride, tetrahydrate	NR	InCl3-4H2O	NR	NR	BALB/c	Mouse	NR	NR	Intraperitonal	14 d
			Indium (III) chloride,					Drosophila			0-1 day		
	1982	Toxicol Appl Pharmacol, 63: 461-469.	tetrahydrate	NR	InCl3-4H2O		NR	melanogaster	Fruit fly	Partial		Oral	4 d
Kabe et al.	1996	of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial		Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial		Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial		Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial		Intraperitonal	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial		Oral	Once
Kabe et al.	1996	In Vitro Solubility and In Vivo Toxicity of Indium Phosphide	Indium Phosphide	NR	InP	NR	NR	ICR Mice	Mouse	Partial	4 weeks old	Oral	Once

		Results				CanNo	orth Team	Cl	assification
Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration	Ranking of Study (Selected, Consulted, Not Acceptable)	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group
Mortality	LD50	4.6 ug/g bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
Mortality	LD50	4019 ug/g bw	Consulted	WHO EHC	Not scored		28/02/2017	Consulted	Insect
Macroscopic (Lung Lesions/InP in lymph nodes)	LOEC	3938 ug/g	Consulted	other strengths	exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Macroscopic (Lung Lesions/InP in lymph nodes)	NOEC	2363 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Microscopic (Spleen - granuals of InP/proliferation)	LOEC	2363 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Microscopic (Spleen - granuals of InP/proliferation)	NOEC	788 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Microscopic (Liver - granuals of InP/extramedullary granulopoises)	LOEC	2363 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Microscopic (Liver - granuals of InP/extramedullary granulopoises)	NOEC	1000 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Microscopic (Lungs - granuals of InP/eosinophilic exudates)	LOEC	2363 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Microscopic (Lungs - granuals of InP/eosinophilic exudates)	NOEC	788 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Organ Weight (testes)	LOEC	788 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Hemetological (monocytes/ neutraphils)	LOEC	3938 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Hemetological (monocytes/ neutraphils)	NOEC	2363 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Blood Biochemical (TP)	LOEC	788 ug/g	Consulted	Not std protocol, but other strengths	Intraperitoneal exposure	NT	11/04/2017	Consulted	Laboratory Rodent
Blood Biochemical (BUN)	LOEC	3938 ug/g	Selected	Not std protocol, but other strengths	-	NT	11/04/2017	Selected	Laboratory Rodent
Blood Biochemical (BUN)	NOEC	2363 ug/g	Selected	Not std protocol, but other strengths	-	NT	11/04/2017	Selected	Laboratory Rodent

	Lite	esture Citation		Chemical I	lantity				Test Oreanism(s			Experimental I	Jacian			Paralite				CanNe	rth Team	Classific	estion
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	l Formulation/ Form	Carrier Solvent	Background Concentration	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)	Exposure	Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/kg dry soil)	Ranking of Study (Selected, Consulted, Not Acceptable)	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group
Moore et al.	1975	Environ Health Perspect, 10: 63-71.	Palladium (II) chloride	NR	PdC12	NR	NR	Charles River CD-1	Rat	NR	NR	oral	NR	Mortality	LD50	200 mg/kg bw	Selected	WHO EHC	Not scored	КJW	28/02/2017	Selected	Laboratory Rodent
Phielepeit et al.	1989	Arch Toxicol, Suppl, 13: 357-362.	Palladium (II) chloride	NR	PdC12	NR	NR	NMRI	Mouse	NR	NR	oral	NR	Mortality	LD50	> 1000 mg/kg bw	Selected	WHO EHC	Not scored	кJW	28/02/2017	Selected	Laboratory Rodent
Moore et al.	1975		Palladium (II) chloride	ND	PdC12	NID	ND	Charles River CD-1	Pet	ND	ND		14.4	Monoliny	LD50	3 mg/kg bw	Consultad	WHO EHC	Not coursed	KJW	28/02/2017	Consulted	Laboratory Rodent
				NK.		MK.	MK		Ka	NR.	AR.	14	14 U	Mortanty			Consulted		Not scored			Consulted	Laboratory Rodent
Moore et al.		Environ Health Perspect, 10: 63-71.	Palladium (II) chloride	NR	PdC12	NR	NR	Charles River CD-1	Rat	NR	NR	iv	NR	Mortality	LD50	5 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory
Moore et al.	1975	Environ Health Perspect, 10: 63-71.	Palladium (II) chloride	NR	PdC12	NR	NR	NR	Rabbit	NR	NR	iv	NR	Mortality	LD50	5 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017		Mammal
Moore et al.	1975	Environ Health Perspect, 10: 63-71.	Palladium (II) chloride	NR	PdC12	NR	NR	Charles River CD-1	Rat	NR	NR	intraperitoneal	NR	Mortality	LD50	70 mg/kg bw	Consulted	WHO EHC	Not scored	КJW	28/02/2017	Consulted	Rodent
Moore et al.	1975	Environ Health Perspect, 10: 63-71.	Palladium (II) chloride	NR	PdC12	NR	NR	Charles River CD-1	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD50	123 mg/kg bw	Consulted	WHO EHC	Not scored	ĸJW	28/02/2017	Consulted	Laboratory Rodent
Phielepeit et al.	1985	Arch Toxicol, Suppl, 13: 357-362.	Palladium (II) chloride	NR	PdC12	NR	NR	NMRI	Mouse	NR	NR	intraperitoneal	NR	Mortality	LD50	87 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
Moore et al.	1975	Environ Health Perspect, 10: 63-71.	Palladium (II) chloride	NR	PdC12	NR	NR	Charles River CD-1	Rat	NR	NR	intratracheal	NR	Mortality	LD50	6 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
		Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-												Í								Selected	Laboratory
Holbrook et al.	1976	600/1-76-010a	Palladium (II) chloride	NR	PdC12-2H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD50	290 mg/kg bw	Selected	WHO EHC	Not scored	КJW	28/02/2017	Selected	Rodent
		Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-																				Selected	Laboratory Rodent
Holbrook et al.	1976	600/1-76-010a Assessment of Toxicity of Automotive	Palladium sulphate	NR	PdSO4	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD50	>790 mg/kg bw	Selected	WHO EHC	Not scored	KJW	28/02/2017		
Holbrook et al.	1074	Metallic Emissions, Volume 1. EPA- 600/1-76-010a	Palladium oxide	ND	P40	ND	ND	Sprague-Dawley	Pot	ND	ND	and	14 d	Montoliny	LD50	>8700 mg/kg bw	Selected	WHO EHC	Not scored	кJW	28/02/2017	Selected	Laboratory Rodent
			Sodium tetrachloronalladate		Na2PdCl4-3F			ICR. Swiss					24 hr	Montainty	1.050		a t t				28/02/2017	Consulted	Laboratory
Jones et al.		Toxicol Appl Pharmacol, 49: 41-44.		NK		NK	NK		Mouse	NK	NK	intraperitoneal		Mortality	2000	122 mg/kg bw	Consulted	WHO EHC	Not scored	KJW		Consulted	Rodent Laboratory
Moore et al.		Environ Health Perspect, 10: 63-71.	Potassium tetrachloropalladate(II)	NR	K2PdC14	NR	NR	Charles River CD-1	Rat	NR	NR	iv	14 d	Mortality	LD50	6.4 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Rodent Laboratory
Williams et al.	1982	Toxicol Appl Pharmacol, 63: 461-469. Pd-Nanoparticles Cause Increased	Potassium tetrachloropalladate(II)	NR	K2PdC14	NR	NR	BALB/c	Mouse	NR	NR	intraperitoneal	14 d	Mortality	LD50	153 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Rodent
		Toxicity to Kiwifruit Pollen Compared																				Not acceptable	Plant
Speranza et al.		to Soluble Pd(II). Environ. Pollut., 158(3): 873-882.	Palladium (II) chloride	NR	PdC12	NR	NR	Actinidia deliciosa	Kiwi Fruit	pollen	NR	culture	90 min	Morphology (pollen tube leng	tEC50	3.6 mg/L	Not acceptable	Good study, expos	si -	ĸJW	10/03/2017		
		Pd-Nanoparticles Cause Increased Toxicity to Kiwifruit Pollen Compared																					
Speranza et al.	2010	to Soluble Pd(II). Environ. Pollut., 158(3): 873-882.	Palladium (II) chloride	NP	Parcia	NP	NP	Actinidia deliciosa	Kiwi Fruit	collen	NP	culture	90 min	Mortality	1.050	8 ma/l	Not accentable	Good study, expo		KIW	10/03/2017	Not acceptable	Plant
Speranza et al.		Pd-Nanoparticles Cause Increased	Panadidii (II) chionde	INK	ruciz	NK.	NK .	Actinuia denciosa	Kiwi Huit	ponen	AR	culture	90 mm	Mortainty	2030	o mg/L	Not acceptable	Good study, expo	s-	KJ W	10/03/2017		
		Toxicity to Kiwifruit Pollen Compared to Soluble Pd(II). Environ. Pollut.,																				Not acceptable	Plant
Speranza et al.		158(3): 873-882. Assessment of Toxicity of Automotive	Palladium (II) chloride	NR	PdC12	NR	NR	Actinidia deliciosa	Kiwi Fruit	pollen	NR	culture	90 min	Morphology (pollen tube leng	LOEL	2.5 mg/L	Not acceptable	Good study, expos	9-	KJW	10/03/2017		
Holbrook et al.	1976	Metallic Emissions, Volume 1. EPA- 600/1-76-010a	Palladium (II) chloride	NP	PdC12-2H2O	NP	NR	Sprague-Dawley	Pat	NP	NP	oral	14.4	Mortality	LD10	166 mg/kg bw	Selected	WHO EHC	Not scored	KJW	28/02/2017	Selected	Laboratory Rodent
TRADICOR CI III.	17/0	Assessment of Toxicity of Automotive	i unikilum (il) chiviluc		ruciz-zilizo			opingue ouriery				01m	140	Montainty	2010	NOO MERE ON	Directo	WHO LIFE	The scored	1011	20/02/2011		Laboratory
Holbrook et al.	1976	Metallic Emissions, Volume 1. EPA- 600/1-76-010a	Palladium (II) chloride	NR	PdC12-2H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD90	520 mg/kg bw	Selected	WHO EHC	Not scored	ĸJW	28/02/2017	Selected	Rodent
		Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-																				Consulted	Laboratory Rodent
Holbrook et al.	1976	600/1-76-010a Assessment of Toxicity of Automotive	Palladium (II) chloride	NR	PdC12-2H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD50	60 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017		
		Metallic Emissions, Volume 1. EPA- 600/1-76-010a	Palladium (II) chloride		PdC12-2H2O								14 d		LD10					KJW	28/02/2017	Consulted	Laboratory Rodent
Holbrook et al.	1976	Assessment of Toxicity of Automotive	Palladium (II) chloride	NK	PdC12-2H2O	NK	NK	Sprague-Dawley	Kat	NK	NK	intraperitoneal	14 d	Mortality	LDI0	42 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017		Laboratory
Holbrook et al.	1976	Metallic Emissions, Volume 1. EPA- 600/1-76-010a	Palladium (II) chloride	NR	PdC12-2H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD90	87 mg/kg bw	Consulted	WHO EHC	Not scored	ĸJW	28/02/2017	Consulted	Rodent
		Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-																				Consulted	Laboratory
Holbrook et al.	1976	600/1-76-010a	Palladium sulphate	NR	PdSO4	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD50	151 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017		Rodent
		Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-					_															Consulted	Laboratory Rodent
Holbrook et al.	1976	600/1-76-010a Assessment of Toxicity of Automotive	Palladium sulphate	NR	PdSO4	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD10	82 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017		Laboratory
Holbrook et al.	1976	Metallic Emissions, Volume 1. EPA- 600/1-76-010a	Palladium sulphate	NR	PdSO4	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD90	195 mg/kg bw	Consulted	WHO EHC	Not scored	кJW	28/02/2017	Consulted	Rodent
		Assessment of sublethal endpoints after chronic exposure of the																					
		nematode Caenorhabditis elegans to																				Consulted	Nematode
Schertzinger et al.	2017	palladium, platinum and rhodium	Palladium	NR	NR	HCI	NR	Caenorhabditis elegans	Nematode	Larvae	NR	Exposure medium	96 hour	Growth	EC50	>1000 ug/L	Consulted	aquatic toxicity	14	NT	29/04/2019		
		Assessment of sublethal endpoints after chronic exposure of the																					
		nematode Caenorhabditis elegans to palladium, platinum and																				Consulted	Nematode
Schertzinger et al.	2017	rhodium	Palladium	NR	NR	HCI	NR	Caenorhabditis elegans	Nematode	Larvae	NR	Exposure medium	96 hour	Fertility	EC50	>1000 ug/L	Consulted	aquatic toxicity	14	NT	29/04/2019		
		Assessment of sublethal endpoints after chronic exposure of the																					
		nematode Caenorhabditis elegans to palladium, platinum and																				Consulted	Nematode
Schertzinger et al.	2017	rhodium Evaluation of phytotoxicity and	Palladium	NR	NR	HCI	NR	Caenorhabditis elegans	Nematode	Larvae	NR	Exposure medium	96 hour	Reproduction	EC50	>1000 ug/L	Consulted	aquatic toxicity	14	NT	29/04/2019		
		cytotoxicity of industrial catalyst																growth medium					
		components (Fe, Cu, Ni, Rh and Pd): A case of lethal toxicity of a																concentrations not	r i			Not acceptable	Plant
Egorova et al.	2015	rhodium salt in terrestrial plants. Chemosphere 223 (2019) 738e747	Palladium	NR	H20	NR	NR	Pisum sativum	Pea Plant	Partial	Seed	Exposure medium	10 day	Growth	IC50	Graph but no data	Not acceptable	environmentally relevant	11	NT	30/04/2019		
		Evaluation of phytotoxicity and cytotoxicity of industrial catalyst																					
		components (Fe, Cu, Ni, Rh and Pd): A																growth medium,				Not acceptable	Plant
		case of lethal toxicity of a rhodium salt in terrestrial plants.																concentrations not environmentally					
Egorova et al.	2015	Chemosphere 223 (2019) 738e747 Evaluation of phytotoxicity and	Palladium	NR	H20	NR	NR	Lupinus angustifolius	Lupine	Partial	Seed	Exposure medium	10 day	Growth	IC50	Graph but no data	Not acceptable	relevant	11	NT	30/04/2019		
		cytotoxicity of industrial catalyst																growth medium					
		components (Fe, Cu, Ni, Rh and Pd): A case of lethal toxicity of a chodium ach in terrestrial plants																concentrations not environmentally	t			Not acceptable	Plant
Egorova et al.	2015	rhodium salt in terrestrial plants. Chemosphere 223 (2019) 738e747	Palladium	NR	H20	NR	NR	Cucumis sativus	Cucumber	Partial	Seed	Exposure medium	10 day	Growth	IC50	Graph but no data	Not acceptable	relevant	11	NT	30/04/2019		

	Litera	ature Citation		Chemic	al Identity	1	1	Te	est Organism(s) Life Stage	1	Experimental I	Design		1	1	Results	1	1	CanNo	orth Team	Classifi	cation
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemica CAS	al Formulation/ Form	Carrier Solvent	Background Concentration	Species Latin Name	Species Common Name	Exposure (full, partial in vitro)	Life Cycl Stage (age)	Exposure	Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/kg dry soil)	Ranking of Study (Selected, Consulted, Not Acceptable)	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a Toxicol Appl Pharmacol, 63: 461-	Platinum sulphate	NR	Pt(SO4)2-4H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD50	132 mg/kg bw	Consulted	WHO EHC	Not scored	кјw	28/02/2017	Consulted	Laboratory Rodent Laboratory
Williams et al.	1983	2 469.	Potassium tetrachloroplatinate(II)	NR	K2PtCl4	NR	NR	BALB/c	Mouse	NR	NR	intraperitoneal	14 d	Mortality	LD50	31 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Rodent
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a	Platinum tetrachloride	NR	PtCl4	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD50	22 mg/kg bw	Consulted	WHO EHC	Not scored	NT	16/03/2017	Consulted	Laboratory Rodent
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a	Platinum sulphate	NR	Pt(SO4)2-4H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD10	110 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a	Platinum sulphate	NR	Pt(SO4)2-4H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD90	160 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a	Platinum sulphate	NR	Pt(SO4)-4H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD50	59 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a Assessment of Toxicity of	Platinum sulphate	NR	Pt(SO4)-4H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD10	39 mg/kg bw	Consulted	WHO EHC	Not scored	кјw	28/02/2017	Consulted	Laboratory Rodent
Holbrook et al.	1976	Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a	Platinum sulphate	NR	Pt(SO4)-4H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD90	78 mg/kg bw	Consulted	WHO EHC	Not scored	KJW	28/02/2017	Consulted	Laboratory Rodent
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a	Platinum chloride	NR	PtCl2	NR	NR	Sprague-Dawley	Rat	NR	NR	intraperitoneal	14 d	Mortality	LD50	490 mg/kg bw	Consulted	WHO EHC	Not scored	NT	16/03/2017	Consulted	Laboratory Rodent
																			The results of a preliminary range finding study on the acute toxicity of UV PCU4 in rats is given in Table 3. The high incidence of mortality at the lowest dose precluded determination of the LD50 (14 days). However, the lowest dose would appear to be a			Consulted	Laboratory Rodent
Moore et al.	1975	5 Environ Health Perspect, 10: 63-7 Assessment of Toxicity of Automotive Metallic Emissions.	1. Platinum chloride	NR	PtCl4	NR	NR	Charles River CD-1	Rat	NR	NR	intravenous	NR	Mortality	LD50	15 mg/kg bw	Consulted	WHO EHC	reasonable approximation.	KJW	27/03/2017	Selected	Laboratory
Holbrook et al.	1976	5 Volume 1. EPA-600/1-76-010a Assessment of Toxicity of	Platinum oxide	NR	PtO2	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD50	>6900 mg/kg	Selected	WHO EHC	Not scored	NT	16/03/2017		Rodent
Holbrook et al.	1976	Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a Assessment of Toxicity of	Platinum chloride	NR	PtCl2	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD50	>1400 mg/kg	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent
Holbrook et al.	1976	Automotive Metallic Emissions, 6 Volume 1. EPA-600/1-76-010a Assessment of Toxicity of	Platinum tetrachloride	NR	PtCl4	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD50	136 mg/kg bw	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent
Holbrook et al.	1976	Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a ENVIRONMENTAL HEALTH	Platinum sulphate	NR	Pt(SO4)2 .4 H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD50	430 mg/kg bw	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent Laboratory
Roshchin et al.	1984	CRITERIA 125 ENVIRONMENTAL HEALTH	Platinum chloride	NR	PtCl2	NR	NR	NR	Rat	NR	NR	oral	NR	Mortality	LD50	3423	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent
Roshchin et al.	1984	4 CRITERIA 125 Assessment of Toxicity of	Platinum tetrachloride	NR	PtCl4	NR	NR	NR	Rat	NR	NR	oral	NR	Mortality	LD50	276	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent Laboratory
Holbrook et al.	1976	Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a Assessment of Toxicity of	Platinum tetrachloride	NR	PtCl4	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD10	60 mg/kg bw	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent
Holbrook et al.	1976	Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a Assessment of Toxicity of	Platinum tetrachloride	NR	PtCl4	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD90	310 mg/kg bw	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent
Holbrook et al.	1976	Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a Assessment of Toxicity of	Platinum sulphate	NR	Pt(SO4)2 .4 H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD10	270 mg/kg bw	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent
Holbrook et al.	1976	Automotive Metallic Emissions, 5 Volume 1. EPA-600/1-76-010a	Platinum sulphate	NR	Pt(SO4)2 .4 H2O	NR	NR	Sprague-Dawley	Rat	NR	NR	oral	14 d	Mortality	LD90	690 mg/kg bw	Selected	WHO EHC	Not scored	NT	16/03/2017	Selected	Rodent
Schertzinger et al.	2017	Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans (palladium, platinum and 7 rhodium	io Platinum	NR	NR	HCI	NR	Caenorhabditis elegans	Nematode	Larvae	NR	Exposure medium	96 hour	Growth	EC50	808 ug/L	Consulted	aquatic toxicity	14	4 NT	29/04/2019	Consulted	Nematode
Schertzinger et al.	2017	Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans palladium, platinum and rhodium	io Platinum	NR	NR	нсі	NR	Caenorhabditis elegans		Larvae	NR	Exposure medium	96 hour	Fertility	EC50	726 ug/L	Consulted	aquatic toxicity	14	4 NT	29/04/2019	Consulted	Nematode
Schertzinger et al.	2011	Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans i palladium, platinum and rhodium		NR	NP	HCI	NB	Caenorhabditis elegans	Namatoda	Lamoa	NIP	Erzenne medir -:	06 hora	Parenduation	PC50	407 va i	Complied	constitutorio/tra		(NT	29/04/2019	Consulted	Nematode
ocaettzinger et äl.	2017	· [a manualli	ALC: NO	1	10.1	1.145	Cucnot habuitits cregalits	a welliatouc	Autor VillC	FA	stoposure meandin	70 nodr	reproduction	an	www.ug/L	Constituen	paquatic toxicity	14	1241	23/04/2019		

1	24

	Lit	erature Citation			Chemical Iden	tity			Test Organism(s	3)		Experimental	Design
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Background Concentration	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)	Life Cycle Stage (age)		Duration
		Acute and subchronic toxicity of the antitumor agent rhodium (II) citrate in Balb/c mice after intraperitoneal administration.											
Carneiro et al.	2015	Toxicology Reports, 2: 1086-1100.	Rhodium (II) citrate	NR	NR	NR	NR	Balb/c	Mice	Partial	12 weeks	Intraperitonal	once
		Acute and subchronic toxicity of the antitumor agent rhodium (II) citrate in Balb/c mice after intraperitoneal administration.											
Carneiro et al.	2015	Toxicology Reports, 2: 1086-1100.	Rhodium (II) citrate	NR	NR	NR	NR	Balb/c	Mice	Partial	12 weeks	Intraperitonal	44 d
Williams et al.	1082	Toxicol Appl Pharmacol, 63: 461-469.	Rhodium (III) chloride, hydrate	NR	RhCl3-2.88H2O	NR	NR	BALB/c	Mouse	NR	NR	Intraperitonal	14 d
winnanis et al.	1982	Studies on the toxicity of rhodium trichloride		INK	KIIC13=2.881120		INK	BALD/C	Wouse	NK	IVIK	intraperitonai	14 u
Landolt et al.	1071	in rats and rabbits Toxicol Appl Pharmacol., 21(4): 589-90.	Rhodium (III) chloride	NR	RhC13	Phosphate Buffer Solution	NR	Sprague-Dawley	Rat	Partial	63 days old	Intravenous	Once
Landoit et al.	1971	Studies on the toxicity of rhodium trichloride		INK	KIICIS	Phosphate Burler Solution	INK	Sprague-Dawrey	Kai	ratuai	05 days old	muavenous	Once
		in rats and rabbits Toxicol Appl											
Landolt et al.		Pharmacol., 21(4): 589-90.	Rhodium (III) chloride	NR	RhCl3	Phosphate Buffer Solution	NR	New Zealand White Rabbits	Rabbit	Partial	63 days old	Intravenous	Once
Williams et al.	1982	Toxicol Appl Pharmacol, 63: 461-469.	Rhodium (III) chloride, hydrate	NR	RhCl3-2.88H2O	NR	NR	Drosophila melanogaster	Fruit fly	Partial	0-1 day old	Oral	4 d
Iavicoli, I., V. Leso, L. Fontana, A. Marinaccio, A. Bergamaschi, E.J. Calabrese,		The effects of rhodium on the renal function of female Wistar rats. Chemosphere, 104: 120-125.	Rhodium (III) chloride, hydrate	NR	RhCl3	Sale Considered but not expected	NR	Wistar rats	Rat	Partial	3 months	Oral	14 days
Iavicoli, I., V. Leso, L. Fontana, A. Marinaccio, A.		The effects of rhodium on the renal function	Knoulun (III) chioride, nyurate	INK	KIICIS	Salt Considered but not reported	INK	wistai fais	Kat	rattai	5 monuis	Utai	14 days
Bergamaschi, E.J. Calabrese,		of female Wistar rats. Chemosphere, 104: 120-125.	Rhodium (III) chloride, hydrate	NR	RhCl3	Salt Considered but not reported	NR	Wistar rats	Rat	Partial	3 months	Oral	14 days
Iavicoli, I., V. Leso, L. Fontana, A. Marinaccio, A.		The effects of rhodium on the renal function	Knodium (III) emoride, nydrate	INK	KIICIS	San Considered but not reported	INK	wistai fais	Kat	rattai	5 monuis	Utai	14 days
Bergamaschi, E.J. Calabrese,		of female Wistar rats. Chemosphere, 104: 120-125.	Rhodium (III) chloride, hydrate	NR	RhC13	Salt Considered but not reported	NR	Wistar rats	Rat	Partial	3 months	Oral	14 days
		The effects of rhodium on the renal function of female Wistar rats. Chemosphere, 104:											
Iavicoli, I., V. Leso, L		120-125.	Rhodium (III) chloride, hydrate	NR	RhCl3	Salt Considered but not reported	NR	Wistar rats	Rat	Partial	3 months	Oral	14 days
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Eisenia andrei	Earthworm	Partial	NR	Soil	28 day
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Eisenia andrei	Earthworm	Partial	NR	Soil	56 day
	2017		N <i>V</i>							D		a 1	
Aquatox Aquatox	2017 2017		Rhodium Rhodium	NR NR	in 5% HCl in 5% HCl	Autoclaved dilution water Autoclaved dilution water	NR NR	Eisenia andrei Hordeum vulgare	Earthworm Barley	Partial Partial	NR Seed	Soil Soil	56 day 14 d
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Hordeum vulgare	Barley	Partial	Seed	Soil	14 d
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Hordeum vulgare	Barley	Partial	Seed	Soil	14 d
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Hordeum vulgare	Barley	Partial	Seed	Soil	14 d
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Hordeum vulgare	Barley	Partial	Seed	Soil	14 d
Aquatox Aquatox	2017 2017		Rhodium Rhodium	NR NR	in 5% HCl in 5% HCl	Autoclaved dilution water Autoclaved dilution water	NR NR	Medicago sativa Medicago sativa	Alfalfa Alfalfa	Partial Partial	Seed	Soil Soil	21 d 21 d
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Medicago sativa Medicago sativa	Alfalfa	Partial	Seed	Soil	21 d
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Medicago sativa	Alfalfa	Partial	Seed	Soil	21 d
Aquatox	2017		Rhodium	NR	in 5% HCl	Autoclaved dilution water	NR	Medicago sativa	Alfalfa	Partial	Seed	Soil	21 d
		Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans to palladium, platinum and			NID								
Schertzinger et al.		rhodium Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans to palladium, platinum and	Rhodium	NR	NR	HCI	NR	Caenorhabditis elegans	Nematode	Partial	Larvae	Exposure medium	1 96 hour
Schertzinger et al.	2017	rhodium	Rhodium	NR	NR	HCl	NR	Caenorhabditis elegans	Nematode	Partial	Larvae	Exposure medium	96 hour
		Assessment of sublethal endpoints after chronic exposure of the nematode Caenorhabditis elegans to palladium, platinum and											
Schertzinger et al.	2017	rhodium	Rhodium	NR	NR	HCl	NR	Caenorhabditis elegans	Nematode	Partial	Larvae	Exposure medium	96 hour

					KII				
	1	T		Results		CanNo	orth Team	Classification	
Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/kg dry soil)	Ranking of Study (Selected, Consulted, Not Acceptable)	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group
Mortality	LD50	> 107.5 mg/kg b	Consulted	-	Intraperitoneal exposure	KJW	15/03/2017	Consulted	Laboratory Rodent
								Consulted	Laboratory Rodent
Mortality	LD50	> 400 mg/kg bw	Consulted	-	Intraperitoneal exposure	КJW	15/03/2017		
Mortality	LD50	144 mg/kg bw	Consulted	WHO EHC	Intraperitoneal exposure	KJW	28/02/2017	Consulted	Laboratory Rodent
Mortality	LD50	198 mg/kg	Consulted		Intravenous exposure	NT	10/04/2017	Consulted	Laboratory Rodent
Mortality	LD50	215 mg/kg	Consulted	a	Intravenous exposure	NT	10/04/2017	Consulted	Laboratory Mammal
Mortality	LD50	576 mg/kg bw	Consulted	WHO EHC	Not Scored	KJW	28/02/2017	Consulted	Insect
								Unacceptable	Laboratory Rodent
Renal Function (RBP)	LOAEC	0.1 mg/L	Not acceptable	Renal function not acceptable endpoint	Statistical tests completed, well described protocol	NT	10/04/2017		
Renal Function (RBP)	NOAEC	0.01 mg/L	Not acceptable	Renal function not acceptable endpoint	Statistical tests completed, well described protocol	NT	10/04/2017	Unacceptable	Laboratory Rodent
Renal Function (b2-microglobulin)	LOAEC	1 mg/L	Not acceptable	Renal function not acceptable endpoint	Statistical tests completed, well described protocol	NT	10/04/2017	Unacceptable	Laboratory Rodent
Renal Function (b2-microglobulin)	NOAEC	0.1 mg/L	Not acceptable	Renal function not acceptable endpoint	Statistical tests completed, well described protocol	NT	10/04/2017	Unacceptable	Laboratory Rodent
Survival	LC50	> 15 ug/g	Consulted	Other endpoints		KJW	21/02/2019	Consulted	Earthworm
Reproductive Success	IC25	6.64 ug/g	Selected			KJW	21/02/2019	Selected	Earthworm
Reproductive Success								Consulted	Earthworm
Growth	IC25 EC50	<0.234 ug/g > 20 ug/g	Consulted Consulted	"<" and reproduction endpoint more relevant		KJW KJW	21/02/2019 22/02/2019	Consulted	Plant
Emergence Shoot Length	IC25	> 20 ug/g > 20 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Shoot Weight	IC25	> 20 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Root Length	IC25	7.3 ug/g	Selected			KJW	22/02/2019	Selected	Plant
Root Dry Weight	IC25	> 20 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Emergence Shoot Length	EC50 IC25	> 10 ug/g > 10 ug/g	Consulted Selected			KJW KJW	22/02/2019 22/02/2019	Consulted Selected	Plant Plant
Shoot Weight	IC25	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Root Length	IC25	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Root Dry Weight	IC25	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Growth	EC50	>10000 ug/L	Consulted	aquatic toxicity test		NT	29/04/2019	Unacceptable	Nematode
Fertility	EC50	>10000 ug/L	Consulted	aquatic toxicity test		NT	29/04/2019	Unacceptable	Nematode
Reproduction	EC50	>10000 ug/L	Consulted	aquatic toxicity test		NT	29/04/2019	Unacceptable	Nematode

		Literature Citation			Cł			Test Organism(s)	
Author(s)	Year	Journal/Report/Vol/Pages	Chemical Name	Chemical CAS	Formulation/ Form	Carrier Solvent	Background Concentration	Species Latin Name	Species Common Name	Life Stage Exposure (full, partial in vitro)
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-600/1-76-010a	Ruthenium chloride	NR	RuCl3	NR	NR	Sprague-Dawley	Rat	NR
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-600/1-76-010a	Ruthenium chloride	NR	RuCl3	NR	NR	Sprague-Dawley	Rat	NR
Holbrook et al.	1976	Assessment of Toxicity of Automotive Metallic Emissions, Volume 1. EPA-600/1-76-010a	Ruthenium chloride	NR	RuCl3	NR	NR	Sprague-Dawley	Rat	NR
Aquatox	2017		Ruthenium	NR	in 5% HCl	Autoclaved dilution water	NR	Eisenia andrei	Earthworm	Partial
Aquatox	2017		Ruthenium	NR	in 5% HCl	Autoclaved dilution water	NR	Eisenia andrei	Earthworm	Partial
Aquatox	2017		Ruthenium	NR	in 5% HCl	Autoclaved dilution water	NR	Eisenia andrei	Earthworm	Partial
Aquatox	2017		Ruthenium	NR	in 5% HCl	Autoclaved dilution water	NR	U U	Barley	Partial
Aquatox	2017		Ruthenium	NR	in 5% HCl	Autoclaved dilution water	NR	Hordeum vulgare	Barley	Partial
Aquatox	2017		Ruthenium		in 5% HCl	Autoclaved dilution water	NR		Barley	Partial
Aquatox	2017		Ruthenium		in 5% HCl	Autoclaved dilution water	NR		Barley	Partial
Aquatox	2017		Ruthenium		in 5% HCl	Autoclaved dilution water	NR	U	Barley	Partial
Aquatox	2017		Ruthenium		in 5% HCl	Autoclaved dilution water	NR		Alfalfa	Partial
Aquatox	2017		Ruthenium		in 5% HCl	Autoclaved dilution water	NR	9	Alfalfa	Partial
Aquatox	2017		Ruthenium		in 5% HCl	Autoclaved dilution water	NR	Medicago sativa	Alfalfa	Partial
Aquatox	2017		Ruthenium		in 5% HCl	Autoclaved dilution water	NR		Alfalfa	Partial
Aquatox	2017		Ruthenium	NR	in 5% HCl	Autoclaved dilution water	NR	Medicago sativa	Alfalfa	Partial
Mello-Andrade		Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos.Biomedicine & Pharmacotherapy 107 (2018) 1082–1092.	RuMet	NR	NR	NR	NR	NR	Swiss Albino Mice	Partial
Mello-Andrade		Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos.Biomedicine & Pharmacotherapy 107 (2018) 1082–1092.	RuTrp	NR	NR	NR	NR	NR	Swiss Albino Mice	Partial

127
D

	1 - 1	
	Ru	
esi	ults	
	Ranking of Study	F

	Experimental	Design			ults		CanNo	orth Team	Classification			
Life Cycle Stage (age)	Exposure	Duration	Observed Adverse Effect (% Growth Reduction, % Germination Success, Etc.)	Endpoint (EC10, EC50, etc.)	Effect Concentration (mg/kg dry soil)	Ranking of Study (Selected, Consulted, Not Acceptable)	Rational and Details for Ranking	Notes on Study	Evaluator	Evaluation Date	Data Categorization	Group
NR	oral	14 d	Mortality	LD50	310 mg/kg bw	Selected	WHO EHC	Not scored	KJW	28/02/2017	Selected	Laboratory Rodent
NR	oral	14 d	Mortality	LD10	180 mg/kg bw	Selected	WHO EHC	Not scored	KJW	28/02/2017	Selected	Laboratory Rodent
NR	oral	14 d	Mortality	LD90	550 mg/kg bw	Selected	WHO EHC	Not scored	KJW	28/02/2017	Selected	Laboratory Rodent
NR	Soil	28 day	Survival	LC50	> 15 ug/g	Consulted	Other endpoints		KJW	21/02/2019	Consulted	Earthworm
NR	Soil	56 day	Reproductive Success	IC25	10.4 ug/g	Consulted			KJW	21/02/2019	Consulted	Earthworm
NR	Soil	56 day	Growth	IC25	3.14 ug/g	Selected			KJW	21/02/2019	Selected	Earthworm
Seed	Soil	14 d	Emergence	EC50	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Seed	Soil	14 d	Shoot Length	IC25	> 10 ug/g	Selected			KJW	22/02/2019	Selected	Plant
Seed	Soil	14 d	Shoot Weight	IC25	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Seed	Soil	14 d	Root Length	IC25	< 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Seed	Soil	14 d	Root Dry Weight	IC25	< 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Seed	Soil	21 d	Emergence	EC50	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Seed	Soil	21 d	Shoot Length	IC25	> 10 ug/g	Selected			KJW	22/02/2019	Selected	Plant
Seed	Soil	21 d	Shoot Weight	IC25	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Seed	Soil	21 d	Root Length	IC25	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
Seed	Soil	21 d	Root Dry Weight	IC25	> 10 ug/g	Consulted			KJW	22/02/2019	Consulted	Plant
NR	Oral Gavage	Single dose	Survival	LD50	>2000	Not acceptable	for complex		NT	29/04/2019	Unacceptable	Laboratory Rodent
NR	Oral Gavage	Single dose	Survival	LD50	>2000	Not acceptable	for complex		NT	29/04/2019	Unacceptable	Laboratory Rodent

APPENDIX C.1: AQUATOX AQUATIC TOXICITY DATA

234749

Work Order :

130
AquaTox Testing & Consulting Inc.
B-11 Nicholas Beaver Road
Puslinch, ON NOB 2JO
Tel. (519) 763-4412
Fax. (519) 763-4419

TOXICITY TEST REPORT

Ceriodaphnia dubia EPS 1/RM/21 Page 1 of 4

Sample Number :	52860									
SAMPLE IDENTIFICATION										
Company : Location : Test Item : Test Item Type : Storage Temperature : Test Item Description :	NWMO - Nuclear Waste Management Organization Toronto ON Ruthenium (1000 µg/mL Ru in 5% HCl) Chemical Ambient room temp. Dark brown liquid	Supplier : Chemical Batch Date Received : Time Received : Date Tested :	2017-11-03							
Test Method :	Test of Reproduction and Survival using the Cladoceran Canada, Conservation and Protection. Ottawa, Ontario. (February 2007), with deviation(s) as noted.	*								

			7-DAY TEST RESULTS												
Effect Endpoint		Value	Inhibition Significantly Less than (% of Control? Control)		Calculation Method										
Reproduction	tion IC25 >100 μg/L 6.46% No (α=		No (α= 0.05)	Wilcoxon Rank Sum Two-Sample Test ^a											
Survival	LC50	$>100 \ \mu\text{g/L}$	0.0%	No (α= 0.05)	-										
Results are based on nominal concentrations of the test item (v/v). The results reported relate only to the item tested and as received. SODIUM CHLORIDE REFERENCE TOXICANT DATA															
Date Tested : Test Duration :	:	2018-01-03 6 days		Analyst(s) :	XD, JL, MA										
IC25 Reproduction : 95% Confidence Limits : Statistical Method : Historical Mean IC25 : Warning Limits (± 2SD)		Linear Interpo 1.34 g/L	olation (CET	(IIS) ^a Statistical M Historical M	I ()										

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

TEST CONDITIONS

Sample Filtration :	None	Test Volume per Replicate	· 15 mI
Test Aeration :	None	Test Vessel :	19 mL polystyrene vial
pH Adjustment :	None	Depth of Test Solution :	4.8 cm
Hardness Adjustment :	None	Organisms per Replicate :	1
Daily Renewal Method :	Transferred to fresh solutions	Number of Replicates :	10
Control/Dilution Water :	Well water (no chemicals added)	Test Method Deviation(s) :	See 'Comments'

COMMENTS

Noted Deviation(s): According to the test method, a single sample may be used throughout the test if divided into at least 3 separate containers (i.e. three or more sub-samples) upon preparation. However, the test concentrations for this test were stored in a single container for the duration of the test.

Note: A single-concentration test was conducted.

•All test validity criteria as specified in the test method cited above were satisfied.

• The exposure concentration was confirmed analytically, although test endpoints were generated using the nominal test concentration. The total and dissolved Ru concentration was measured at test start, at first renewal and at test end. These results were provided separately to NWMO.

											Ceriod	daphnia dub EPS 1/RM		
Work Order :	234749											2 c		
Sample Number :	52860											2.0	τ T	
			TES	ГOR	GANIS	MS								
Test Organism :	Ceriodaphn	Ceriodaphnia dubia					Range of Age (at start of test) : 05:20 h - 08:50 h							
Organism Batch :	Cd17-12				Mean Brood Organism Mortality 1.7%									
Organism Origin :	Single in-ho	use ma	ss cult	ure	Ephippia in Culture : No									
Test Organism Origin	: Individual in	n-house	cultur	es										
]	Brood O	rganis	sm Ne	onate	Produ	ction				
Replicate :		1	2	3	4	5	6	7	8	9	10	Mean		
Total (third or subsequ	15	16	17	16	16	13	16	17	16	16	15.8			

131

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

28

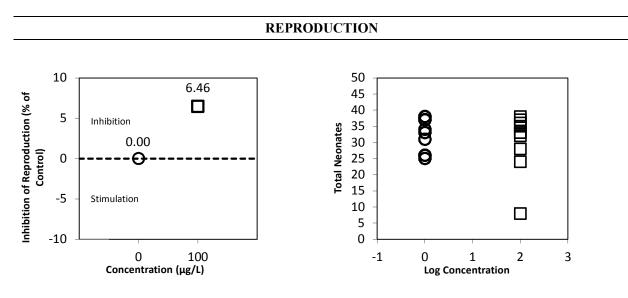
24

24

26

27

26


25

25.7

25

25

27

PREPARATION OF TEST SOLUTIONS

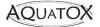
Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 10 mg/L (nominal) stock solution was prepared by thoroughly mixing 2 mL of 1000 mg/L ruthenium standard solution (in HCl) with reverse osmosis water for a total volume of 200 mL. The 10 mg/L stock solution was mixed with control/dilution water at a rate of 168 mL in 16.8 L in order to achieve a test solution of 100 μ g/L (nominal). A sub-sample was removed for initiating the test. The remainder was stored in a sealed container, in complete darkness, with minimal head space, at 4±2 °C for the duration of the test. Sub-samples for test renewal were removed daily and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, but without the addition of ruthenium standard.

REFERENCES

^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

Date: 2019-03-08

yyyy-mm-dd


AOUATOX

Total (first three broods):

Approved By :

Project Manager

TOXICITY TEST REPORT

Work Order :	234749
Sample Number :	52860

SURVIVAL AND REPRODUCTION DATA

Test Initiation Date :	2017-12-14
Initiation Time :	14:50
Test Completion Date :	2017-12-21

	Replicate								Mean	Treatment	Analyst(s)				
Control	Date	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	Average Mortality (%)	
	2017-12-15	1	0	0	0	0	0	0	0	0	0	0	0.0	0.0	RD
	2017-12-16	2	0	0	0	0	0	0	0	0	0	0	0.0	0.0	RD
	2017-12-17	3	0	0	0	0	0	0	0	0	0	0	0.0	0.0	RD
	2017-12-18	4	6	3	6	6	6	3	6	6	7	5	5.4	0.0	CZN
	2017-12-19	5	12	10	12	0	0	14	0	0	0	0	4.8	0.0	RD
	2017-12-20	6	0	0	0	15	16	0	17	12	15	14	8.9	0.0	RD
	2017-12-21	7	13	13	8	16	16	8	15	15	15	15	13.4	0.0	EJS
		Total	31	26	26	37	38	25	38	33	37	34	32.5 (±5.2)	0.0	

		Replicate Mean Treatment												
100 μg/L	Date	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	Average Mortality (%)
	2017-12-15	1	0	0	0	0	0	0	0	0	0	0	0.0	0.0
	2017-12-16	2	0	0	0	0	0	0	0	0	0	0	0.0	0.0
	2017-12-17	3	0	0	0	0	0	0	0	0	0	0	0.0	0.0
	2017-12-18	4	1	4	7	6	7	2	5	3	5	4	4.4	0.0
	2017-12-19	5	0	0	0	0	0	0	0	0	0	0	0.0	0.0
	2017-12-20	6	0	11	15	12	13	11	15	12	13	15	11.7	0.0
	2017-12-21	7	7	13	15	18	18	11	15	18	15	13	14.3	0.0
		Total	8 ²	28	37	36	38	24	35	33	33	32	30.4 (±8.9)	0.0

NOTES : •All young produced by a test organism during its fourth and subsequent broods were discarded and not included in the above counts. The presence of two or more neonates in any test chamber, during any given day of the test, constitutes a brood.

•² Outlier according to Grubbs Test (CETIS)^a. Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

TOXICITY TEST REPORT

Work Order : 234749

Sample Number : 52860

INITIAL WATER CHEMISTRY DATA

	Day 0 - 1	Day 1 - 2	Day 2 - 3	Day 3 - 4	Day 4 - 5	Day 5 - 6	Day 6 - 7
Date :	2017-12-14	2017-12-15	2017-12-16	2017-12-17	2017-12-18	2017-12-19	2017-12-20
Sub-sample Used	1	1	1	1	1	1	1
Temperature (°C)	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Dissolved O_2 (mg/L)	8.1	8.0	8.2	8.9	8.9	9.0	8.9
Dissolved O_2 Saturation (%) ³	100	100	100	108	108	109	109
pH	7.8	8.0	8.0	7.9	7.9	7.9	7.9
Pre-aeration Time (min) ⁴	0	0	0	20	20	20	20

	TE	ST WATE	R CHEM	STRY DA	ТА			
Analyst(s)	Initial	EJS	RD	RD	RD	CZN	RD	RD
Analysu(s)	Final	RD	RD	RD	CZN	RD	RD	EJS
Control								
Temp. (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0
	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Dissolved O_2 Saturation (%) ³	Initial	98	100	100	103	107	105	104
Dissolved O ₂ (mg/L)	Initial	8.0	7.9	8.2	8.3	8.8	8.4	8.3
	Final	7.6	7.4	7.5	7.2	7.2	7.4	7.7
pН	Initial	8.3	8.3	8.3	8.3	8.2	8.2	8.2
	Final	8.2	8.2	8.3	8.2	8.2	8.1	8.1
Conductivity (µmhos/cm)	Initial	727	722	727	724	724	723	726
Hardness (mg/L as CaCO ₃)		260	260	260	260	260	260	260
100 μg/L								
Temperature (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0
	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Dissolved O ₂ (mg/L)	Initial	8.1	8.0	8.2	8.7	8.9	8.8	8.7
	Final	7.6	7.8	7.6	7.2	7.1	7.4	7.9
pН	Initial	7.8	8.0	8.0	8.0	7.9	7.9	7.9
	Final	8.2	8.2	8.3	8.1	8.1	8.1	8.1
Conductivity (µmhos/cm)	Initial	729	730	725	723	723	724	733

"_" = not measured

³ % saturation (adjusted for actual temperature and barometric pressure)

 $^4 \leq 100$ bubbles/minute

AquaTox Testing & Consultin 374c. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

Fathead minnow EPS 1/RM/22 Page 1 of 4

Work Order :	234749
Sample Number :	52860

SAMPLE IDENTIFICATION								
Company :	NWMO - Nuclear Waste Management Organiz	Sigma-Aldrich®						
Location :	Toronto ON	Chemical Batch :	MKCB9445					
Test Item :	Ruthenium (1000 µg/mL Ru in 5% HCl)	Date Received :	2017-11-03					
Test Item Type :	Chemical	Time Received :	Not recorded					
Storage Temperature :	Ambient room temp.	Date Tested :	2017-12-14					
Test Item Description :	Dark brown liquid							
Test Method :	Test Method : Test of Larval Growth and Survival Using Fathead Minnows. Environment Canada, Conservation and							
	Protection. Ottawa, Ontario. Report EPS 1/RI	M/22, 2nd ed. (February 2)	011), with deviation(s) as noted.					

7-DAY TEST RESULTS								
Effect	Endpoint	Value	Inhibition (% of Control)	Significantly Less than Control?	Calculation Method			
Growth (from Biomass)	IC25	>100 µg/L	4.76%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a			
Survival	LC50	>100 µg/L	0.0%	Νο (α= 0.05)	-			

Results are based on nominal concentrations of the test item (v/v).

The results reported relate only to the item tested and as received.

POTASSIUM CHLORIDE REFERENCE TOXICANT DATA							
Date Tested : Organism Batch :	2017-12-07 Fm17-12	Analyst(s) : Test Duration :	XD, SEW, FS 7 days				
IC25 Growth (from Biomass) : 95% Confidence Limits : Statistical Method : Historical Mean IC25 : Warning Limits (± 2SD) :	1.00 g/L 0.82 - 1.11 g/L Non-Linear Regression (CETIS) ^a 0.97 g/L 0.84 - 1.12 g/L	LC50 : 95% Confidence Limits Statistical Method : Historical Mean LC50 : Warning Limits (± 2SD)	Spearman-Kärber (CETIS) ^a 1.14 g/L				

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

TEST CONDITIONS								
Test Organism :	Pimephales promelas	Test Type : Static Renewal						
Organism Batch :	Fm17-12	Control/Dilution Water : Well water (no chemicals add						
Organism Age :	~07:00 to \leq 24 h at start of test	Test Volume / Replicate : 300 mL						
Source :	In-house culture	Test Vessel : 420 mL polystyrene beaker						
Culture Mortality/Diseased :	0.2 % (previous 7 days)	Depth of Test Solution : 8 cm						
pH Adjustment :	None	Organisms per Replicate : 10						
Sample Filtration :	None	Number of Replicates : 4						
Hardness Adjustment :	None	Daily Renewal Method : 80-85% syphoned and replace						
Test Aeration :	None	Test Method Deviation(s) See 'Comments'						

COMMENTS

Noted Deviation(s): According to the test method, a single sample may be used throughout the test if divided into at least 3 separate containers (i.e. three or more sub-samples) upon preparation. However, test concentrations for this test were stored in a single container for the duration of the test.

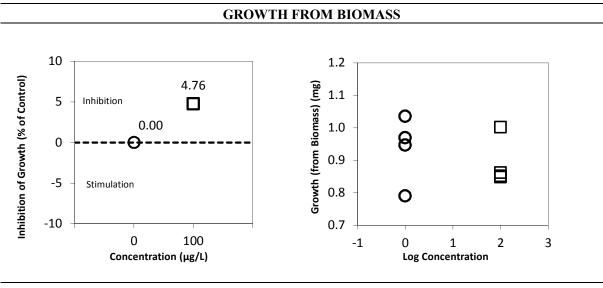
Note: A single-concentration test was conducted.

•All test validity criteria as specified in the test method cited above were satisfied.

•No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

•Inflated swim bladders were confirmed in all test organisms used in this test.

• The exposure concentration was confirmed analytically, although test endpoints were generated using the nominal test concentration. The total and dissolved Ru concentration was measured at test start, at first renewal and at test end. These results were provided separately to NWMO. Analyses of test item concentration were conducted by SGS Canada Inc., 185 Concession Street PO Box 4300, Lakefield ON Canada K0L 2H0.


Accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA)

AQUATOX

Fathead minnow EPS 1/RM/22 Page 2 of 4

Work Order :234749Sample Number :52860

PREPARATION OF TEST SOLUTIONS

Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 10 mg/L (nominal) stock solution was prepared by thoroughly mixing 2 mL of 1000 mg/L ruthenium standard solution (in HCl) with reverse osmosis water for a total volume of 200 mL. The 10 mg/L stock solution was mixed with control/dilution water at a rate of 168 mL in 16.8 L in order to achieve a test solution of 100 μ g/L (nominal). A sub-sample was removed for initiating the test. The remainder was stored in a sealed container, in complete darkness, with minimal head space, at 4±2 °C for the duration of the test. Sub-samples for test renewal were removed daily and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, but without the addition of ruthenium stock.

REFERENCES

^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

Date : 2019-03-08

yyyy-mm-dd

Approved By :

Project Manager

and the second sec	and
A	~~~
AOUA [*]	
AL JUA	
A MARCHINE	

Work Order :234749Sample Number :52860

TOXICITY TEST REPORT

Day 7

Treatment

N

Fathead minnow EPS 1/RM/22 Page 3 of 4

	CUMULATIVE DAILY CONTROL MORTALITY AND IMPAIRMENT									
Date :	2017-12-14	2017-12-15	2017-12-16	2017-12-17	2017-12-18	2017-12-19	2017-12-20	2017-12-21		
Dead and Impaired :	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
Standard Deviation :	(±0.0)	(±0.0)	(±0.0)	(±0.0)	(±0.0)	(±0.0)	(±0.0)	(±0.0)		

CUMULATIVE DAILY MORTALITY

Day 3

Day 4

Day 5

Day 6

Initiation Time :13:20Initiation Date :2017-12-14Completion Date :2017-12-21

Day 0 Day 1 Day 2 Date : 2017-12-14 2017-12-15 2017-12-16 Analyst(s): RD RD RD

	Date :	Date : 2017-12-14		2017-1	12-15	2017-	12-16	2017-	12-17	2017-	12-18	2017-1	12-19	2017-	12-20	2017-1	12-21	Mean Mortality
	Analyst(s):	RI)	RI	D	RI	C	R	D	CZ	N	RI	D	R	D	EJ	S	(± SD)
	Replicate	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	%
	А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Control	В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00 (±0.00)
0011101	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
100 µg/L	В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00 (±0.00)
µg/12	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Aberrant behaviour or swimming impairment : None

DRY WEIGHT AND BIOMASS DATA

	Replicate	Number of Larvae Exposed	Replicate Mean Dry Weight (mg)	Treatment Mean Biomass (mg)	Standard Deviation
	А	10	0.947		
Control	В	10	1.035	0.936	0.104
Control	С	10	0.790		
	D	10	0.970		
	Α	10	1.002		
100 μg/L	В	10	0.862	0.891	0.074
100 µg/1	С	10	0.848		
	D	10	0.852		

NOTES :

•No outlying data points were detected according to Grubbs Test (CETIS^a).

• Control average dry weight per surviving organism = 0.936 mg

Data Reviewed By: JL Date : ____2018-04-26

Work Order : Sample Number:	234749 52860							Tugo
		INITIAL V	VATER CH	EMISTRY	DATA			
		Day 0 - 1 2017-12-14	Day 1 - 2 2017-12-15	Day 2 - 3 2017-12-16	Day 3 - 4 2017-12-17	Day 4 - 5 2017-12-18	Day 5 - 6 2017-12-19	Day 6 - 7 2017-12-20
Sub-sample Used		1	1	1	1	1	1	1
Temperature (°C)		25.0	25.0	25.0	25.0	25.0	25.0	25.0
Dissolved O ₂ (mg/L)		8.1	8.0	8.2	8.9	8.9	9.0	8.9
Dissolved O ₂ Saturation (%)	2	100	100	100	108	108	109	109
рН		7.8	8.0	8.0	7.9	7.9	7.9	7.9
Pre-aeration Time (min) ³		0	0	0	20	20	20	20
		TEST W	ATER CHE	MISTRY I	DATA			
Analyst(s) :	Initial Final	EJS RD	RD RD	RD RD	RD CZN	CZN RD	RD RD	RD EJS
Control								
Temperature (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0
	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Dissolved O_2 Saturation (%) ²	Initial	98	100	100	103	107	105	104
Dissolved O ₂ (mg/L)	Initial	8.0	7.9	8.2	8.3	8.8	8.4	8.3
	Final	7.5	6.2	6.0	6.4	6.3	6.8	6.2
pН	Initial	8.3	8.3	8.3	8.3	8.2	8.2	8.2
	Final	8.2	7.9	7.9	7.9	7.8	7.8	7.8
Conductivity (µmhos/cm)	Initial	727	722	727	724	724	723	726
Hardness (mg/L as CaCO ₃)		260	260	260	260	260	260	260
100 μg/L								
Temperature (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0
	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Dissolved O ₂ (mg/L)	Initial	8.1	8.0	8.2	8.7	8.9	8.8	8.7
	Final	7.6	6.8	6.2	6.5	6.5	6.7	6.5
рН	Initial	7.8	8.0	8.0	8.0	7.9	7.9	7.9
	Final	8.1	7.8	7.8	7.8	7.9	7.8	7.8
Conductivity (µmhos/cm)	Initial	729	730	725	723	723	724	733

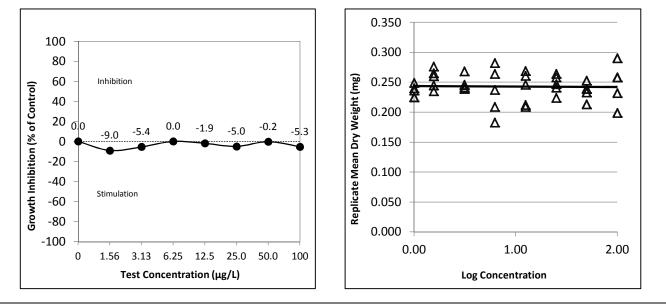
"-" = not measured

 2 % saturation (adjusted for actual temperature and barometric pressure)

Work Order :	234749
Sample Number :	52860

138 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2JO Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

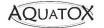

Hyalella azteca EPS 1/RM/33 Page 1 of 6

	SAMPLE IDENTIFICATIO	DN	
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®
Location :	Toronto ON	Chemical Batch	: MKCB9445
Test Item :	Ruthenium (1000 µg/mL Ru in 5% HCl)	Date Received :	2017-11-03
Test Item Type :	Chemical	Time Received :	Not recorded
Storage Temperature :	Ambient room temp.	Date Tested :	2018-03-21
Test Item Description :	Dark brown liquid		
Test Method :	Test for Survival and Growth in Sediment and Wate <i>azteca</i> . Environment Canada, Conservation and Pr. (2nd ed.), January, 2013, with deviation(s) as noted	otection. Ottawa,	1 1 1

14-DAY TEST RESULTS									
Effect	Endpoint	Value	95% Confidence Limits	Calculation Method					
Growth	IC25	>100 µg/L	_	_					
Survival	LC50	>100 µg/L	-	-					

Results are based on nominal concentrations of the test item (v/v).

The results reported relate only to the item tested and as received.


REFERENCE TOXICANT DATA

Substance :	Copper (as Copper Sulphate)	LC50 :	239 µg/L
Organism Batch :	Ha18-03	95% Confidence Limits :	182 - 312 μg/L
Test Date :	2018-03-21	Historical Mean LC50 :	273 µg/L
Test Duration :	96 hours	Warning Limits (± 2 SD) :	194 - 384 μg/L
Analyst(s) :	CN, MR, MA	Statistical Method :	Linear Regression (MLE) ^a

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

0

Date :	2019-03-08	Approved By :	Liph
	yyyy-mm-dd		Project Manager

TOXICITY TEST REPORT

			EFS T/KW/33							
Work Order :	234749		Page 2 of 6							
Sample Number :	52860									
TEST ORGANISM										
Species :	Hyalella azteca	Range of Age :	5 - 8 days old on day 0							
Source :	In-house culture	Culture Mortality :	0% (preceding 48 h)							
No organisms exhibit	ting unusual appearance, behavior	ur, or undergoing unusual trea	tment were used in the test.							
	TEST CO	ONDITIONS								
Test Type :	Static Renewal	Control/Dilution Water :	Well water (no chemicals added							
Test Duration :	14 days	Depth of Test Solution :	Approx. 9.5 cm							
Renewal Frequency :	Every other day	Test Vessel :	300 mL pyrex beaker							
Renewal Method :	80-85% syphoned and replaced	Volume per Replicate	275 mL per replicate							
Field Replicates :	Not applicable	Hardness Adjustment :	None							
Test Replicates :	5	pH Adjustment :	None							
Organisms per Replicate :	10	Sample Filtration :	None							
Organisms per Test Level	: 50	Test Aeration :	None							
Feed Type :	YCT	Test Aeration Rate :	Not applicable							
Feeding Frequency :	Once daily	Photoperiod (light/dark) :	16 h / 8 h							
Food Ration (per replicate)	:~6.3 mg dry solids	Light Intensity :	651 - 839 lux							
Substrate :	3 cm ² Nytex mesh	Test Method Deviations :	Yes (see 'Comments')							

PREPARATION OF TEST SOLUTIONS

Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 10 mg/L (nominal) stock solution was prepared by thoroughly mixing 5 mL of 1000 mg/L ruthenium standard solution (in HCl) with reverse osmosis water for a total volume of 500 mL. The 10 mg/L stock solution was mixed thoroughly. Appropriate amounts of the 10 mg/L stock solution were mixed with control/dilution water to achieve the desired test concentrations. A sub-sample of each test concentration was removed for initiating the test. The remainder of each test concentration was stored in a sealed container, in complete darkness, with minimal head space, at 4 ± 2 °C for the duration of the test. Sub-samples for test renewal were removed prior to renewal, and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, but without the addition of ruthenium stock.

COMMENTS

Noted Deviation(s) : According to the test method, a single sample may be used throughout the test if divided into at least 3 separate containers (i.e. three or more sub-samples) upon preparation. However, test concentrations for this test were stored in a single container for the duration of the test.

•All test validity criteria as specified in the test method cited above were satisfied.

•A negative value for inhibition (%) indicates stimulation compared to the control.

• The lowest, middle and highest exposure concentrations were confirmed analytically, although test endpoints were generated using nominal test concentrations. The total and dissolved Ru concentrations were measured at test start, at first renewal and at test end. These results were provided separately to NWMO.

REFERENCES

^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

139

AQUATO Work Order : Sample Numb			140)		Т	OXICIT	Hyale	REPORT ella aztecci S 1/RM/33 Page 3 of		
-				M	ORTALIT	TY DATA					
Initiation Time Initiation Date Completion D	e:	10:10 2018-03-21 2018-04-04									
Test Day : Date : Analyst(s) :	0 2018-03-21 MA	2 2018-03-23 MA	3 2018-03-24 MR	6 2018-03-27 MA	8 2018-03-29 MA	10 2018-03-31 MA	12 2018-04-02 MA	14 2018-04-04 CN			
Concentratio (µg/L)	n Replicate	:	CUM	ULATIVE	DAILY	MORTAL	LITY		Mortality (%)		Standard Deviation
Control	A B C	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.00
	D E	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		
1.56	A B C	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.00
	D E	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		
3.13	A B C	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.00
	D E	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		
6.25	A B C D	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0	0.00
12.5	E A B	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.00
	C D E	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		
25.0	A B C	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.00
	D E	0 0	0 0	0	0 0	0 0	0 0	0 0	0		
50.0	A B C	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.00
	D E A	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.00
100	B C	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	U	0.00
	D E	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		

Test Data Reviewed By:_____ Date :____2018-06-26

TOXICITY TEST REPORT

AQUATOX

Hyalella azteca EPS 1/RM/33 Page 4 of 6

Work Order :234749Sample Number :52860

Concentration Replicate Average Weight Treatment Standard										
Concentration (µg/L)	Replicate	Average Weight per Organism (mg)	Treatment Average Weight per Organism (mg)	Standard Deviation						
	А	0.249	0.235	0.01						
Control	В	0.240								
	С	0.236								
	D	0.225								
	E	0.225								
	А	0.265	0.256	0.02						
1.56	В	0.260								
	С	0.276								
	D	0.235								
	E	0.245								
	А	0.245	0.248	0.01						
3.13	В	0.241								
	С	0.246								
	D	0.239								
	E	0.268								
	А	0.237	0.235	0.04						
6.25	В	0.183								
	С	0.209								
	D	0.282								
	E	0.264								
	А	0.269	0.239	0.03						
12.5	В	0.246								
	С	0.209								
	D	0.261								
	E	0.212								
	А	0.247	0.247	0.02						
25.0	В	0.241								
	С	0.258								
	D	0.264								
	Е	0.224								
	А	0.213	0.235	0.01						
50.0	В	0.233								
	С	0.239								
	D	0.239								
	Е	0.253								
	А	0.199	0.247	0.03						
100	В	0.258								
	С	0.232								
	D	0.290								
	Е	0.258								

Hyalella azteca EPS 1/RM/33

Page 5 of 6

INITIAL WATER CHEMISTRY DATA											
Test Day :	Day 0 - 2	Day 2 - 4	Day 4 - 6	Day 6 - 8	Day 8 - 10	Day 10 - 12	Day 12 - 1				
Analyst(s)	MA	MA	MR	MA	MA	MA	MA				
Date :	2018-03-21	2018-03-23	2018-03-25	2018-03-27	2018-03-29	2018-03-31	2018-04-0				
Sub-sample Used :	1	1	1	1	1	1	1				
Control											
Temperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O ₂ (mg/L)	8.2	8.8	9.2	9.8	9.7	10.0	9.2				
Dissolved O_2 Saturation (%) ³	97	105	109	117	116	120	109				
энээлтой 0 <u>2</u> эшинийн (70) эН	8.4	8.2	8.3	8.2	8.2	8.2	8.2				
	741		734	729	729	732					
Conductivity (µmhos/cm)		733					731				
Pre-aeration Time (min) ⁴	0	20	20	20	20	20	20				
1.56											
Femperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O ₂ (mg/L)	8.2	8.8	9.6	9.7	9.7	10.0	9.5				
Dissolved O_2 Saturation (%) ³	-	105	113	116	116	119	112				
эΗ	8.4	8.2	8.3	8.2	8.2	8.2	8.2				
Conductivity (µmhos/cm)	748	735	739	735	736	737	742				
Pre-aeration Time (min) ⁴	0	20	20	20	20	20	20				
3.13		-	-	-							
5.15 Temperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O ₂ (mg/L)	8.3	8.8	9.4	9.5	9.7	10.3	9.3				
Dissolved O ₂ (hig/L) Dissolved O ₃ Saturation $(\%)^3$											
2 ()	-	105	111	114	116	122	110				
рН	8.4	8.2	8.3	8.2	8.2	8.2	8.2				
Conductivity (µmhos/cm)	742	734	735	735	736	736	741				
Pre-aeration Time (min) ⁴	0	20	200	20	20	20	20				
6.25											
Femperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O ₂ (mg/L)	8.3	8.9	9.9	9.6	10.0	9.9	9.5				
Dissolved O_2 Saturation (%) ³	-	107	112	114	119	117	112				
оН	8.4	8.2	8.2	8.2	8.2	8.2	8.2				
Conductivity (µmhos/cm)	744	734	728	735	736	736	741				
Pre-aeration Time (min) ⁴	0	20	20	20	20	20	20				
12.5											
Temperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O_2 (mg/L)	8.3	8.8	9.6	9.8	9.7	10.1	9.5				
Dissolved O_2 Saturation (%) ³	-	105	113	116	116	119	113				
рН	8.4	8.2	8.2	8.2	8.2	8.2	8.2				
Conductivity (µmhos/cm)	743	734	736	736	737	736	739				
Pre-aeration Time (min) ⁴	0	20	20	20	20	20	20				
	-										
25.0 Temperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O ₂ (mg/L)	8.4	8.8	9.6	9.6	10.0	10.1	9.4				
Dissolved O_2 Saturation (%) ³	-	106	111	114	119	120	111				
pH	8.3	8.1	8.2	8.2	8.2	8.1	8.2				
Conductivity (µmhos/cm)	742	736	736	736	736	738	740				
Pre-aeration Time (min) ⁴	0	20	20	20	20	20	20				
50.0											
Femperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O ₂ (mg/L)	8.4	8.8	9.3	9.4	10.0	10.2	9.5				
Dissolved O ₂ Saturation $(\%)^3$	-	105	110	112	120	121	112				
Н	8.3	8.0	8.1	8.1	8.1	8.1	8.1				
Conductivity (µmhos/cm)	744	734	736	736	736	739	740				
Pre-aeration Time (min) ⁴	0	20	20	20	20	20	20				
100		-	-	-							
IUU Femperature (°C)	23.0	24.0	24.0	24.0	23.0	23.0	23.0				
Dissolved O_2 (mg/L)	23.0 8.4	24.0 8.8	24.0 9.4	24.0 9.5	10.1	10.3	23.0 9.5				
Dissolved O_2 Saturation (%) ³	_	105	108	113	121	121	112				
pH	8.2	7.9	8.0	8.0	8.0	8.0	8.1				
Conductivity (µmhos/cm)	742	735	739	742	739	742	740				
Pre-aeration Time (min) ⁴	0	20	20	20	20	20	20				

"-" = not measured

 3 % saturation (adjusted for actual temperature and barometric pressure) $^{4} \leq 100$ bubbles/minute

Work Order :

Sample Number :

234749

52860

Hyalella azteca EPS 1/RM/33

Page 6 of 6

WATER CHEMISTRY DATA											
Test Day : Date :		Day 0 - 2 2018-03-21	Day 2 - 4 2018-03-23	Day 4 - 6 2018-03-25	Day 6 - 8 2018-03-27	Day 8 - 10 2018-03-29	Day 10 - 12 2018-03-31	Day 12 - 1 2018-04-02			
Analyst(s)	Initial Final	MA MA	MA MR	MR MA	MA MA	MA MA	MA MA	MA CN			
Control								0.11			
Temperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ Saturation (%) ³	Initial	97	103	105	115	116	118	108			
Dissolved O2 (mg/L)	Initial	8.2	8.7	8.8	9.7	9.7	10.0	9.2			
(iig 1)	Final	6.1	4.8	4.4	4.4	4.3	4.9	4.7			
Н	Initial	8.4	8.3	8.3	8.2	8.2	8.2	8.2			
	Final	8.0	7.9	7.8	7.8	7.8	7.9	7.9			
Conductivity (µmhos/cm)	Initial	741	734	733	730	728	735	737			
.56											
Cemperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ (mg/L)	Initial	8.2	8.7	8.7	9.6	9.7	10.0	9.4			
	Final	6.6	4.3	4.9	4.4	4.0	4.9	4.8			
Н	Initial	8.4	8.3	8.3	8.2	8.2	8.2	8.2			
	Final	8.1	7.8	7.8	7.8	7.8	7.9	7.9			
Conductivity (µmhos/cm)	Initial	748	732	733	734	729	736	737			
.13											
Cemperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ (mg/L)	Initial	8.3	8.7	8.8	9.5	9.7	10.0	9.3			
	Final	6.1	4.6	5.7	4.7	4.6	4.8	4.9			
Н	Initial	8.4	8.3	8.3	8.2	8.2	8.2	8.2			
	Final	8.0	7.9	7.9	7.8	7.8	7.8	7.8			
conductivity (µmhos/cm)	Initial	742	734	735	734	735	736	737			
.25											
emperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ (mg/L)	Initial	8.3	8.8	8.9	9.6	9.7	9.7	9.5			
	Final	5.9	4.8	5.0	4.6	4.3	4.8	5.0			
Н	Initial	8.4	8.3	8.3	8.2	8.2	8.2	8.2			
	Final	8.0	7.9	7.9	7.8	7.9	7.8	7.9			
Conductivity (µmhos/cm)	Initial	744	734	734	735	736	737	737			
2.5											
emperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ (mg/L)	Initial	8.3	8.7	8.9	9.5	9.7	10.1	9.4			
	Final	6.3	4.9	4.9	4.8	3.9	4.5	4.7			
Н	Initial	8.4	8.3	8.2	8.2	8.2	8.2	8.2			
11	Final	8.0	7.9	7.9	7.8	7.7	7.8	7.8			
Conductivity (µmhos/cm)	Initial	743	734	736	736	736	737	739			
25.0 Femperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
r	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ (mg/L)	Initial	8.4	8.7	8.8	9.5	9.9	10.0	9.4			
21 0 /	Final	5.7	5.1	5.1	4.9	4.2	4.8	4.8			
Н	Initial	8.3	8.1	8.2	8.2	8.2	8.1	8.1			
	Final	8.0	7.8	7.8	7.8	7.8	7.8	7.8			
Conductivity (µmhos/cm)	Initial	742	736	737	736	736	737	737			
50.0											
emperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ (mg/L)	Initial	8.4	8.7	8.9	9.4	9.9	10.1	9.4			
	Final	5.6	5.2	4.8	4.7	4.8	4.9	5.1			
Н	Initial	8.3	8.1	8.1	8.1	8.1	8.1	8.1			
	Final	8.0	7.9	7.8	7.8	7.8	7.8	7.9			
conductivity (µmhos/cm)	Initial	744	735	737	735	736	737	738			
00											
emperature (°C)	Initial	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
	Final	23.0	23.0	23.0	23.0	23.0	23.0	23.0			
Dissolved O ₂ (mg/L)	Initial	8.4	8.7	9.0	9.4	10.0	10.1	9.4			
	Final	5.5	5.4	5.1	4.8	4.2	4.5	4.7			
Н	Initial	8.2	8.0	8.1	8.0	8.0	8.0	8.0			
	Final	7.9	7.8	7.8	7.8	7.7	7.8	7.8			
Conductivity (µmhos/cm)	Initial	742	735	738	735	735	736	737			

"_" = not measured

 3 % saturation (adjusted for actual temperature and barometric pressure)

Test Data Reviewed By : <u>JL</u> Date : 2018-06-27

144 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

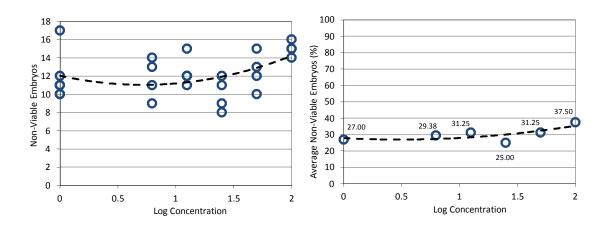
Salmonid E Test EPS 1/RM/28 Page 1 of 4

Work Order :234749Sample Number :52860

SAMPLE IDENTIFICATION										
Company :	NWMO - Nuclear Waste Management Organization	ation Supplier :	Sigma-Aldrich®							
Location :	Toronto ON	Chemical Batch :	MKCB9445							
Test Item :	Ruthenium (1000 µg/mL Ru in 5% HCl)	Date Received :	2017-11-03							
Test Item Type :	Chemical	Time Received :	Not recorded							
Storage Temperature :	Ambient room temp.	Initiation Date :	2018-12-13							
Test Item Description :	Dark brown liquid	Completion Date	: 2018-12-20							
Test Method :	Biological Test Method : Toxicity Tests Using	Early Life Stages of Sa	lmonid Fish							
	(Rainbow Trout). Environment Canada EPS 1/	RM/28 (Second Edition	n, July 1998).							

7-DAY TEST RESULTS									
Effect	Value	95% Confidence Limits	Calculation Method						
EC10	86.8 μg/L	1	Lincor Degracion (MLE)(CETIS) ^a						
	1.6	2	Linear Regression (MLE)(CETIS) ^a						
$EC10^2$	>100 µg/L	$50.8 - 810^3$	Linear Regression (MLE)(CETIS) ^a						
EC10	79.3 μg/L	$43.0 - 116^3$	Non-Linear Regression ^{4, 5} (CETIS) ^a						
EC25	>100 µg/L	_	_						
EC50	>100 µg/L	_	_						

The results reported relate only to the item tested and as received.


¹ Statistically valid 95% confidence limits could not be generated.

²After application of Abbott's Formula (Environment Canada, 2005)^b, for correction of control effects.

 3 An upper 95% confidence limit greater than the highest test concentration (100 µg/L) is statistically valid.

⁴ Binomial weighting was applied

⁵The model was a 2P linear with binomial weighting: $\mu = \alpha + \beta \cdot x$ where $\alpha = 0.7274$ and $\beta = -0.000917$.

COMMENTS

Noted Deviation(s) : •A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control.

• The exposure concentrations were confirmed analytically, although test endpoints were generated using the nominal test concentrations. Total and dissolved Ru concentrations were measured at test start, at the final renewal, and at test end. These results were provided separately to NWMO.

•All test validity criteria as specified in the test method (the average percentage of non-viable control embryos must be $\leq 30\%$) were satisfied.

AQUATOX		145	TOXICITY TEST REPORT
			Salmonid E Test
Work Order :	234749		EPS 1/RM/28
Sample Number :	52860		Page 2 of 4
	TEST	ORGANISM	
Test Organism :	Rainbow Trout (gamete/embryo)	Confirmation of Sperm Motility	Magnified observation
Species :	Oncorhynchus mykiss	Fertilization Procedure :	Dry mixing (15 min)
Gamete Source :	Lyndon Fish Hatcheries Inc.	Embryo Distribution :	Within 15 min of fertilization
Location :	New Dundee ON N0B 2E0	Female Broodstock used :	5
		Male Broodstock used :	6

No gametes or embryos exhibiting unusual appearance, or undergoing unusual treatment were used in the test.

TEST CONDITIONS

Test Type : Renewal Method : Renewal Frequency : Test Levels : Control Replicates :	Static Renewal E-test 80% syphoned and replaced \leq 24 hours 5 + 1 Control 6	Control/Dilution Water : pH Adjustment : Sample Filtration : Hardness Adjustment : Volume per Replicate :	Well water (no chemicals added) None None 2500 mL
Test Replicates :	4	Test Chamber :	4 L plastic pail
Test Aeration :	Yes	Depth of Test Solution :	8 cm
Pre-Aeration Rate :	6.5 ± 1 mL/min/L	Organisms per Replicate :	40
Aeration Rate :	≤ 100 bubbles/min/chamber	Organisms per Test Level :	160
		Test Method Deviation(s):	See 'Comments'

PREPARATION OF TEST SOLUTIONS

Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 20 mg/L (nominal) stock solution was prepared by thoroughly mixing 20 mL of 1000 mg/L ruthenium standard solution (in HCl) with reverse osmosis water for a total volume of 1000 mL. Appropriate volumes of the 20 mg/L stock solution were mixed with control/dilution water to achieve the desired test concentrations. Sub-samples of each test solution were removed for initiating the test. The remaining test solutions were stored in a sealed containers, in complete darkness, with minimal head space, at 4±2 °C for the duration of the test. Sub-samples for test renewal were removed daily and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, bu without the addition of ruthenium stock.

REFERENCES

^a CETIS[™], © 2000-2018. V.1.9.4.7. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

^b Environment Canada, 2005. Guidance Document on Statistical Methods for Environmental Toxicity Tests. Environmental Protection Series, Ottawa, Ont., Rept. EPS 1/RM/46.

2019-03-08 Date :

Approved By :

yyyy-mm-dd

Project Manager

Work Order : 234749 Sample Number : 52860

TOXICITY TEST REPORT Salmonid E Test EPS 1/RM/28 Page 3 of 4

DAY 7 VIABILITY DATA

Completion Date : 2018-12-20

Analyst(s): FS/AS/SK/MR

Concentration µg/L	Replicate	Day 0 Viable	Day 7 Viable	Day 7 Non-Viable	Average Non-Viable	Non-Viable (%)	Average Non-Viable (%)	Standard Deviation
Control	А	40	23	17 ⁶	10.80	42.50	27.00	2.09
	В	40	28	12		30.00		
	С	40	29	11		27.50		
	D	40	29	11		27.50		
	Е	40	30	10		25.00		
	F	40	30	10		25.00		
6.25	А	40	31	9	11.75	22.50	29.38	5.54
	В	40	27	13		32.50		
	С	40	29	11		27.50		
	D	40	26	14		35.00		
12.5	А	40	29	11	12.50	27.50	31.25	4.33
	В	40	28	12		30.00		
	С	40	28	12		30.00		
	D	40	25	15		37.50		
25	А	40	31	9	10.00	22.50	25.00	4.56
	В	40	29	11		27.50		
	С	40	32	8		20.00		
	D	40	28	12		30.00		
50	А	40	28	12	12.50	30.00	31.25	5.20
	В	40	27	13		32.50		
	С	40	30	10		25.00		
	D	40	25	15		37.50		
100	А	40	24	16	15.00	40.00	37.50	2.04
	В	40	26	14		35.00		
	С	40	25	15		37.50		
	D	40	25	15		37.50		

• ⁶Outlier according to Grubbs Test ^b. The outlying data point was excluded from statistical analysis.

146

Work Order :234749Sample Number :52860

Page 4 of 4

WATER CHEMISTRY DATA

Test Day		Day 0-1	Day 1-2	Day 2-3	Day 3-4	Day 4-5	Day 5-6	Day 6-7
Date :		2018-12-13 1	2018-12-14 1	2018-12-15 1	2018-12-16 2	2018-12-17 2	2018-12-18 3	2018-12-19
Sub-sample Used Temperature (°C)		14.0	114.0	1 14.0	2 14.0	2 14.0	3 14.0	3 14.0
Dissolved O_2 (mg/L)		9.6	9.6	9.6	9.5	9.5	9.6	9.6
Dissolved O_2 (mg/2) ⁷ Dissolved O_2 Saturation (%) ⁷		100	100	100	100	100	100	100
Pre-aeration Time (hh:mm)		00:30	00:30	00:30	00:30	00:30	00:30	00:30
rie-actation rine (mi.min)		00.50	00.50	00.50	00.50	00.50	00.50	00.50
Analyst(s) :		FS	FS	FS	FS	FS	FS	AS
Control								
Temperature (°C)	Initial	15.0	15.0	15.0	14.5	14.0	14.0	14.0
	Final	15.0	15.0	15.0	14.5	14.5	14.5	14.5
Dissolved O_2 Saturation (%) ⁷	Initial	100	100	99	99	100	100	100
Dissolved O ₂ (mg/L)	Initial	9.7	9.6	9.5	9.5	9.6	9.6	9.6
	Final	8.7	9.2	9.3	9.2	9.3	9.2	9.3
pH	Initial	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	Final	8.2	8.2	8.2	8.2	8.2	8.2	8.2
Conductivity (µmhos/cm)	Initial	825	824	799	759	755	742	779
6.25 μg/L								
Temperature (°C)	Initial	15.0	15.0	15.0	14.5	14.0	14.0	14.0
	Final	15.0	15.0	15.0	14.5	14.5	14.5	14.5
Dissolved O ₂ (mg/L)	Initial	9.7	9.6	9.5	9.4	9.5	9.5	9.4
	Final	8.7	9.1	9.2	9.1	9.2	9.0	9.4
pH	Initial	8.0	8.0	8.1	8.1	8.1	8.1	8.0
	Final	8.2	8.2	8.2	8.2	8.2	8.2	8.2
Cond. (µmhos)	Initial	824	821	815	809	807	809	807
12.5 μg/L								
Temperature (°C)	Initial	15.0	15.0	15.0	14.5	14.0	14.0	14.0
1	Final	15.0	15.0	15.0	14.5	14.5	14.5	14.5
Dissolved O ₂ (mg/L)	Initial	9.7	9.5	9.5	9.5	9.5	9.6	9.5
	Final	9.1	9.2	9.1	9.0	9.0	9.2	9.4
pH	Initial	8.0	8.0	8.1	8.0	8.0	8.0	8.0
	Final	8.1	8.1	8.1	8.2	8.1	8.1	8.3
Conductivity (µmhos/cm)	Initial	825	824	817	814	811	809	807
25 μg/L								
Temperature (°C)	Initial	15.0	15.0	15.0	14.5	14.0	14.0	14.0
	Final	15.0	15.0	15.0	14.5	14.5	14.5	14.5
Dissolved O ₂ (mg/L)	Initial	9.7	9.6	9.6	9.6	9.5	9.6	9.5
	Final	8.9	9.2	9.0	8.9	8.9	9.0	9.3
pH	Initial	7.9	8.0	8.0	8.0	7.9	7.9	7.9
	Final	8.1	8.1	8.1	8.2	8.0	8.1	8.3
Cond. (µmhos)	Initial	822	824	821	811	809	811	809
50 μg/L								
Temperature (°C)	Initial	15.0	15.0	15.0	14.5	14.0	14.0	14.0
	Final	15.0	15.0	15.0	14.5	14.5	14.5	14.5
Dissolved O ₂ (mg/L)	Initial	9.6	9.6	9.6	9.6	9.5	9.5	9.4
	Final	9.0	9.2	8.9	9.2	9.2	9.1	9.3
pН	Initial	7.8	7.9	7.9	8.0	7.9	7.9	7.9
	Final	8.1	8.2	8.2	8.2	8.2	8.2	8.2
Conductivity (µmhos/cm)	Initial	820	818	810	805	807	807	805
100 μg/L								
Temperature (°C)	Initial	15.0	15.0	15.0	14.5	14.0	14.0	14.0
P 1 1 P (P)	Final	15.0	15.0	15.0	14.5	14.5	14.5	14.5
Dissolved O ₂ (mg/L)	Initial	9.7	9.6	9.6	9.6	9.6	9.6	9.5
	Final	8.9	9.3	9.0	9.2	9.2	9.0	9.3
pH	Initial	7.8	7.8	8.0	8.0	7.9	8.0	7.8
Conductivity (1 /	Final	8.1	8.2	8.3	8.3	8.3	8.3	8.2
Conductivity (µmhos/cm)	Initial	812	814	809	804	805	808	807

"-" = not measured/not required

⁷ % saturation (adjusted for temperature and barometric pressure)

Test Data Reviewed By :
 JL

 Date :
 2019-02-12

148 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Ceriodaphnia dubia EPS 1/RM/21 Page 1 of 4

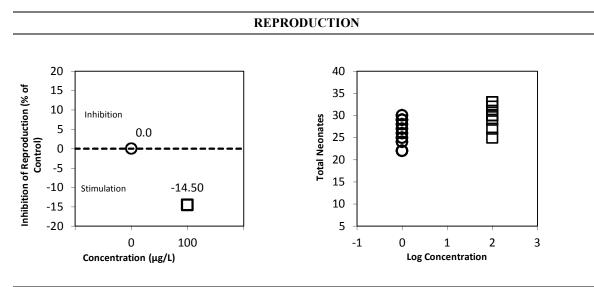
Work Order :	Fax. (519) 763-4419 234748		Page 1
Sample Number :	52859		
	SAMPLE IDE	NTIFICATION	
Company : Location : Test Item : Test Item Type : Storage Temperature : Test Item Description : Test Method :	NWMO - Nuclear Waste Managemen Toronto ON Rhodium (1000 μg/mL Rh in 5% HC Chemical Ambient room temp. Dark pink liquid Test of Reproduction and Survival us Canada, Conservation and Protection 2007), with deviation(s) as noted.	Chemical Batch : Cl) Date Received : Time Received : Date Tested : sing the Cladoceran <i>Ceriodaphnia</i>	2017-11-03 Not recorded 2017-12-14 <i>dubia</i> . Environment
	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	T RESULTS	
Effect Endpoin		Significantly Less than Control?	Calculation Method
Reproduction IC25	>100 µg/L -14.50%	No (α= 0.05)	_
Survival LC50	>100 µg/L 0.0%	No (α= 0.05)	_
		ncentrations of the test item (v/v) . to the item tested and as received.	
	SODIUM CHLORIDE REFI	ERENCE TOXICANT DATA	
Date Tested : Test Duration :	2018-01-03 6 days	Analyst(s) :	XD, JL, MA
IC25 Reproduction : 95% Confidence Limits Statistical Method : Historical Mean IC25 : Warning Limits (± 2SD	Linear Interpolation (CETIS) ^a 1.34 g/L	LC50 : 95% Confidence Limits : Statistical Method : Historical Mean LC50 : Warning Limits (± 2SD) :	2.10 g/L 1.84 - 2.39 g/L Spearman-Kärber (CETIS) ^a 2.22 g/L 1.86 - 2.65 g/L
The reference	toxicity test was performed under the same	experimental conditions as those used	with the test sample.
	TEST CO	NDITIONS	
Sample Filtration : Test Aeration : pH Adjustment : Hardness Adjustment : Daily Renewal Method Control/Dilution Water	None None None : Transferred to fresh solutions : Well water (no chemicals added)	Test Volume per Replicate : Test Vessel : Depth of Test Solution : Organisms per Replicate : Number of Replicates : Test Method Deviation(s) :	15 mL 19 mL polystyrene vial 4.8 cm 1 10 See 'Comments'
	COMM	MENTS	
Noted Deviation(s) :	According to the test method, a single 3 separate containers (i.e. three or motor for this test were stored in a single co	ore sub-samples) upon preparation.	However, test concentrations

Note: A single-concentration test was conducted.

•All test validity criteria as specified in the test method cited above were satisfied.

•A negative value for Inhibition (%) indicates stimulation compared to the Control.

• The exposure concentration was confirmed analytically, although test endpoints were generated using the nominal test concentration. The total and dissolved Rh concentration was measured at test start, at first renewal and at test end. These results were provided separately to NWMO.


Ceriodaphnia dubia EPS 1/RM/21 2 of 4

Work Order :	234748
Sample Number :	52859

			TES	T OR	GANIS	MS						
Test Organism :	Ceriodaphn	ia dubio	r		Range	of Age	e (at sta	urt of te	est) :	05:001	h - 08:3	30 h
Organism Batch :	Cd17-12	1			Mean Brood Organism Mortality : 5%							
Organism Origin :	Single in-house mass culture			Ephippia in Culture : No								
Test Organism Origin :	Individual in	1-house	cultur	es								
					Brood (Organi	sm Ne	onate	Produc	ction		
Replicate :		1	2	3	4	5	6	7	8	9	10	Mean
Total (third or subsequent brood):		25	13	15	13	15	17	14	15	16	17	16.0
Total (first three broods):292923				28	25	30	24	24	26	26	26.4	

149

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

PREPARATION OF TEST SOLUTIONS

Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 10 mg/L (nominal) stock solution was prepared by thoroughly mixing 2 mL of 1000 mg/L rhodium standard solution (in HCl) with reverse osmosis water for a total volume of 200 mL. The 10 mg/L stock solution was mixed with control/dilution water at a rate of 168 mL in 16.8 L in order to achieve a test solution of 100 μ g/L (nominal). A sub-sample was removed for initiating the test. The remainder was stored in a sealed container, in complete darkness, with minimal head space, at 4±2 °C for the duration of the test. Sub-samples for test renewal were removed daily and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, but without the addition of rhodium stock.

REFERENCES

^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

^bGrubbs, F.E., 1969. Procedures for detecting outlying observations in samples. Technometrics, 11:1-21.

Date :

2019-03-08

vvvv-mm-dd

Approved By :

Project Manager

EPS 1/RM/21

3 of 4

AQUATOX

Work Order :	234748
Sample Number :	52859

SURVIVAL AND REPRODUCTION DATA

Test Initiation Date :	2017-12-14
Initiation Time :	14:30
Test Completion Date :	2017-12-21

							Rep	licate					Mean Young	Treatment	Analyst(s)
Control	Date	Day	1	2	3	4	5	6	7	8	9	10	(±SD)	Average Mortality (%)	
	2017-12-15	1	0	0	0	0	0	0	0	0	0	0	0.0	0.0	RD
	2017-12-16	2	0	0	0	0	0	0	0	0	0	0	0.0	0.0	RD
	2017-12-17	3	0	0	0	0	0	0	0	0	0	0	0.0	0.0	RD
	2017-12-18	4	7	4	3	6	4	4	3	2	3	4	4.0	0.0	CZN
	2017-12-19	5	0	0	0	0	11	10	0	0	14	14	4.9	0.0	RD
	2017-12-20	6	4	5	9	9	0	0	12	14	0	0	5.3	0.0	RD
	2017-12-21	7	15	13	10	15	13	10	10	11	12	11	12.0	0.0	EJS
		Total	26	22	22	30	28	24	25	27	29	29	26.2 (±2.9)	0.0	

400 (7			Replicate								Mean	Treatment		
100 μg/L	Date	Day	1	2	3	4	5	6	7	8	9	10	Young (±SD)	Average Mortality (%)
	2017-12-15	1	0	0	0	0	0	0	0	0	0	0	0.0	0.0
	2017-12-16	2	0	0	0	0	0	0	0	0	0	0	0.0	0.0
	2017-12-17	3	0	0	0	0	0	0	0	0	0	0	0.0	0.0
	2017-12-18	4	4	4	5	7	5	1	4	5	6	6	4.7	0.0
	2017-12-19	5	10	13	0	0	10	14	0	0	0	0	4.7	0.0
	2017-12-20	6	0	0	13	15	0	0	11	13	12	14	7.8	0.0
	2017-12-21	7	11	13	12	10	12	14	16	12	15	13	12.8	0.0
		Total	25	30	30	32	27	29	31	30	33	33	30.0 (±2.5)	0.0

•All young produced by a test organism during its fourth and subsequent broods were discarded and not included in the above counts. The presence of two or more neonates in any test chamber, during any given day of the test, constitutes a brood.

•No outlying data points were detected according to Grubbs Test^b.

Work Order :	234748
Sample Number :	52859

INITIAL WATER CHEMISTRY DATA

	Day 0 - 1	Day 1 - 2	Day 2 - 3	Day 3 - 4	Day 4 - 5	Day 5 - 6	Day 6 - 7
Date :	2017-12-14	2017-12-15	2017-12-16	2017-12-17	2017-12-18	2017-12-19	2017-12-20
Sub-sample Used	1	1	1	1	1	1	1
Temperature (°C)	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Dissolved Oxygen (mg/L)	8.1	8.0	8.1	8.6	8.9	9.0	9.0
Dissolved Oxygen % Sat. ³	100	100	100	105	109	110	110
pH	7.9	7.9	7.9	7.9	7.9	7.9	7.9
Pre-aeration Time $(\min)^4$	0	0	0	20	20	20	20

TEST WATER CHEMISTRY DATA									
Analyst(s)	Initial	EJS	RD	RD	RD	CZN	RD	RD	
	Final	RD	RD	RD	CZN	RD	RD	EJS	
Control									
Temperature (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
Dissolved O_2 Saturation (%) ³	Initial	98	100	100	103	103	105	105	
Dissolved O ₂ (mg/L)	Initial	8.0	7.9	8.2	8.3	8.4	8.4	8.4	
	Final	7.6	7.6	7.8	7.3	7.0	6.8	7.7	
pН	Initial	8.3	8.3	8.3	8.3	8.2	8.2	8.2	
	Final	8.2	8.2	8.3	8.2	8.2	8.1	8.2	
Conductivity (µmhos/cm)	Initial	727	722	727	722	724	722	728	
Hardness (mg/L as CaCO ₃)		260	260	260	260	260	260	260	
100 µg/L									
Temperature (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0	
	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
Dissolved O ₂ (mg/L)	Initial	8.1	8.0	8.1	8.4	8.8	8.6	8.8	
	Final	7.6	7.4	7.6	7.3	7.1	7.2	7.8	
рН	Initial	7.9	7.9	7.9	7.9	7.9	7.9	7.9	
	Final	8.2	8.2	8.3	8.1	8.1	8.0	8.2	
Conductivity (µmhos/cm)	Initial	731	726	724	724	723	724	728	

"-" = not measured

³ % saturation (adjusted for actual temperature and barometric pressure)

 $^4 \leq 100$ bubbles/minute

234748

52859

Work Order :

Sample Number :

AquaTox Testing **152** Insulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Fathead minnow EPS 1/RM/22 Page 1 of 4

	SAMPLE IDEN I IFICATIO		
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®
Location :	Toronto ON	Chemical Batch :	MKBW7418V
Test Item :	Rhodium (1000 µg/mL Rh in 5% HCl)	Date Received :	2017-11-03
Test Item Type :	Chemical	Time Received :	Not recorded
Storage Temperature :	Ambient room temp.	Date Tested :	2017-12-14
Test Item Description :	Dark pink liquid		
Test Method :	Test of Larval Growth and Survival Using Fathead Minn	nows. Environment Canad	la, Conservation and
	Protection. Ottawa, Ontario. Report EPS 1/RM/22, 2n		

SAMDLE IDENTIFICATION

7-DAY TEST RESULTS											
Effect	Endpoint	Value	Inhibition (% of Control)	Significantly Less than Control?	Calculation Method						
Growth (from Biomass)	IC25	>100 µg/L	-9.12%	No (α= 0.05)	_						
Survival	LC50	>100 µg/L	0.0%	No (α= 0.05)	_						
	Results	are based on nomina	al concentrations of the	test item (v/v).							

The results reported relate only to the item tested and as received.

POTASSIUM CHLORIDE REFERENCE TOXICANT DATA

· · · · · · · · · · · · · · · · · · ·			
Date Tested :	2017-12-07	Analyst(s) :	XD, SEW, FS
Organism Batch :	Fm17-12	Test Duration :	7 days
IC25 Growth (from Biomass) :	1.00 g/L	LC50 :	1.19 g/L
95% Confidence Limits :	0.82 - 1.11 g/L	95% Confidence Limits :	1.13 - 1.26 g/L
Statistical Method :	Non-Linear Regression (CETIS) ^a	Statistical Method :	Spearman-Kärber (CETIS) ^a
Historical Mean IC25 :	0.97 g/L	Historical Mean LC50 :	1.14 g/L
Warning Limits (± 2SD) :	0.84 - 1.12 g/L	Warning Limits (± 2SD) :	1.01 - 1.28 g/L

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

TEST CONDITIONS								
Test Organism :	Pimephales promelas	Test Type :	Static Renewal					
Organism Batch :	Fm17-12	Control/Dilution Water :	Well water (no chemicals added)					
Organism Age :	~07:00 to \leq 24 h at start of test	Test Volume / Replicate :	300 mL					
Source :	In-house culture	Test Vessel :	420 mL polystyrene beaker					
Culture Mortality/Diseased :	0.2 % (previous 7 days)	Depth of Test Solution :	8 cm					
pH Adjustment :	None	Organisms per Replicate :	10					
Sample Filtration :	None	Number of Replicates :	4					
Hardness Adjustment :	None	Daily Renewal Method :	80-85% syphoned and replaced					
Test Aeration :	None	Test Method Deviation(s):	See 'Comments'					

COMMENTS

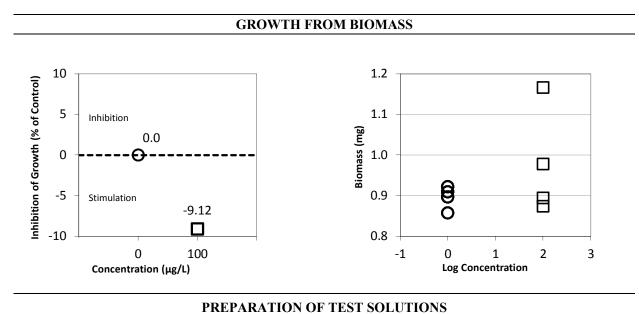
Noted Deviation(s) :

According to the test method, a single sample may be used throughout the test if divided into at least 3 separate containers (i.e. three or more sub-samples) upon preparation. However, test concentrations for this test were stored in a single container for the duration of the test.

Note: A single-concentration test was conducted.

•All test validity criteria as specified in the test method cited above were satisfied.

•No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.


•Inflated swim bladders were confirmed in all test organisms used in this test.

•A negative value for Inhibition (%) indicates stimulation compared to the Control.

• The exposure concentration was confirmed analytically, although test endpoints were generated using the nominal test concentration. The total and dissolved Rh concentration was measured at test start, at first renewal and at test end. These results were provided separately to NWMO.

Work Order :234748Sample Number :52859

Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 10 mg/L (nominal) stock solution was prepared by thoroughly mixing 2 mL of 1000 mg/L rhodium standard solution (in HCl) with reverse osmosis water for a total volume of 200 mL. The 10 mg/L stock solution was mixed with control/dilution water at a rate of 168 mL in 16.8 L in order to achieve a tes solution of 100 μ g/L. A sub-sample was removed for initiating the test. The remainder was stored in a sealed container, in complete darkness, with minimal head space, at 42 °C for the duration of the test. Sub-samples for test renewal were removed daily and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, but without the addition of rhodium stock.

REFERENCES

^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

^bGrubbs, F.E., 1969. Procedures for detecting outlying observations in samples. Technometrics, 11:1-21.

Date : 2019-03-08

Approved By :

yyyy-mm-dd

Proja

Project Manager

TOXICITY TEST REPORT

Fathead minnow EPS 1/RM/22 Page 3 of 4

Work Order : 234748 Sample Number: 52859

CUMULATIVE DAILY CONTROL MORTALITY AND IMPAIRMENT

Date :	2017-12-14	2017-12-15	2017-12-16	2017-12-17	2017-12-18	2017-12-19	2017-12-20	2017-12-21
Dead and Impaired :	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Standard Deviation :	(± 0.0)	(± 0.0)	(± 0.0)	(± 0.0)	(±0.0)	(± 0.0)	(±0.0)	(±0.0)

CUMULATIVE DAILY MORTALITY

Initiation Time : 13:10 Initiation Date : 2017-12-14 Completion Date: 2017-12-21

	Date : Analyst(s):	Day 2017-1: RE	2-14	Day 2017-1 RI	2-15	Day 2017-1 RI	2-16	Day 2017-1 RJ	2-17	Day 2017-1 CZ	2-18	Day 2017-1 RJ	2-19	Day 2017-1 RI	2-20	Day 2017-1 EJ	2-21	Treatment Mean Mortality (± SD)
	Replicate	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	Number Dead	% Dead	%
	А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Control	В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00 (±0.00)
Control	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	· · ·
	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
100 μg/L	А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	В	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00 (±0.00)
	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Aberrant behaviour or swimming impairment : None

DRY WEIGHT AND BIOMASS DATA Number of Replicate Mean Treatment Mean Replicate Standard Larvae Exposed Dry Weight (mg) Biomass (mg) Deviation A 10 0.897 В 10 0.909 0.896 0.028 Control С 10 0.857 D 10 0.922 Α 10 1.166 В 10 0.874 0.978 0.133 100 µg/L С 10 0.894 D 10 0.978

NOTES :

•No outlying data points were detected according to Grubbs Test^b.

• Control average dry weight per surviving organism = 0.896 mg

Data Reviewed By: JL Date : 2018-04-23

154

TOXICITY TEST REPORT

Fathead minnow EPS 1/RM/22 Page 4 of 4

Work Order :	234748
Sample Number :	52859

		INITIAL	WATER CH	IEMISTRY	DATA			
		Day 0 - 1 2017-12-14	Day 1 - 2 2017-12-15	Day 2 - 3 2017-12-16	Day 3 - 4 2017-12-17	Day 4 - 5 2017-12-18	Day 5 - 6 2017-12-19	Day 6 - 7 2017-12-2(
Sub-sample Used		1	1	1	1	1	1	1
Temperature (°C)		25.0	25.0	25.0	25.0	25.0	25.0	25.0
Dissolved Oxygen (mg/L)		8.1	8.0	8.1	8.6	8.9	9.0	9.0
Dissolved Oxygen % Sat. ²		100	100	100	105	109	110	110
рН		7.9	7.9	7.9	7.9	7.9	7.9	7.9
Pre-aeration Time (min) ³		0	0	0	20	20	20	20
		TEST W	ATER CHI	EMISTRY I	DATA			
Analyst(s)		EJS	RD	RD	RD	CZN	RD	RD
	Final	RD	RD	RD	CZN	RD	RD	EJS
Control								
Temperature (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0
	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Dissolved O_2 Saturation $(\%)^2$	Initial	98	100	100	103	103	105	105
Dissolved O ₂ (mg/L)	Initial	8.0	7.9	8.2	8.3	8.4	8.4	8.4
	Final	7.6	6.5	6.5	6.5	6.5	6.7	6.7
pН	Initial	8.3	8.3	8.3	8.3	8.2	8.2	8.2
1	Final	8.2	8.0	8.0	7.9	8.0	7.9	7.9
Conductivity (µmhos/cm)	Initial	727	722	727	722	724	722	728
Hardness (mg/L as CaCO ₃)		260	260	260	260	260	260	260
100 µg/L								
Temperature (°C)	Initial	25.0	25.0	25.0	25.0	25.0	25.0	25.0
1 (- /	Final	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Dissolved O_2 (mg/L)	Initial	8.1	8.0	8.1	8.4	8.8	8.6	8.8
2 (0)	Final	7.8	6.4	6.1	6.5	6.7	6.5	6.6
pH	Initial	7.8	0. 4 7.9	7.9	0.9 7.9	7.9	0.9 7.9	0.0 7.9
pm	Final	8.1	7.9		7.9	7.9	7.9	7.9
Our latit (wheele)				7.8				
Conductivity (µmhos/cm)	Initial	731	726	724	724	723	724	728

"-" = not measured

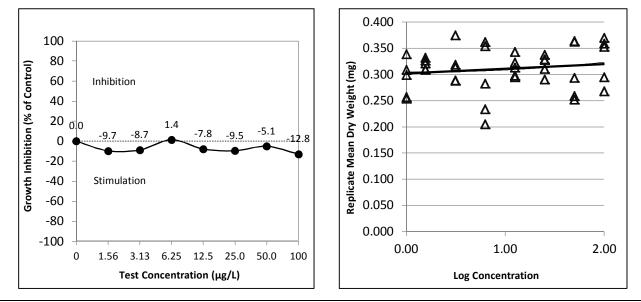
² % saturation (adjusted for actual temperature and barometric pressure)

 $^3 \leq 100$ bubbles/minute

156 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Hyalella azteca EPS 1/RM/33 Page 1 of 6


Work Order :234748Sample Number :52859

	SAMPLE IDENTIFICATIO	N			
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®		
Location :	Toronto ON	Chemical Batch	:MKBW7418V		
Test Item :	Rhodium (1000 µg/mL Rh in 5% HCl)	Date Received :	2017-11-03		
Test Item Type :	Chemical	Time Received :	Not recorded		
Storage Temperature :	Ambient room temp.	Date Tested :	2018-02-28		
Test Item Description :	Dark pink liquid				
Test Method : Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod Hyale azteca . Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/33 (2nd ed.), January, 2013, with deviation(s) as noted.					

14-DAY TEST RESULTS							
Effect	Endpoint	Value	95% Confidence Limits	Calculation Method			
Growth	IC25	>100 µg/L	_	_			
Survival	LC50	>100 µg/L	-	-			

Results are based on nominal concentrations of the test item (v/v).

The results reported relate only to the item tested and as received.

REFERENCE TOXICANT DATA

Substance :	Copper (as Copper Sulphate)	LC50 :	308 μg/L
Organism Batch :	Ha18-02	95% Confidence Limits :	258 - 367 μg/L
Test Date :	2018-02-01	Historical Mean LC50 :	258 μg/L
Test Duration :	96 hours	Warning Limits (± 2 SD) :	161 - 412 μg/L
Analyst(s) :	CN, RD	Statistical Method :	Spearman-Kärber (CETIS) ^a

The reference toxicity test was performed under the same experimental conditions as those used with the test sample.

Date :	_ 2019-03-08	Approved By :	Liph
	yyyy-mm-dd		Project Manager

Work Order : Sample Number :	234748 52859	137	Hyalella azteca EPS 1/RM/33 Page 2 of 6							
	TEST ORGANISM									
Species :	Hyalella azteca	Range of Age :	5 - 8 days old on day 0							
Source :	In-house culture	Culture Mortality :	0% (preceding 48 h)							
No organisms exh	ibiting unusual appearance, behavior	ur, or undergoing unusual tre	atment were used in the test.							
	TEST CO	ONDITIONS								
Test Type :	Water only (static renewal)	Control/Dilution Water :	Well water (no chemicals added							
Test Duration :	14 days	Depth of Test Solution :	Approx. 9.5 cm							
Renewal Frequency :	Every other day	Test Vessel :	300 mL pyrex beaker							
Renewal Method :	80-85% syphoned and replaced	Volume per Replicate	275 mL per replicate							

Hardness Adjustment :

pH Adjustment :

Test Aeration :

Light Intensity :

Sample Filtration :

Test Aeration Rate :

Photoperiod (light/dark) :

Test Method Deviations :

None

None

None

None

Not applicable

Yes (see 'Comments')

16 h / 8 h 520 - 751 lux

157

TOXICITY TEST REPORT

AOUATOX

Field Replicates :

Test Replicates :

Feeding Frequency :

Feed Type :

Substrate :

Organisms per Replicate :

Organisms per Test Level: 50

PREPARATION OF TEST SOLUTIONS

Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 10 mg/L (nominal) stock solution was prepared by thoroughly mixing 5 mL of 1000 mg/L rhodium standard solution (in HCl) with reverse osmosis water for a total volume of 500 mL. The 10 mg/L stock solution was mixed thoroughly. Appropriate amounts of the 10 mg/L stock solution were mixed with control/dilution water to achieve the desired test concentrations. A sub-sample of each test concentration was removed for initiating the test. The remainder of each test concentration was stored in a sealed container, in complete darkness, with minimal head space, at 4 \pm 2 °C for the duration of the test. Sub-samples for test renewal were removed prior to renewal, and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, but without the addition of rhodium stock.

COMMENTS

Noted Deviation(s) : According to the test method, a single sample may be used throughout the test if divided into at least 3 separate containers (i.e. three or more sub-samples) upon preparation. However, test concentrations for this test were stored in a single container for the duration of the test.

•All test validity criteria as specified in the test method cited above were satisfied.

Not applicable

 3 cm^2 Nytex mesh

5

10

YCT

daily

Food Ration (per replicate) :~6.3 mg dry solids

•A negative value for inhibition (%) indicates stimulation compared to the control.

• The lowest, middle and highest exposure concentrations were confirmed analytically, although test endpoints were generated using nominal test concentrations. The total and dissolved Rh concentrations were measured at test start, at first renewal and at test end. These results were provided separately to NWMO. Analyses of test item concentration were conducted by SGS Canada Inc., 185 Concession Street PO Box 4300, Lakefield ON Canada K0L 2H0.

REFERENCES

^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

10	- all	
AQ	UATOX	

Work Order :	234748
Sample Number :	52859

MORTALITY DATA

Initiation Time :	12:40
Initiation Date :	2018-02-28
Completion Date :	2018-03-14

Test Day :	0	2	3	4	6	8	10	12	14
Date :	2018-02-28	2018-03-02	2018-03-03	2018-03-04	2018-03-06	2018-03-08	2018-03-10	2018-03-12	2018-03-14
Analyst(s) :	MA	MA	MR	MR	MR	MA	MA	MR	MA

Concentration Re (µg/L)	eplicate		(CUMULA	FIVE DAI	LY MOR	TALITY			Mortality (%)	Average Mortality (%)	Standard Deviation
	А	0	0	0	0	0	0	0	0	0	0	0
Control	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	Е	0	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	0	0	0
1.56	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	Е	0	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	0	0	0
3.13	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	E	0	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	0	0	0
6.25	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	Е	0	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	0	0	0
12.5	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	Е	0	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	0	0	0.00
25.0	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	Е	0	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	0	0	0.00
50.0	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	Е	0	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	0	0	0.00
100	В	0	0	0	0	0	0	0	0	0		
	С	0	0	0	0	0	0	0	0	0		
	D	0	0	0	0	0	0	0	0	0		
	Е	0	0	0	0	0	0	0	0	0		

AQUATOX

Hyalella azteca EPS 1/RM/33 Page 4 of 6

Work Order :234748Sample Number :52859

	11251 OR	GANISM DRY WEI		
Concentration (µg/L)	Replicate	Average Weight per Organism (mg)	Treatment Average Weight per Organism (mg)	Standard Deviation
	А	0.254	0.292	0.04
Control	В	0.309		
	С	0.339		
	D	0.299		
	Ε	0.257		
	А	0.310	0.320	0.01
1.56	В	0.309		
	С	0.321		
	D	0.327		
	Е	0.332		
	А	0.375	0.317	0.04
3.13	В	0.288		
	С	0.314		
	D	0.319		
	Е	0.289		
	А	0.362	0.288	0.07
6.25	В	0.354		
	С	0.234		
	D	0.283		
	Е	0.205		
	А	0.295	0.314	0.02
12.5	В	0.323		
	С	0.313		
	D	0.298		
	Е	0.343		
	А	0.311	0.319	0.02
25.0	В	0.328		
	С	0.338		
	D	0.329		
	Е	0.291		
	А	0.363	0.306	0.05
50.0	В	0.259		
	C	0.294		
	D	0.364		
	E	0.252		
	A	0.268	0.329	0.04
100	В	0.295		
	C	0.370		
	D	0.353		
	E	0.359		

Test Data Reviewed By :__JL_ Date :__2018-06-27_____

Sample Number : 52859

Hyalella azteca EPS 1/RM/33

Page 5 of 6

INITIAL WATER CHEMISTRY DATA Day 10 - 12 Day 12 - 14 Test Day : Day 0 - 2 Day 2 - 4 Day 4 - 6 Day 6 - 8 Day 8 - 10 Analyst(s) MA MA MR MA MA MA MR Date : 2018-02-28 2018-03-02 2018-03-04 2018-03-06 2018-03-08 2018-03-10 2018-03-12 Sub-sample Used : 1 1 1 1 1 1 1 Control 23.5 23.5 23.0 Temperature (°C) 23.0 24.0 24.0 23.0 Dissolved O2 (mg/L) 9.3 9.4 9.5 9.4 9.8 8.1 8.8 Dissolved O₂ Saturation (%)³ 98 105 111 114 115 112 118 pН 8.2 8.3 8.1 8.1 8.1 8.1 8.1 Conductivity (µmhos/cm) 794 786 794 789 786 780 801 Pre-aeration Time (min)⁴ 0 20 20 20 20 20 20 1.56 23.0 23.5 23 5 24.024.023.0 23.0 Temperature (°C) Dissolved O2 (mg/L) 8.2 8.8 9.2 9.5 9.5 9.4 9.7 Dissolved O₂ Saturation (%)³ _ 105 109 115 115 112 117 pН 8.4 8.2 8.3 8.2 8.1 8.2 8.1 792 799 793 797 792 788 797 Conductivity (µmhos/cm) Pre-aeration Time (min)⁴ 0 20 20 20 20 20 20 3.13 Temperature (°C) 23.0 23.5 23.5 24.0 24.0 23.0 23.0 Dissolved O₂ (mg/L) 8.2 8.8 9.2 9.5 9.8 9.4 9.8 Dissolved O₂ Saturation (%)³ 106 109 115 118 113 119 _ 8.2 pН 8.4 8.2 8.2 8.1 8.2 8.1 Conductivity (µmhos/cm) 798 794 795 793 792 789 798 Pre-aeration Time (min)⁴ 0 20 20 20 20 20 20 6.25 Temperature (°C) 23.0 23.5 23.5 24.0 24.0 23.0 23.0 Dissolved O2 (mg/L) 8.3 8.8 9.2 9.4 9.6 9.4 9.7 Dissolved O₂ Saturation (%)³ 105 109 113 116 113 117 pН 8.2 8.3 8.2 8.2 84 81 81 795 797 794 792 791 Conductivity (µmhos/cm) 800 800 Pre-aeration Time (min)⁴ 20 20 20 20 20 20 0 12.5 23.5 23 5 23.0 23.0 Temperature (°C) 23.0 24.024.0Dissolved O2 (mg/L) 8.2 8.8 9.2 9.4 9.5 9.4 10.3 114 Dissolved O₂ Saturation (%)³ 105 109 114 113 122 _ pН 8.4 8.2 8.2 8.2 8.2 8.2 8.1 Conductivity (µmhos/cm) 802 795 798 795 797 793 803 Pre-aeration Time (min)⁴ 0 20 20 20 20 20 20 25.0 Temperature (°C) 23.0 23.5 23.5 24.024.0 23.0 23.0 Dissolved O2 (mg/L) 9.3 9.5 9.4 8.3 8.8 9.4 9.6 Dissolved O₂ Saturation (%)³ 104 110 114 114 113 115 pН 8.2 8.2 8.3 8.2 8.2 8.2 8.1 Conductivity (µmhos/cm) 802 795 798 797 800 796 808 Pre-aeration Time (min)4 0 20 20 20 20 20 20 50.0 Temperature (°C) 23.0 23.5 23.5 24.024.0 23.0 23.0 Dissolved O₂ (mg/L) 8.3 8.7 9.2 9.5 9.5 9.3 10.2 Dissolved O2 Saturation (%)3 105 107 114 122 115 111 pН 82 81 82 81 81 82 81 Conductivity (µmhos/cm) 803 795 797 798 799 797 807 Pre-aeration Time (min)4 0 20 20 20 20 20 20 100 23.0 23.5 23 5 24.0 23.0 23.0 Temperature (°C) 24.0 Dissolved O₂ (mg/L) 8.3 8.8 9.2 9.4 9.5 9.3 9.4 Dissolved O₂ Saturation (%)³ 105 107 113 115 111 112 _ 8.3 7.9 8.1 8.0 8.1 8.2 8.0 pН Conductivity (µmhos/cm) 805 797 805 804 804 802 812

"-" = not measured

Pre-aeration Time (min)⁴

³ % saturation (adjusted for actual temperature and barometric pressure)

0

20

20

20

20

 $^4 \leq 100$ bubbles/minute

Test Data Reviewed By : JL Date : 2018-06-27

20

20

Work Order : 234748 Sample Number: 52859

EPS 1/RM/33 Page 6 of 6

WATER CHEMISTRY DATA								
Test Day :		Day 0 - 2	Day 2 - 4	Day 4 - 6	Day 6 - 8	Day 8 - 10	Day 10 - 12	Day 12 - 1
Date :		2018-02-28	2018-03-02	2018-03-04	2018-03-06	2018-03-08	2018-03-10	2018-03-12
Analyst(s)	Initial	MA	MA	MR	MA	MA	MA	MR
	Final	MA	MR	MR	MA	MA	MR	MA
Control								
Temperature (°C)	Initial	23.0	23.5	23.5	23.0	23.0	23.0	23.0
	Final	24.0	24.0	24.0	23.0	23.0	23.0	23.0
Dissolved O_2 Saturation (%) ³	Initial	98	102	100	111	114	112	116
Dissolved O ₂ (mg/L)	Initial	8.1	8.4	8.4	9.4	9.4	9.4	9.8
	Final	7.6	5.6	4.7	6.4	6.4	5.2	5.7
рН	Initial	8.4	8.2	8.3	8.1	8.1	8.1	8.0
<u>, , , , , , , , , , , , , , , , , , , </u>	Final	8.2	8.1	7.9	8.0	8.1	7.8	8.0
Conductivity (µmhos/cm)	Initial	794	795	793	792	785	787	799
	minuar	774	175	175	1)2	785	/8/	())
1.56								
Temperature (°C)	Initial	23.0	23.5	23.5	23.0	23.0	23.0	23.0
	Final	24.0	24.0	24.0	23.0	23.0	23.0	23.0
Dissolved O ₂ (mg/L)	Initial	8.2	8.5	8.7	9.3	9.4	9.4	10.0
	Final	7.7	5.2	4.9	6.3	6.4	5.2	5.8
pН	Initial	8.4	8.2	8.3	8.1	8.1	8.2	8.1
	Final	8.2	8.1	7.9	8.0	8.0	7.9	8.0
Conductivity (µmhos/cm)	Initial	799	797	795	793	791	789	799
3.13								
	Initial	22.0	22.5	22.5	23.0	22.0	23.0	23.0
Temperature (°C)		23.0	23.5	23.5		23.0		
Dissolved O ₂ (mg/L)	Final Initial	24.0 8.2	24.0 8.4	24.0 8.7	23.0 9.3	23.0 9.6	23.0 9.4	23.0 9.7
Dissolved O_2 (ling/L)								
	Final	7.6	5.1	4.7	6.3	6.3	5.3	5.6
pН	Initial	8.4	8.2	8.3	8.2	8.1	8.2	8.1
	Final	8.2	8.1	7.9	8.0	8.0	8.0	8.1
Conductivity (µmhos/cm)	Initial	798	799	795	793	791	790	800
6.25								
Temperature (°C)	Initial	23.0	23.5	23.5	23.0	23.0	23.0	23.0
1	Final	24.0	24.0	24.0	23.0	23.0	23.0	23.0
Dissolved O ₂ (mg/L)	Initial	8.3	8.5	8.8	9.3	9.5	9.3	9.9
	Final	7.6	5.0	4.9	6.3	6.3	5.1	5.7
pH	Initial	8.4	8.2	8.3	8.2	8.2	8.2	8.1
	Final	8.2	8.1	7.9	8.0	8.0	8.0	8.0
Conductivity (µmhos/cm)	Initial	800	793	796	796	792	793	802
		000	175	170	170	,,,_	175	002
12.5								
Temperature (°C)	Initial	23.0	23.5	23.5	23.0	23.0	23.0	23.0
	Final	24.0	24.0	24.0	23.0	23.0	23.0	23.0
Dissolved O ₂ (mg/L)	Initial	8.2	8.6	8.8	9.3	9.4	9.3	9.7
	Final	7.6	5.0	4.8	6.4	6.4	5.1	5.7
pH	Initial	8.4	8.2	8.3	8.2	8.2	8.2	8.1
	Final	8.2	8.1	7.9	8.0	8.0	7.9	8.0
Conductivity (µmhos/cm)	Initial	802	797	799	797	794	795	806
25.0								
Temperature (°C)	Initial	23.0	23.5	23.5	23.0	23.0	23.0	23.0
remperature (°C)	Final	24.0	24.0	24.0	23.0	23.0	23.0	23.0
Dissolved O ₂ (mg/L)	Initial	8.3	8.4	8.8	9.3	9.3	9.3	23.0 9.7
215561164 0 ₂ (ing 2)	Final	7.5	5.1	5.1	6.4	6.2	5.4	6.7
-11								
pН	Initial	8.4	8.2	8.3	8.2	8.2	8.2	8.1
	Final	8.2	8.1	7.9	8.0	8.0	7.9	8.0
Conductivity (µmhos/cm)	Initial	802	799	797	800	798	797	810
50.0								
Temperature (°C)	Initial	23.0	23.5	23.5	23.0	23.0	23.0	23.0
	Final	24.0	24.0	24.0	23.0	23.0	23.0	23.0
Dissolved O ₂ (mg/L)	Initial	8.3	8.4	8.9	9.2	9.4	9.3	9.4
	Final	7.6	5.0	5.3	5.6	6.0	5.5	5.6
эΗ	Initial	8.4	8.1	8.2	8.1	8.2	8.2	8.1
	Final	8.2	8.1	7.9	7.9	8.0	7.9	8.0
Conductivity (µmhos/cm)	Initial	803	801	801	800	797	797	810
		000			000			010
100								
Femperature (°C)	Initial	23.0	23.5	23.5	23.0	23.0	23.0	23.0
	Final	24.0	24.0	24.0	23.0	23.0	23.0	23.0
Dissolved O ₂ (mg/L)	Initial	8.3	8.4	8.8	9.2	9.4	9.2	10.0
	Final	7.6	4.8	5.1	5.6	5.9	5.4	5.5
pН	Initial	8.3	8.0	8.1	8.0	8.1	8.2	8.0
	Final	8.2	8.1	8.1	7.9	8.0	7.9	8.0
Conductivity (µmhos/cm)	Initial	805	801	796	798	797	797	805

"–" = not measured 3 % saturation (adjusted for actual temperature and barometric pressure)

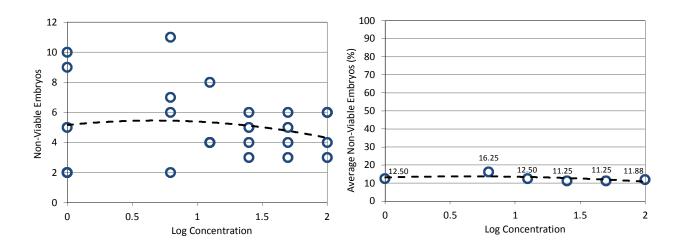
Test Data Reviewed By : <u>JL</u> Date : 2018-06-27

162 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Salmonid E Test EPS 1/RM/28 Page 1 of 4

Work Order :	234748
Sample Number :	52859


SAMPLE IDENTIFICATIO	Ν
----------------------	---

Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®
Location :	Toronto ON	Chemical Batch :	MKBW7418V
Test Item :	Rhodium (1000 µg/mL Rh in 5% HCl)	Date Received :	2017-11-03
Test Item Type :	Chemical	Time Received :	Not recorded
Storage Temperature :	Ambient room temp.	Initiation Date :	2018-11-28
Test Item Description :	Dark pink liquid	Completion Date :	2018-12-05
Test Method :	Biological Test Method : Toxicity Tests Using Early I	ife Stages of Salmor	ıid Fish

(Rainbow Trout). Environment Canada EPS 1/RM/28 (Second Edition, July 1998).

7-DAY TEST RESULTS									
Effect	Value	95% Confidence Limits	Calculation Method						
EC25	>100 µg/L	_	_						
EC50	>100 µg/L	-	-						

The results reported relate only to the sample tested and as received.

COMMENTS

Noted Deviation(s) :

•A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control.

• The exposure concentrations were confirmed analytically, although test endpoints were generated using the nominal test concentrations. Total and dissolved Rh concentrations were measured at test start, at the final renewal, and at test end. These results were provided separately to NWMO.

• Abbott's Formula for correction of control effects was not applied to the test data, since statistical analysis was not required (i.e. results were intuitively based on inhibition values).

•All test validity criteria as specified in the test method (the average percentage of non-viable control embryos must be $\leq 30\%$) were satisfied.

AQUATOX		163	TOXICITY TEST REPORT Salmonid E Test						
Work Order : Sample Number :	234748 52859		EPS 1/RM/28 Page 2 of 4						
TEST ORGANISM									
Test Organism : Species : Gamete Source : Location :	Rainbow Trout (gamete/embryo) Oncorhynchus mykiss Lyndon Fish Hatcheries Inc. New Dundee ON NOB 2E0	Confirmation of Sperm Motility Fertilization Procedure : Embryo Distribution : Female Broodstock used : Male Broodstock used :	Magnified observation Dry mixing (5 min) Within 30 min of fertilization 5 5						

No gametes or embryos exhibiting unusual appearance, or undergoing unusual treatment were used in the test.

TEST CONDITIONS

Test Type : Renewal Method : Renewal Frequency : Test Levels : Control Replicates : Test Replicates : Test Aeration : Pre-Aeration Rate :	Static Renewal E-test 80% syphoned and replaced ≤ 24 hours 5 + 1 Control 6 4 Yes 6.5 ± 1 mL/min/L ≤100 hubbles/min/chamber	Control/Dilution Water : pH Adjustment : Sample Filtration : Hardness Adjustment : Volume per Replicate : Test Chamber : Depth of Test Solution : Organisms per Replicate :	Well water (no chemicals added) None None 2500 mL 4 L plastic pail 8 cm 40 160
Aeration Rate :	\leq 100 bubbles/min/chamber	Organisms per Test Level : Test Method Deviation(s):	160 See 'Comments'

PREPARATION OF TEST SOLUTIONS

Testing followed the general conditions of the cited test method. The test solution was prepared without the use of any solubilizing agent. A 20 mg/L (nominal) stock solution was prepared by thoroughly mixing 20 mL of 1000 mg/L rhodium standard solution (in HCl) with reverse osmosis water for a total volume of 1000 mL. Appropriate volumes of the 20 mg/L stock solution were mixed with control/dilution water to achieve the desired test concentrations. Sub-samples of each test solution were removed for initiating the test. The remaining test solutions were stored in a sealed containers, in complete darkness, with minimal head space, at 4 ± 2 °C for the duration of the test. Sub-samples for test renewal were removed daily and warmed to test temperature. The Control consisted of control/dilution water which was stored and used in the same manner, but without the addition of rhodium stock.

REFERENCES

CETIS[™], © 2000-2018. V.1.9.4.7. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

Date :

2019-03-08

yyyy-mm-dd

Approved By :

Project Manager

Work Order :234748Sample Number :52859

TOXICITY TEST REPORT Salmonid E Test EPS 1/RM/28 Page 3 of 4

DAY 7 VIABILITY DATA

Completion Date : 2018-12-05

Analyst(s): FS/RD/MR/LN

Concentration µg/L	Replicate	Day 0 Viable	Day 7 Viable	Day 7 Non-Viable	Average Non-Viable	Non-Viable (%)	Average Non-Viable (%)	Standard Deviation
Control	А	40	38	2	5.00	5.00	12.50	9.22
	В	40	38	2		5.00		
	С	40	35	5		12.50		
	D	40	38	2		5.00		
	Е	40	30	10		25.00		
	F	40	31	9		22.50		
6.25	А	40	33	7	6.50	17.50	16.25	9.24
	В	40	34	6		15.00		
	С	40	38	2		5.00		
	D	40	29	11		27.50		
12.5	А	40	36	4	5.00	10.00	12.50	5.00
	В	40	32	8		20.00		
	С	40	36	4		10.00		
	D	40	36	4		10.00		
25	А	40	34	6	4.50	15.00	11.25	3.23
	В	40	37	3		7.50		
	С	40	36	4		10.00		
	D	40	35	5		12.50		
50	А	40	36	4	4.50	10.00	11.25	3.23
	В	40	37	3		7.50		
	С	40	34	6		15.00		
	D	40	35	5		12.50		
100	А	40	36	4	4.75	10.00	11.88	3.75
	В	40	34	6		15.00		
	С	40	37	3		7.50		
	D	40	34	6		15.00		

Work Order : 234748 Sample Number : 52859

Page 4 of 4

WATER CHEMISTRY DATA

Test Day Date :		Day 0-1 2018-11-28	Day 1-2 2018-11-29	Day 2-3 2018-11-30	Day 3-4 2018-12-01	Day 4-5 2018-12-02	Day 5-6 2018-12-03	Day 6-7 2018-12-04
Sub-sample Used		1	1	1	2	2	3	3
Temperature (°C)		15.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved O_2 (mg/L)		9.8	10.2	10.3	10.3	10.2	10.2	10.2
Dissolved O_2 Saturation (%) ²		100	102	104	105	105	105	104
Pre-aeration Time (hh:mm)		00:30	02:00	02:00	02:00	02:00	02:00	02:00
Analyst(s) :		FS	CN	CN	CN	RD/RK	FS	CN
Control								
Temperature (°C)	Initial	15.0	14.0	14.0	14.0	14.0	14.0	14.0
	Final	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved O_2 Saturation (%) ²	Initial	100	100	100	100	100	100	100
Dissolved O ₂ (mg/L)	Initial	9.6	9.9	9.9	9.8	9.8	9.8	9.9
	Final	9.6	9.7	9.8	9.6	9.6	9.7	9.7
pH	Initial	8.0	8.0	7.9	7.9	7.9	7.9	7.9
	Final	8.2	8.2	8.2	8.3	8.2	8.2	8.2
Conductivity (µmhos/cm)	Initial	753	745	743	741	740	741	739
6.25 μg/L								
Temperature (°C)	Initial	15.0	14.0	14.0	14.0	14.0	14.0	14.0
	Final	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved O ₂ (mg/L)	Initial	9.6	9.9	9.9	9.8	9.8	9.8	9.9
	Final	9.8	9.8	9.9	9.6	9.6	9.7	9.6
pH	Initial	8.0	8.0	7.9	7.9	8.0	8.0	7.9
	Final	8.3	8.2	8.3	8.3	8.2	8.2	8.2
Cond. (µmhos)	Initial	750	747	745	743	740	740	742
12.5								
Temperature (°C)	Initial	15.0	14.0	14.0	14.0	14.0	14.0	14.0
	Final	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved O ₂ (mg/L)	Initial	9.6	9.9	9.9	9.9	9.8	9.8	9.9
	Final	9.8	9.7	9.9	9.6	9.7	9.7	9.6
pH	Initial	8.0	8.0	7.9	7.9	8.0	8.1	7.9
	Final	8.3	8.2	8.3	8.3	8.3	8.2	8.2
Conductivity (µmhos/cm)	Initial	750	751	750	750	750	750	748
25 μg/L								
Temperature (°C)	Initial	15.0	14.0	14.0	14.0	14.0	14.0	14.0
	Final	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved O ₂ (mg/L)	Initial	9.6	9.9	9.9	9.9	9.8	9.8	9.9
	Final	9.9	9.7	9.8	9.6	9.6	9.8	9.7
pH	Initial	8.0	8.0	7.9	7.9	8.0	8.0	7.9
	Final	8.3	8.2	8.3	8.3	8.2	8.1	8.2
Cond. (µmhos)	Initial	753	754	754	753	751	750	751
50 μg/L								
Temperature (°C)	Initial	15.0	14.0	14.0	14.0	14.0	14.0	14.0
	Final	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved O ₂ (mg/L)	Initial	9.6	9.9	10.0	10.0	9.8	9.7	9.9
	Final	9.9	9.8	9.9	9.6	9.5	9.8	9.7
pН	Initial	8.0	8.0	7.9	7.9	8.0	8.0	7.9
Conductivity (umhos/cm)	Final Initial	8.3 756	8.2 758	8.3 760	8.3 758	8.2 754	8.2 752	8.2 758
5 (1)	miniai	750	/38	/00	/38	/34	132	138
100 μg/L	.							
Temperature (°C)	Initial	15.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved () (ma/L)	Final Initial	14.0	14.0	14.0	14.0	14.0	14.0	14.0
Dissolved O ₂ (mg/L)	Initial Final	9.6	9.9	10.0	10.0	9.7	9.7	9.9
nЦ	Final Initial	9.9 7.0	9.8 7.0	9.9 7.8	9.6 7.0	9.6 8.0	9.8 8.0	9.6 7.0
pН	Final	7.9 8.3	7.9 8.2	7.8 8.3	7.9 8.3	8.0 8.2	8.0 8.2	7.9 8.2
Conductivity (µmhos/cm)	Initial	8.3 759	8.2 761	8.3 761	8.3 760	8.2 760	8.2 760	8.2 760
conductivity (µimios/em)	1111141	, , , , ,	,01	, 01	, 00	, 00	, 00	, 50

"-" = not measured/not required

² % saturation (adjusted for temperature and barometric pressure)

Test Data Reviewed By :
 JL

 Date :
 2019-02-12

APPENDIX C.2: AQUATOX TERRESTRIAL TOXICITY DATA

AquaTox Testing & 68 sulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT Alfalfa EPS 1/RM/45 Page 1 of 6

Work Order :234749Sample Number :52860

SAMPLE IDENTIFICATION								
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®					
Location :	Toronto ON	Chemical Batch :	MKCB9445					
Test Item :	Ruthenium (1000 µg/mL Ru in 5% HCl)	Date Received :	2017-11-03					
Test Item Type :	Chemical	Time Received :	Not recorded					
Storage Temperature :	Ambient room temp.	Initiation Date :	2018-02-14					
Test Item Description :	Dark brown liquid	Completion Date :	2018-03-07					
Test Method :	Test for Measuring Emergence and Growth of Terrest	trial Plants Exposed to	o Contaminants in Soil.					
	Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/45,							
	February 2005 (with June 2007 amendments), with deviation(s) as noted.							

21-DAY TEST RESULTS						
Effect	Endpoint	Value	Inhibition (% of Control)	Significant Difference from Control?	Calculation Method	
Emergence	EC50	>10.0 µg/g	2.00%	Νο (α= 0.05)	Fisher Exact Test ^a	
Shoot Length	IC25	>10.0 µg/g	1.87%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a	
Shoot Weight	IC25	$>10.0 \ \mu g/g$	-7.14%	Νο (α= 0.05)	Equal Variance t Two-Sample Test ^a	
Root Length	IC25	$>10.0 \ \mu g/g$	9.32%	Νο (α= 0.05)	Equal Variance t Two-Sample Test ^a	
Root Dry Weight	IC25	$>10.0 \ \mu\text{g/g}$	-3.03%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a	

•A negative value for inhibition (%) indicates stimulation compared to the control.

Results are based on nominal concentrations of the test item ($\mu g/g$). The results reported relate only to the item tested and as received.

TEST ORGANISM

Species :Medicago sativaSeed Variety :Seed Source :Mumm's Sprouting Seeds1Lot Number :

No seeds exhibiting unusual appearance or undergoing unusual treatment were used in the test.

¹Box 80, 118 1st Ave W, Parkside SK, S0J 2A0; 306-747-2935

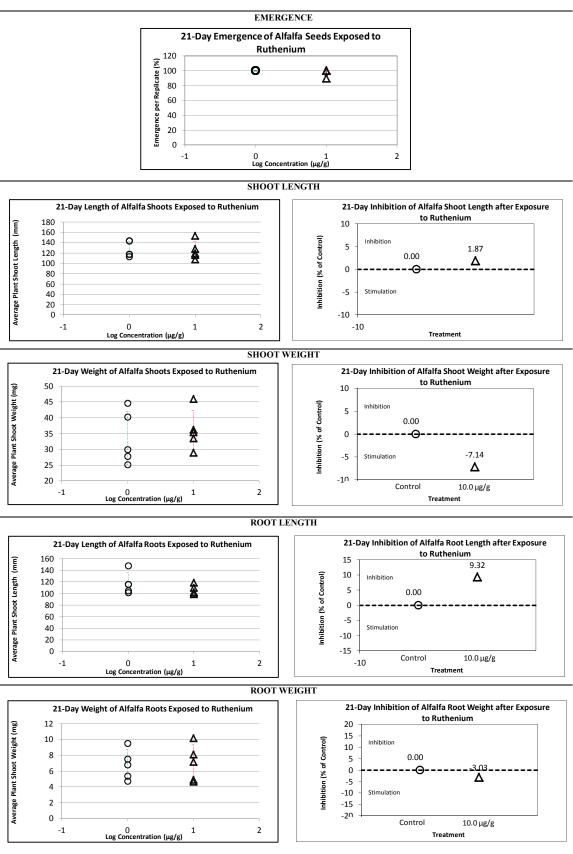
TEST CONDITIONS

Test Type :	Static	Light Intensity (at soil surface) :	15280 - 16530 lux
Test Duration :	21 days	Photoperiod (light/dark) :	16 h / 8 h
Control/Test Soil :	Artificial Soil	Average Temperature (Range) :	23.8 °C (22 - 27 °C)
Sample Type :	Chemical-Spiked Soil	Emergence Observations :	Days 7 and 21
Samples per Treatment :	1	Shoot/Root Length Observations:	Day 21
Replicates per Treatment :	5	Shoot/Root Weight Observations:	Day 21
Number of Treatments :	1 + 1 (Negative) Control	Conductivity Measurements :	Days 0 and 21
Soil per Replicate :	~350 mL (dry)	pH Measurements :	Days 0 and 21
Seeds per Replicate :	10	Soil Moisture Determinations :	Days 0 and 21
Seeds per Treatment :	50	Test Method Deviations :	Yes (see 'Comments')
Seeds per Treatment :	50	Test Method Deviations :	Y

Approved By :

Date :

2019-03-08 yyyy-mm-dd


Project Manager

N/A (tap-rooted, farm-saved)

A5L

Work Order :234749Sample Number :52860

RESULTS (cont.)

•A negative value for inhibition (%) indicates stimulation compared to the control.

Work Order :234749Sample Number :52860

PREPARATION OF TEST MEDIUM

Artificial Soil was formulated in the laboratory following procedures described in AquaTox SOP #364 (AquaTox, 2015c). The ingredients of Artificial Soil included 70% silica sand, 20% kaolinite clay, 10% Sphagnum spp. fine grind peat, and calcium carbonate (CaCO₃). The Artificial Soil was allowed to stabilize for a minimum of three days prior to test initiation.

Testing followed the general conditions of the cited test method. Solutions used for soil spiking were prepared without the use of any solubilizing agent. A 1008 μ g/L (nominal, w/v) stock solution was prepared by thoroughly mixing the test item with distilled water. Appropriate volumes of the stock solution were added to individual portions of Artificial Soil to achieve each desired nominal test concentration. The stock solution was added by pouring the solution over the soil surface. Each soil was mixed using a hand-held mechanical mixer for 10 minutes to ensure homogeneity. Additional distilled water was added to the each soil in order to achieve the required moisture content. The soil was then mixed with the hand-held mechanical mixer for 5 minutes. Once homogenized, the spiked soils were dispensed into the appropriate test vessels. Control treatments were prepared in the same manner, but without the addition of stock solution.

The exposure concentration was confirmed analytically, although test endpoints were generated using the nominal test concentration. The total Ru concentration was measured at test start, day 7, 14 and at test end (day 21). These results were provided separately to NWMO.

SOIL CHARACTERISTICS						
Treatment	Initial pH ²	Final pH ²	Initial Conductivity ² (μS/cm)	Final Conductivity ² (µS/cm)	Initial Soil Moisture (% WHC)	Final Soil Moisture (% WHC)
Control	7.47	7.60	175	231	79	83
10.0 µg/g	6.81	7.00	739	695	82	88

² pH and conductivity were measured using a 2:1 water:soil slurry

ARTIFICIAL SOIL COMPOSITION³

Sand (%)	Silt (%)	Clay (%)	Organic Matter (mg/kg)	Organic Carbon (mg/kg)	Nitrogen (%)	Plant Available Phosphorus (µg/g dry)
76	3.8	21	27000	16000	0.080	150

³ Analysis conducted by Maxxam Analytics, 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700

COMMENTS

Noted Deviation(s):
 •The Control organisms satisfied the emergence, survival, and the shoot length validity criteria; however, the validity criterion for root length was not satisfied. The Control did however pass the recommended root weight validity criterion. According to Environment and Climate Change Canada (the author of the standardized plant test method), the test validity criteria were established from tests that did not use a weak nutrient solution for watering. As a weak nutrient solution was used for watering, as is allowed by the method, we observed that the roots were more branched horizontally (i.e., filamentous). Since the roots had access to nutrients in the soil, the plants were able to direct growth to their shoots rather than the root length. This phenomenon is not atypical when a weak nutrient solution is applied and did not warrant repeating the test.

•A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control as part of the terrestrial testing.

Treatment

Control

 $10.0 \ \mu g/g$

100.00

100

100

100

100

100

90

100

100

RD

RD

RD

RD

RD

RD

RD

RD

Work Order : 234749 Sample Number : 52860

3

4

5

1

2

3

4

5

10

10

10

10

10

9

10

10

234749 52860						EPS 1/RM/45 Page 4 of 6
		EMERGE	ENCE DATA	- DAY 7		
Replicate	Emergence	Emergence (%)	Treatment Average	Standard Deviation	Notes	Analyst(s)
1	10	100			Healthy	RD
2	10	100			Healthy	RD

Healthy

Healthy

Healthy

Healthy

Healthy

Healthy

Healthy

Healthy

0.00

4.47

EMERGENCE DATA - DAY 21

98.00

Treatment	Replicate	Emergence	Emergence (%)	Treatment Average	SD	Notes	Analyst(s)
	1	10	100			Healthy	EJS
	2	10	100			Healthy	EJS
Control	3	10	100	100.00	0.00	Healthy	EJS
	4	10	100			Healthy	EJS
	5	10	100			Healthy	EJS
	1	10	100			Healthy, 1 wilted and browning	EJS
	2	10	100			Healthy	EJS
$10.0 \ \mu g/g$	3	9	90	98.00	4.47	Healthy	EJS
	4	10	100			Healthy, 1 very chlorotic	EJS
	5	10	100			Healthy	EJS

NOTES :

2018-03-07: Algal growth was observed in the soil in all replicates in all concentrations (EJS).

SHOOT AND ROOT LENGTH DATA - DAY 21																									
Treatment	Replicate	Plant	Shoot Length (mm)	Average Shoot Length per Plant (mm)	Treatment Average	Standard Deviation	Root Length (mm)	Treatment Average Root Length (mm)	Treatment Average	SD	Notes	Analyst(s)													
2	1	2 83 3 130 4 102 5 111	130 102 111	117.9			146 89 115 92 91 105	101.6			Healthy Healthy Healthy Healthy Healthy Healthy	CZN													
		8 7 8 9 10	104 169 168 29 159				105 119 98 141 20 135				Healthy Healthy Healthy Healthy Wilted, slightly chlorotic. Healthy														
	2	$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $	156 120 133 132 158 135 74 20	113.3			131 128 119 94 155 156 108 80	115.8			Healthy Healthy Healthy Healthy Healthy Healthy Healthy	RD													
Control	3	$ \begin{array}{r} 10 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \end{array} $	46 206 184 131 145 155 150 195	144.0	127.18	15.1	52 139 120 135 93 123 136 115	116.0	117.22	18.3	Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy	CZN													
	4	8 9 10 1 2 3 4 5 6 7	169 64 41 210 172 163 76 116 125 153	143.3			156 84 59 206 260 126 113 124 140	147.9 ⁴			Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy	RD													
			133 169 159 90 120 157 143 145 96				136 154 158 62 96 143 105 76 120	101.0			Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy														
	5	$ \begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 2 \\ 3 \end{array} $	115 92 105 145 56 93 15 181	117.4			126 76 130 96 80 100 25 132	104.8			Healthy Healthy Healthy Healthy Healthy Healthy Wilted plant. Healthy	CZN													
	1	4 5 6 7 8 9 10	181 152 131 220 185 140 46 114 161	127.7	124.81															132 124 111 140 114 121 66 84 164	101.7			Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy	RD
	2		144 171 162 218 201 125 99 135	153.1			90 151 111 145 141 98 124 108	118.9		106.30 8.2	Healthy Healthy Healthy Healthy Healthy Healthy Some leaves have yellow spots. Healthy	CZN													
10.0 μg/g	3	$ \begin{array}{r} 10\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ \end{array} $	115 159 92 151 168 178 158 62 54 52	119.3		17.4	57 120 103 96 104 91 92 116 88	102.0	106.30		Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy	RD													
	4	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ \hline $	99 169 160 136 125 136 88 95 50 18	107.6				101 135 142 115 115 128 99 99 72 94	110.0			Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Some leaves have yellow spots. Some leaves have yellow spots.	CZN												
	5	$ \begin{array}{r} 10 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	164 193 152 86 141 163 104 78 50 32	116.3			93 143 114 76 113 151 74 72 59 94	98.9			Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy Healthy	RD													

•4 Outlier according to Grubbs Test (CETIS). Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

Test Data Reviewed By : JL Date : 2018-07-16

Treatment	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation
	1	0.9335	1.1857	252.23	10	25.223		
	2	0.9736	1.2734	299.79	10	29.979		
Control	3	0.9320	1.3354	403.40	10	40.340	33.608	8.4
	4	0.9818	1.4282	446.42	10	44.642		
	5	0.9516	1.2301	278.54	10	27.854		
	1	0.9530	1.4122	459.22	10	45.922		
	2	0.9292	1.2918	362.63	10	36.263		
10	3	0.9465	1.2068	260.33	9	28.926	36.008	6.2
	4	0.9266	1.2806	354.01	10	35.401		
	5	0.9660	1.3013	335.29	10	33.529		

ROOT WEIGHT DATA - DAY 21

Treatment	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation
	1	1.2638	1.3113	47.50	10	4.750		
	2	1.2716	1.3396	68.02	10	6.802		
Control (0)	3	1.2732	1.3488	75.59	10	7.559	6.814	1.9
	4	1.2775	1.3729	95.43	10	9.543		
	5	1.2811	1.3353	54.15	10	5.415		
	1	1.2779	1.3797	101.86	10	10.186		
	2	1.2719	1.3439	71.98	10	7.198		
10	3	1.2665	1.3085	42.00	9	4.667	7.020	2.3
	4	1.2847	1.3659	81.19	10	8.119		
	5	1.2824	1.3317	49.31	10	4.931		

•No outlying data points were detected according to Grubbs Test (CETIS)^a.

DEFINITIONS

ICx :	The concentration of test item estimated to cause x% inhibition compared to the Control.
LC50 :	The concentration of test item estimated to cause mortality in 50% of the test organisms.
WHC :	Water-holding capacity of the soil.

REFERENCES

^a CETISTM, © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Softwa LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

SHOOT WEIGHT DATA - DAY 21

AquaTox Testing 174 Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

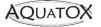
TOXICITY TEST REPORT Barley EPS 1/RM/45 Page 1 of 6

SAMPLE IDENTIFICATION									
Company :	NWMO - Nuclear Waste Management Organiz	ation Supplier : Sigma-Aldrich®							
Location :	Toronto ON	Chemical Batch: MKCB9445							
Test Item :	Ruthenium (1000 µg/mL Ru in 5% HCl)	Date Received : 2017-11-03							
Test Item Type :	Chemical	Time Received : Not recorded							
Storage Temperature :	Ambient room temp.	Initiation Date : 2018-02-14							
Test Item Description :	Dark brown liquid	Completion Date : 2018-02-28							
Test Method :	Test Method : Test for Measuring Emergence and Growth of Terrestrial Plants Exposed to Contamina								
	in Soil. Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS								
	1/RM/45, February 2005 (with June 2007 amendments), with deviation(s) as noted.								

	14-DAY TEST RESULTS								
Effect	Endpoint	Value	Inhibition (% of Control)	Significant Difference from Control?	Calculation Method				
Emergence	EC50	>10.0 µg/g	0.00%	No (α= 0.05)	_				
Shoot Length	IC25	$> 10.0 \ \mu g/g$	2.22%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a				
Shoot Weight	IC25	$> 10.0 \ \mu g/g$	-12.14%	Yes ($\alpha = 0.05$)	Equal Variance t Two-Sample Test ^a				
Root Length	IC25	${<}10.0~\mu\text{g/g}$	29.19%	Yes ($\alpha = 0.05$)	Equal Variance t Two-Sample Test ^a				
Root Weight	IC25	$< 10.0 \ \mu g/g$	25.65%	Yes (α = 0.05)	Equal Variance t Two-Sample Test ^a				

•A negative value for inhibition (%) indicates stimulation compared to the control.

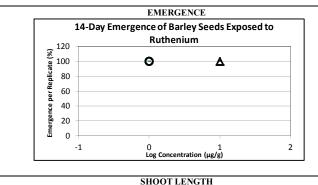
Results are based on nominal concentrations of the test item ($\mu g/g$). The results reported relate only to the item tested and as received.

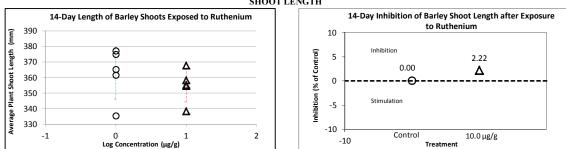

TEST ORGANISM									
Species :	Hordeum vulgare	Seed Variety :	Dignity						
Seed Source :	Rosebank Seed Farms Ltd. ¹	Lot Number :	Spring Six Row - Home Back						

No seeds exhibiting unusual appearance or undergoing unusual treatment were used in the test.

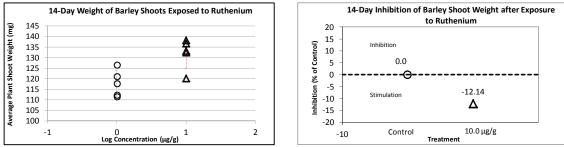
¹7340 Perth Line 24, RR #2, Staffa ON, CA N0K 1Y0

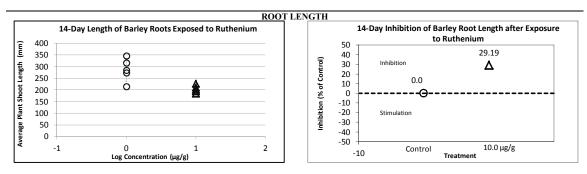
TEST CONDITIONS								
Test Type :	Static	Light Intensity (at soil surface) :	14370 - 15930 lux					
Test Duration :	14 days	Photoperiod (light/dark) :	16 h / 8 h					
Control/Test Soil :	Artificial Soil	Average Temperature (Range) :	23.7 °C (22 - 25 °C)					
Sample Type :	Chemical-Spiked Soil	Emergence Observations :	Days 7 and 14					
Samples per Treatment :	1	Shoot/Root Length Observations:	Day 14					
Replicates per Treatment :	5	Shoot/Root Weight Observations:	Day 14					
Number of Treatments :	1 + 1 (Negative) Control	Conductivity Measurements :	Days 0 and 14					
Soil per Replicate :	~350 mL (dry)	pH Measurements :	Days 0 and 14					
Seeds per Replicate :	5	Soil Moisture Determinations :	Days 0 and 14					
Seeds per Treatment :	25	Test Method Deviations :	Yes (see 'Comments')					

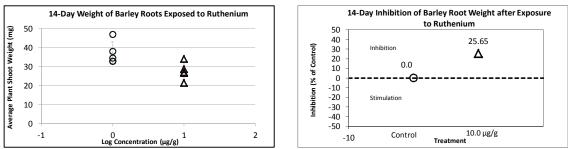

TEST CONDITIONS



Work Order : Sample Number :


234749 52860


RESULTS (cont.)



•A negative value for inhibition (%) indicates stimulation compared to the control.

PREPARATION OF TEST MEDIUM

Artificial Soil was formulated in the laboratory following procedures described in AquaTox SOP #364 (AquaTox, 2015c). The ingredients of Artificial Soil included 70% silica sand, 20% kaolinite clay, 10% Sphagnum spp. fine grind peat, and calcium carbonate (CaCO₃). The Artificial Soil was allowed to stabilize for a minimum of three days prior to test initiation.

Testing followed the general conditions of the cited test method. The solution used for soil spiking were prepared without the use of any solubilizing agent. A 1008 mg/L (nominal, w/v) stock solution was prepared by thoroughly mixing the test item with distilled water. An appropriate volume of the stock solution was added to Artificial Soil to achieve the desired nominal test concentration (10.0 μ g/g). The stock solution was added by pouring the solution over the soil surface. The soil was mixed using a hand-held mechanical mixer for 10 minutes to ensure homogeneity. Additional distilled water was added to the soil in order to achieve the required moisture content. The soil was then mixed with the hand-held mechanical mixer for 5 minutes. Once homogenized, the spiked soil was dispensed into the appropriate test vessels. The Control treatment was prepared in the same manner, but without the addition of stock solution.

The exposure concentration was confirmed analytically, although test endpoints were generated using the nominal test concentration. The total Ru concentration was measured at test start, day 7 and at test end (day 14). These results were provided separately to NWMO.

SOIL CHARACTERISTICS

Treatment	Initial pH ²	Final pH ²	Initial Conductivity ² (uS/cm)	Final Conductivity ² (µS/cm)	Initial Soil Moisture (% WHC)	Final Soil Moisture (% WHC)
Control	7.47	7.40	180	171	78	58
10.0 µg/g	6.76	6.84	758	708	83	61

² pH and conductivity were measured using a 2:1 water:soil slurry

ARTIFICIAL SOIL COMPOSITION³

Sand (%)	Silt (%)	Clay (%)	Organic Matter (mg/kg)	Organic Carbon (mg/kg)	Nitrogen (%)	Plant Available Phosphorus (µg/g dry)
76	3.8	21	27000	16000	0.080	150

³ Analysis conducted by Maxxam Analytics, 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700

COMMENTS

Noted Deviation(s) :

on(s): •A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control as part of the terrestrial testing.

Date :

2019-03-08

Approved By :

yyyy-mm-dd

Project Manager



EMERGENCE DATA - DAY 7	

Treatment	Replicate	Emergence	Emergence (%)	Treatment Average	Standard Deviation	Notes	Analyst(s)
	1	5	100			Healthy	EJS
	2	5	100			Healthy	RD
Control	3	5	100	100.00	0.00	Healthy, 1 short	RD
	4	5	100			Healthy	RD
	5	5	100			Healthy	RD
	1	5	100			Healthy	RD
	2	5	100			Healthy	RD
10.0 µg/g	3	5	100	100.00	0.00	Healthy	RD
	4	5	100			Healthy	RD
	5	5	100			Healthy	RD

EMERGENCE DATA - DAY 14

Treatment	Replicate	Emergence	Emergence (%)	Treatment Average	SD	Notes	Analyst(s)
	1	5	100			Healthy	EJS
	2	5	100			Healthy	EJS
Control	3	5	100	100.00	0.00	Healthy, 1 short	EJS
	4	5	100			Healthy	EJS
	5	5	100			Healthy	EJS
	1	5	100			Healthy	EJS
	2	5	100			Healthy	EJS
10.0 µg/g	3	5	100	100.00	0.00	Healthy	EJS
	4	5	100			Healthy	EJS
	5	5	100			Healthy	EJS

SHOOT AND ROOT LENGTH DATA - DAY 14

Treatment	Replicate	Average Shoot Length per Plant (mm)	Treatment Average	Standard Deviation	Treatment Average Root Length (mm)	Treatment Average	SD	Notes	Analyst(s)							
	1	361.6			316.0			Healthy Healthy Healthy Healthy Healthy	EJS							
	2	375.0			273.2			Healthy Healthy Healthy Healthy Healthy	DK							
Control	3	335.4	362.88	16.7	284.6	287.12	49.6	Healthy Healthy Healthy Healthy Healthy	EJS							
	4	365.2			214.8			Healthy Healthy Healthy Healthy Healthy	DK							
	5	377.2			347.0			Healthy Healthy Healthy Healthy Healthy	EJS							
	1	367.8			210.0		203.32 15.9	Healthy Healthy Healthy Healthy Healthy	DK							
	2	354.6	354.84	10.6		226.4		Healthy Healthy Healthy Healthy Healthy	EJS							
10.0 µg/g	3	355.2			184.8	203.32		Healthy Healthy Healthy Healthy Healthy	DK							
	4	338.4			201.2			Healthy Healthy Healthy Healthy Healthy	EJS							
	5	358.2											194.2			Healthy Healthy Healthy Healthy Healthy

•No outlying data points were detected according to Grubbs Test (CETIS)

	SHOOT WEIGHT DATA - DAY 14							
Treatment	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation
	1	0.9480	1.5369	588.96	5	117.792		
	2	0.9940	1.5555	561.48	5	112.296	117.848	6.2
Control	3	0.9269	1.5320	605.15	5	121.030		
	4	0.9517	1.5097	557.96	5	111.592		
	5	0.9202	1.5528	632.65	5	126.530		
	1	0.9289	1.6125	683.57	5	136.714		
	2	0.9556	1.6216	665.94	5	133.188		
10	3	0.9461	1.6374	691.38	5	138.276	132.155	7.1
	4	0.9299	1.5305	600.58	5	120.116		
	5	0.9072	1.5696	662.40	5	132.480		

ROOT WEIGHT DATA - DAY 14

Treatment	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation
	1	1.2887	1.5241	235.44	5	47.088		
	2	1.2690	1.4420	172.99	5	34.598		
Control (0)	3	1.2819	1.4467	164.79	5	32.958	37.150	5.9
	4	1.2652	1.4300	164.77	5	32.954		
	5	1.2792	1.4699	190.77	5	38.154		
	1	1.2839	1.4280	144.05	5	28.810		
	2	1.2712	1.4043	133.19	5	26.638		
10	3	1.2738	1.4449	171.07	5	34.214	27.620	4.6
	4	1.2720	1.3792	107.28	5	21.456		
	5	1.2811	1.4160	134.90	5	26.980		

•No outlying data points were detected according to Grubbs Test (CETIS)

	DEFINITIONS	
ICx :	The concentration of test item estimated to cause x% inhibition compared to the Control.	
LC50 :	The concentration of test item estimated to cause mortality in 50% of the test organisms.	
WHC :	Water-holding capacity of the soil.	

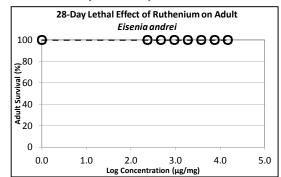
REFERENCES

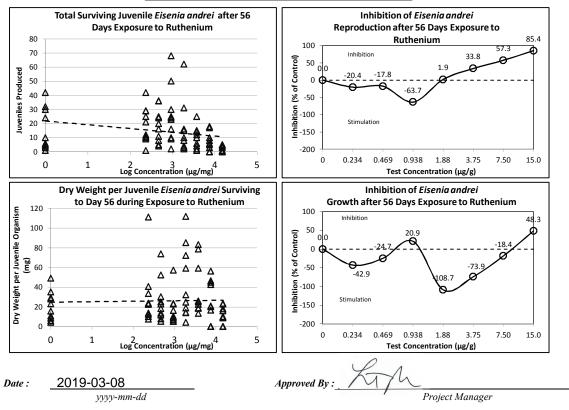
^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

180 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Eisenia andrei EPS 1/RM/43 Page 1 of 6


Work Order :	234749
Sample Number :	52860


SAMPLE IDENTIFICATION						
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®			
Location :	Toronto ON	Chemical Batch :	MKCB9445			
Test Item :	Ruthenium (1000 µg/mL Ru in 5% HCl)	Date Received :	2017-11-03			
Test Item Type :	Chemical	Time Received :	Not recorded			
Storage Temperature :	Ambient room temp.	Date Initiated :	2018-02-08			
Test Item Description :	Dark brown liquid	Date Completed :	2018-04-05			
Test Method :	Tests for Toxicity of Contaminated Soil to Earthworms (<i>Eis</i> Report EPS 1/RM/43, June 2004 with June 2007 amendme	, , , , , , , , , , , , , , , , , , , ,	Lumbricus terrestris			

TEST RESULTS							
Effect	Endpoint	Value	95% Confidence Limits	Calculation Method			
Survival	28-day LC50	>15.0 µg/g	_	_			
Reproductive Success	56-day IC25	10.4 µg/g	0.206* - 14.3 μg/g	Linear Interpolation (CETIS) ^a			
Growth	56-day IC25	3.14 µg/g	0.181* - 4.96 µg/g	Linear Interpolation (CETIS) ^a			

*The lower 95% confidence limit is less than the lowest concentration tested.

Results are based on nominal concentrations of the test item ($\mu g/g$). The results reported relate only to the item tested and as received.

	-
AOUNTO	V
AQUATC	JA.
	2

Work Order :	234749
Sample Number :	52860

TEST ORGANISM

Test Organism :	Eisenia andrei
Culture Origin :	Environment Canada (Ottawa, ON)
Test Organism Source :	In-house culture
Average Wet Weight (±SD) :	453 mg (\pm 82) at start of test

•No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

TEST CONDITIONS					
Test Type :	Prolonged exposure (static)	Soil Type :	Artificial Soil		
Test Duration :	56 days	Test Chamber :	500 mL glass jar		
Number of Treatments :	7 + 1 Control	Test Chamber Covering :	Perforated cover		
Discrete Samples per Treatment :	1	Soil per Replicate :	270 g wet weight		
Replicates per Treatment :	10	Test Temperature :	20 ± 2 °C		
Test Organisms per Replicate :	2	Test Photoperiod :	16 h light : 8 h dark		
Test Organisms per Treatment :	20	Light Quality :	Cool white fluorescent		
Test/Dilution/Misting Water :	Autoclaved dilution water	Test Method Deviation(s) :	Yes (see 'Comments')		

FOOD PREPARATION AND FEEDING

Date	Test Day	Food Type	Ration (per Replicate)
2018-02-08	0	Un-cooked oatmeal + Magic® Worm Food	~4 mL
2018-02-22	14	Un-cooked oatmeal + Magic® Worm Food	~4 mL
2018-03-08	28	Un-cooked oatmeal + Magic® Worm Food	~4 mL
2018-03-22	42	Un-cooked oatmeal + Magic® Worm Food	~4 mL

For each feeding event, a fresh batch of food was prepared. Dry un-cooked oatmeal (250 mL) was mixed thoroughly with 75 mL of Magic® Worm Food. The food mixture was added to each test replicate, and hydrated by spraying 10 times with distilled water.

PREPARATION OF TEST MEDIUM

Artificial Soil was formulated in the laboratory following procedures described in AquaTox SOP #364 (AquaTox, 2015c). The ingredients of Artificial Soil included 70% silica sand, 20% kaolinite clay, 10% Sphagnum spp. fine grind peat, and calcium carbonate (CaCO₃). The Artificial Soil was allowed to stabilize for a minimum of three days prior to test initiation.

Testing followed the general conditions of the cited test method. Solutions used for soil spiking were prepared without the use of any solubilizing agent. A 991μ g/L (nominal, w/v) stock solution was prepared by thoroughly mixing the test item with distilled water. Appropriate volumes of the stock solution were added to individual portions of Artificial Soil to achieve each desired nominal test concentration. The stock solution was added by pouring the solution over the soil surface. Each soil was mixed using a hand-held mechanical mixer for 10 minutes to ensure homogeneity. Additional distilled water was added to the each soil in order to achieve the required moisture content. The soil was then mixed with the hand-held mechanical mixer for 5 minutes. Once homogenized, the spiked soils were dispensed into the appropriate test vessels. Control treatments were prepared in the same manner, but without the addition of stock solution.

The lowest, middle and highest exposure concentrations were confirmed analytically, although test endpoints were generated using nominal test concentrations. The total Ru concentrations were measured at test start, day 14, 28, 42 and at test end (day 56). These results were provided separately to NWMO.

Eisenia andrei

EPS 1/RM/43

Page 3 of 6

Work Order : 234749 Sample Number : 52860

ADULT SURVIVAL (DAY 28)

Date : Analyst(s) :	2018-03-08 EJS, RD, AS	5					
Concentration (µg/g)	-	Number of Live Adults	Number of Healthy Adults	Comments	Adult Survival (%)	Average Survival (%)	Standard Deviation
	1 2	2 2	2 2	_	100 100		
	3	2	2 2	_	100		
	4	2	2	_	100		
Control	5	2	2	-	100	100	0.00
Control	6	2	2	_	100	100	0.00
	7	2	2 2	-	100		
	8 9	2 2	2 2	_	100 100		
	10	2	2	_	100		
	1	2	2	_	100		
	2	2	2	—	100		
	3 4	2 2	2 2	-	100 100		
	5	2 2	2	_	100		
0.234	6	2	2	_	100	100	0.00
	7	2	2	_	100		
	8	2	2	—	100		
	9 10	2 2	2 2	_	100 100		
	10	2	2		100		
	2	2	2	_	100		
	3	2	2	_	100		
	4	2	2	_	100		
0.469	5	2	2	-	100	100	0.00
	6 7	2 2	2 2	_	100 100		
	8	2	2	_	100		
	9	2	2	_	100		
	10	2	2	_	100		
	1	2	2		100		
	2 3	2 2	2 2	_	100 100		
	4	2	2	_	100		
0.020	5	2	2	_	100	100	0.00
0.938	6	2	2	-	100	100	0.00
	7	2	2	—	100		
	8 9	2 2	2 2	_	100 100		
	10	2	2	_	100		
	1	2	2	_	100		
	2	2	2	—	100		
	3 4	2	2 2	-	100		
	4 5	2 2	2	_	100 100		
1.88	6	2	2	_	100	100	0.00
	7	2	2	_	100		
	8	2	2	-	100		
	9	2	2	_	100		
	10	2 2	2 2		100		
	2	2	2	_	100		
	3	2	2	_	100		
	4	2	2	_	100		
3.75	5	2	2	-	100	100	0.00
	6 7	2 2	2 2	_	100 100		
	8	2	2	_	100		
	9	2	2	_	100		
	10	2	2	_	100		
	1	2	2	-	100		
	2 3	2 2	2 2	_	100 100		
	3 4	22	2	_	100		
7 50	5	2	2	-	100	100	0.00
7.50	6	2	2	-	100	100	0.00
	7	2	2	-	100		
	8 9	2 2	2 2	-	100		
	9 10	2 2	2	_	100 100		
	10	2	2	_	100		
	2	2	2	_	100		
	3	2	2	-	100		
	4	2	2	_	100		
15.0	5 6	2 2	2 2		100 100	100	0.00
	7	2	0	Test organisms appear pale.	100		
	8	2	0	Test organisms lethargic	100		
	9	2	0	Test organisms lethargic	100		
	10	2	0	Test organisms lethargic	100		

Test Data Reviewed By :___JL Date :____2018-07-16

TOXICITY TEST REPORT

Eisenia andrei

EPS 1/RM/43

Page 4 of 6

SURVIVING JUVENILES (DAY 56)

Date :	2018-04-05
A 1 (/)	FIG DD CODI CO

234749

Work Order :

Sample Number: 52860

Concentration (µg/g)	Replicate	Comments	Surviving Juveniles	Average Surviving Juveniles	Standard Deviation
(#6/6/	1	-	1	ouvenites	Deviation
	2 3	—	32 24		
	4	_	5		
Control	5	_	42	15.7	14.86
Control	6	—	30	15.7	14.00
	7 8	_	6 10		
	9	-	3		
	10	_	4		
	1 2	-	25 10		
	3	_	29		
	4	-	1		
0.234	5	—	42	18.9	12.41
	6 7	_	9 11		
	8	_	29		
	9	-	12		
	10	-	21		
	2	-	10		
	3	-	36		
	4 5	-	8 36		
0.469	6	_	20	18.5	11.80
	7	-	5		
	8 9	-	24 25		
	10	_	25 4		
	1	-	25		
	2	-	2		
	3 4	_	9 50		
0.938	5	_	68 ¹	25.7	10.07
	6	-	10	25.7	19.97
	7 8	-	16 24		
	9	_	30		
	10	_	23		
	1 2	-	3 16		
	3	_	3		
	4	-	8		
1.88	5 6	—	10 31	15.4	18.61
	7	_	62 ¹		
	8	_	2		
	9	-	4		
	10	_	15 10		
	2	-	4		
	3	-	15		
	4 5	-	15 12		
3.75	6	-	2	10.4	7.38
	7	-	1		
	8 9	-	6 14		
	10	_	25		
	1	-	18		
	2 3	- Large amount of uneaten food	10 0		
	4		6		
7.50	5	-	5	6.7	6.65
	6 7	Some uneaten food - foul odour. Large amount of uneaten food	0 0		
	8	-	8		
	9	-	17		
	10	- C	3		
	1 2	Some uneaten food	1 5		
	3	-	4		
	4	-	3		
15.0	5 6	-	0 4	2.3	2.11
	6 7	Some uneaten food - mild odour.	4		
	8	-	0		
	9		1		

•¹ Outlier according to Grubbs Test (CETIS)⁸. Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

Test Data Reviewed By : JL Date : 2018-07-16

Eisenia andrei

EPS 1/RM/43

Page 5 of 6

Work Order :	234749
Sample Number :	52860

SURVIVING JUVENILE WEIGHT DATA (DAY 56)

nalyst(s) :		N, CG, AS, JL,		m. () m	D	A **	e
Concentration (µg/g)	Replicate	Number of Surviving Juveniles	Total Wet Weight of Juveniles (mg)	Total Dry Weight of Juveniles (mg)	Dry Weight per Juvenile (mg)	Average Dry Weight per Juvenile (mg)	Standard Deviation
	1	1	249.59	48.95	48.95	(g)	
	2	32	1000.10	191.96	6.00		
	3	24	1157.48	203.09	8.46		
	4	5 42	798.36	140.08	28.02		
Control	5 6	42 30	920.52 1477.04	181.84 320.83	4.33 10.69	20.92	14.50
	7	6	1031.12	210.09	35.02		
	8	10	831.54	156.36	15.64		
	9	3	447.90	69.03	23.01		
	10	4	534.62	116.53	29.13		
	1	25	1703.72	341.75	13.67		
	2	10	1267.96	238.67	23.87		
	3	29	1676.12	357.23	12.32		
	4	1	541.58	111.28	111.28		
0.234	5 6	42 9	1624.64 1633.08	316.01 301.78	7.52 33.53	29.90	30.45
	7	11	1981.78	447.20	40.65		
	8	29	1620.02	296.70	10.23		
	9	12	1582.91	280.19	23.35		
	10	21	2113.81	474.24	22.58		
	1	16	1778.85	364.71	22.79		
	2	11	1265.41	276.00	25.09		
	3	36	1451.10	280.52	7.79		
	4 5	8 36	1117.15	242.44 183.04	30.31 5.08		
0.469	6	20	1063.90 1207.79	235.44	11.77	26.10	21.61
	7	5	2001.89	369.57	73.91		
	8	24	2110.13	441.37	18.39		
	9	25	1717.93	338.63	13.55		
	10	4	1025.53	209.23	52.31		
	1	25	891.64	168.36	6.73		
	2	2	519.49	114.63	57.32		
	3	9	1021.31	210.53	23.39		
	4	50	1680.28	257.93 358.95	5.16		
0.938	5 6	68 10	1736.10 1064.75	227.29	5.28 22.73	16.54	15.82
	7	16	1539.54	262.62	16.41		
	8	24	1323.66	248.94	10.37		
	9	30	1332.05	256.47	8.55		
	10	23	1157.75	218.25	9.49		
	1	3	920.36	216.09	72.03		
	2	16	1114.45	225.67	14.10		
	3 4	3 8	1231.21 1384.08	255.16 258.30	85.05 32.29		
	5	10	1262.44	248.90	24.89		
1.88	6	31	2106.94	448.61	14.47	43.68	36.14
	7	62	1420.89	263.28	4.25		
	8	2	909.27	223.46	111.73 ¹		
	9	4	1072.13	236.03	59.01		
	10	15	1238.11	284.59	18.97		
-	1	10	1129.03	250.07	25.01	· · · · ·	
	2	4	1116.67	236.02	59.01		
	3	15	1300.66	280.33	18.69		
	4 5	15 12	1510.99 1134.92	280.75 226.32	18.72 18.86		
3.75	6	2	846.22	157.09	78.55	36.38	26.62
	7	1	387.36	83.20	83.20		
	8	6	811.98	135.45	22.58		
	9	14	1738.77	363.11	25.94		
	10	25	1460.52	331.87	13.27		
	1	18	1491.65	297.02	16.50		
	2	10	1980.25	449.09	44.91		
	3 4	0 6	1137.34	255.89	0.00		
	4	5	1137.34 1142.88	232.43	42.65 46.49		
7.50	6	0			0.00	24.78	21.43
	7	Ő	-	_	0.00		
	8	8	888.91	165.59	20.70		
	9	17	1671.86	345.58	20.33		
	10	3	878.84	168.73	56.24		
	1	1	68.25	9.15	9.15		
	2	5	792.47	113.20	22.64		
	3	4	172.75	34.89	8.72		
	4 5	3 0	444.51	70.70	23.57 0.00		
15.0	6	4	467.07	71.48	17.87	10.81	9.05
	7	4 0			0.00		
	8	Ő		_	0.00		
	9	1	63.75	10.18	10.18		
	10	5	501.89	80.03	16.01		

•¹ Outlier according to Grubbs Test (CETIS)^a. Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

Eisenia andrei

EPS 1/RM/43

Page 6 of 6

X
-

Work Order :	234749
Sample Number :	52860

SOIL CHARACTERISTICS							
Concentration (µg/g)	Initial pH ²	Final pH ²	Initial Conductivity ² (µS/cm)	Final Conductivity ² (µS/cm)	Initial Soil Moisture (% WHC)	Final Soil Moisture (% WHC)	
Control	7.40	7.42	183	249	76	103	
0.234	7.43	7.49	189	290	78	110	
0.469	7.48	7.52	199	299	78	109	
0.938	7.39	7.44	217	343	72	99	
1.88	7.40	7.44	270	345	73	102	
3.75	7.21	7.28	399	437	74	105	
7.50	7.14	7.20	595	610	86	108	
15.0	6.62	6.68	1089	996	82	112	

² pH and conductivity were measured using a 2:1 water:soil slurry

ARTIFICIAL SOIL COMPOSITION ³								
Sand (%)	Silt (%)	Clay (%)	Organic Matter (mg/kg)	Organic Carbon (mg/kg)	Nitrogen (%)	Plant Available Phosphorus (μg/g dry)		
76	3.8	21	27000	16000	0.080	150		

³ Analysis conducted by Maxxam Analytics, 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700

Noted Deviation(s): A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control as part of the terrestrial testing.

•Statistical analyses for IC25 endpoints could not be conducted using Non-Linear Regression, since none of the available models were able to successfully describe the concentration - response relationships. Therefore, test results were calculated using Linear Interpolation (CETIS)^a. Data for test concentrations where reproduction/growth was stimulated (greater than the control), data were replaced with the control values for the purposes of statistical analysis, as recommended by Environment Canada (2005).

•All test validity criteria as specified in the test method were satisfied.

DEFINITIONS

The concentration of test item estimated to cause x% inhibition compared to the Control. ICx:

LC50 : The concentration of test item estimated to cause mortality in 50% of the test organisms.

WHC : water-holding capacity of the soil

REFERENCES

- ^a CETISTM, © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Softwa LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].
- Environment Canada, 2005. Guidance Document on Statistical Methods for Environmental Toxicity Tests. Environmental Protection Series, Ottawa, Ont., Rept. EPS 1/RM/46.

185

AquaTox Testing & Constituting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT Alfalfa EPS 1/RM/45 Page 1 of 6

SAMPLE IDENTIFICATION								
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®					
Location :	Toronto ON	Chemical Batch :	MKBW7418V					
Test Item :	Rhodium (1000 µg/mL Rh in 5% HCl)	Date Received :	2017-11-03					
Test Item Type :	Chemical	Time Received :	Not recorded					
Storage Temperature :	Ambient room temp.	Initiation Date :	2018-02-13					
Test Item Description :	Dark pink liquid	Completion Date :	2018-03-06					
Test Method :	Test for Measuring Emergence and Growth of Terrestrial Plants Exposed to Contaminants in Soil.							
	Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/45, February							
2005 (with June 2007 amendments), with deviation(s) as noted.								

21-DAY TEST RESULTS								
Effect	Endpoint	Value	95% Confidence Limits	Inhibition (% of Control)	Significant Difference from Control?	Calculation Method		
Emergence	EC50	>10.0 µg/g	_	4.08%	Νο (α= 0.05)	Fisher Exact Test ^a		
Shoot Length	IC25	>10.0 µg/g	_	2.65%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a		
Shoot Weight	IC25	$> 10.0 \ \mu g/g$	_	3.04%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a		
Root Length	IC25	>10.0 µg/g	_	-7.55%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a		
Root Dry Weight	IC25	$>10.0 \ \mu g/g$	_	12.86%	No (α= 0.05)	Equal Variance t Two-Sample Test ^a		

•A negative value for inhibition (%) indicates stimulation compared to the control.

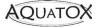
Results are based on nominal concentrations of the test item ($\mu g/g$). The results reported relate only to the item tested and as received.

		TEST ORGANISM	
Species :	<i>Medicago sativa</i>	Seed Variety :	N/A (tap-rooted, farm-saved)
Seed Source :	Mumm's Sprouting Seeds ¹	Lot Number :	A5L

No seeds exhibiting unusual appearance or undergoing unusual treatment were used in the test.

¹Box 80, 118 1st Ave W, Parkside SK, S0J 2A0; 306-747-2935

TEST CONDITIONS

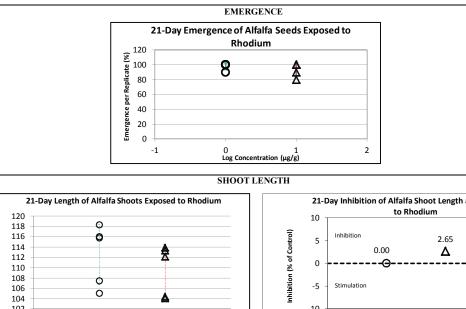

Test Type :	Static	Light Intensity (at soil surface) :	18340 - 19190 lux
Test Duration :	21 days	Photoperiod (light/dark) :	16 h / 8 h
Control/Test Soil :	Artificial Soil	Average Temperature (Range) :	23.9 °C (22 - 27 °C)
Sample Type :	Chemical-Spiked Soil	Emergence Observations :	Days 7 and 21
Samples per Treatment :	1	Shoot/Root Length Observations:	Day 21
Replicates per Treatment :	5	Shoot/Root Weight Observations:	Day 21
Number of Treatments :	1 + 1 (Negative) Control	Conductivity Measurements :	Days 0 and 21
Soil per Replicate :	~350 mL (dry)	pH Measurements :	Days 0 and 21
Seeds per Replicate :	10	Soil Moisture Determinations :	Days 0 and 21
Seeds per Treatment :	50	Test Method Deviations :	Yes (see 'Comments')
-		P	1

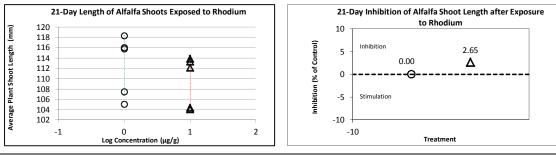
Approved By :

Project Manager

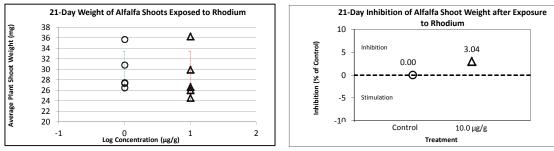
Date :

<u>2019-03-08</u> yyyy-mm-dd

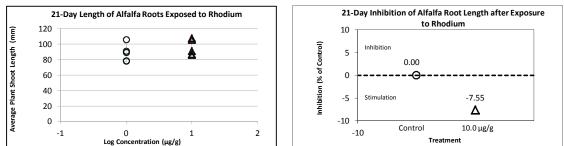


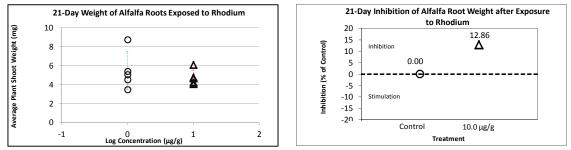

Work Order :

Sample Number :


234748 52859

RESULTS (cont.)





•A negative value for inhibition (%) indicates stimulation compared to the control.

PREPARATION OF TEST MEDIUM

Artificial Soil was formulated in the laboratory following procedures described in AquaTox SOP #364 (AquaTox, 2015c). The ingredients of Artificial Soil included 70% silica sand, 20% kaolinite clay, 10% Sphagnum spp. fine grind peat, and calcium carbonate (CaCO₃). The Artificial Soil was allowed to stabilize for a minimum of three days prior to test initiation.

Testing followed the general conditions of the cited test method. Solutions used for soil spiking were prepared without the use of any solubilizing agent. A 991 μ g/L (nominal, w/v) stock solution was prepared by thoroughly mixing the test item with distilled water. Appropriate volumes of the stock solution were added to individual portions of Artificial Soil to achieve each desired nominal test concentration. The stock solution was added by pouring the solution over the soil surface. Each soil was mixed using a hand-held mechanical mixer for 10 minutes to ensure homogeneity. Additional distilled water was added to the each soil in order to achieve the required moisture content. The soil was then mixed with the hand-held mechanical mixer for 5 minutes. Once homogenized, the spiked soils were dispensed into the appropriate test vessels. Control treatments were prepared in the same manner, but without the addition of stock solution.

The exposure concentration was confirmed analytically, although test endpoints were generated using the nominal test concentration. The total Rh concentration was measured at test start, day 7, 14 and at test end (day 21). These results were provided separately to NWMO.

SOIL CHARACTERISTICS								
Treatment	Initial pH ²	Final pH ²	Initial Conductivity ² (μS/cm)	Final Conductivity ² (μS/cm)	Initial Soil Moisture (% WHC)	Final Soil Moisture (% WHC)		
Control	7.50	7.50	165	225	76	82		
10.0 µg/g	6.82	6.77	855	817	79	94		

² pH and conductivity were measured using a 2:1 water:soil slurry

ARTIFICIAL SOIL COMPOSITION³

Sand (%)	Silt (%)	Clay (%)	Organic Matter (mg/kg)	Organic Carbon (mg/kg)	Nitrogen (%)	Plant Available Phosphorus (µg/g dry)
76	3.8	21	27000	16000	0.080	150

³ Analysis conducted by Maxxam Analytics, 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700

COMMENTS

Noted Deviation(s):
 •The Control organisms satisfied the emergence, survival, and the shoot length validity criteria; however, the validity criterion for root length was not satisfied. The Control did however pass the recommended root weight validity criterion. According to Environment and Climate Change Canada (the author of the standardized plant test method), the test validity criteria were established from tests that did not use a weak nutrient solution for watering. As a weak nutrient solution was used for watering, as is allowed by the method, we observed that the roots were more branched horizontally (i.e., filamentous). Since the roots had access to nutrients in the soil, the plants were able to direct growth to their shoots rather than the root length. This phenomenon is not atypical when a weak nutrient solution is applied and did not warrant repeating the test.

•A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control as part of the terrestrial testing.

Page 4 of 6

Treatment	Replicate	Emergence	Emergence (%)	Treatment Average	Standard Deviation	Notes	Analyst(s)
	1	10	100			Healthy	EJS
	2	10	100			Healthy	EJS
Control	3	10	100	98.00	4.47	Healthy	EJS
	4	9	90			Healthy	EJS
	5	10	100			Healthy	EJS
	1	8	80			Healthy	EJS
	2	10	100	94.00		Healthy	EJS
10.0 µg/g	3	10	100		8.94	Healthy	EJS
	4	9	90			Healthy	EJS
	5	10	100			Healthy	EJS

EMERGENCE DATA - DAY 21

Treatment	Replicate	Emergence	Emergence (%)	Treatment Average	SD	Notes	Analyst(s)
	1	10	100			Healthy, 1 very short plant	EJS
	2	10	100			Healthy	EJS
Control	3	10	100	98.00	4.47	Healthy	EJS
	4	9	90			Healthy	EJS
	5	10	100			Healthy	EJS
	1	8	80			Healthy	EJS
	2	10	100	94.00		Healthy	EJS
10.0 µg/g	3	10	100		8.94	Healthy	EJS
	4	9	90			Healthy	EJS
	5	10	100			Healthy	EJS

NOTES :

2018-03-06: Algal growth was observed in the soil in all replicates in all concentrations (EJS).

EMERGENCE DATA - DAY 7

					SHOUT	AND ROO	LENGIHI	DATA - DAY	21			
Freatment	Replicate	Plant	Shoot Length (mm)	Average Shoot Length per Plant (mm)	Treatment Average	Standard Deviation	Root Length (mm)	Treatment Average Root Length (mm)	Treatment Average	SD	Notes	Analyst(s
		1 2	80 137				78 75	,			Healthy Healthy	
		3	221 135				130 75				Healthy Healthy	1
	1	4 5	5 145	107.50			115	78.80			Healthy	CZN
1	1	6	85 134	107.50			80 98	/8.80			Healthy	CZIN
		8	95				85				Healthy Healthy	
		9 10	24				45				Wilted/small Wilted/chlorotic	
		1	138				131				Healthy	
		2	161 96				121 82				Healthy Healthy	
		4	80				78				Healthy	
	2	5	159 205	118.30			83 143	89.20			Healthy Healthy	EJS
		7	134				105				Healthy	
		8	91 75				37 63				Healthy Healthy	
		10	44 130				49 80				Healthy Healthy	
		2	173				120				Healthy	
		3	172				85 100				Healthy Healthy	
Control	3	5	85	105.10	112.54	5.84	80	78.20	88.64	11.36	Healthy	CZN
	-	6 7	90 48				101 70				Healthy Healthy	
		8	99				81				Healthy	
		9 10	53 36				39 26				Wilted Wilted	
		1	158				116				Healthy	
		3	132 76				121 109				Healthy Healthy	
		4	72				130				Healthy	
	4	4 5 155 116.00 117 106.11	Healthy Healthy	Healthy	EJS							
		7 8	22 99				23 88				Healthy	
		9	144				128				Healthy Healthy	
		10	165				127				- Healthy	
5		2	123				110				Healthy	
		3	138 87				86 91				Healthy Healthy	
	5	5 112	113	115.80			67	90.90			Healthy	CZN
		6	92 144				57 120				Healthy Healthy	
		8 9	109 94				94 75				Healthy	
		10	93				82				Healthy Healthy	
		2	166 63				93 72				Healthy Healthy, leaves have chlorotic spots	
		3	147				79				Healthy	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					172				Healthy Healthy	
	1		6 129 115.88			115	107.38			Healthy	EJS	
							118 73				Healthy Healthy	
		9					-				-	
		10	179				131				Healthy	
		2 3	166 140				112 109				Healthy Healthy	
		4	116				91				Healthy	CZN
	2	5	80	104.40			128	91.00			Healthy Healthy	
		7 8	111 59				72 40				Healthy Healthy	
		9	62				95				Healthy	
		10	20 89				29 67				Wilted Healthy	
		2	153				95				Healthy	
		3	108 74				89 77				Healthy Healthy	
0.0 μg/g	3	5	138	104.10	109.56	4.89	90	86.00	95.34	10.24	Healthy	EJS
		6 7	35 78				37 74				Healthy Healthy	
		8	109 105				114				Healthy Healthy	
		10	103				63 154				Healthy	
		1 2	145				90 86				Healthy Healthy	
		3	119				110				Healthy	
		4 5	107 143				97 102				Healthy Healthy	
	4	6	150	112.11			85	87.00			Healthy	CZN
		7 8	138 47				82 83				Healthy Wilted	
		9	48				48				Wilted	
		10	140				- 118				- Healthy	
		2	118				101				Healthy	1
		3	131 93				132 39				Healthy Healthy	
	5	5	122	113.30			99	105.30			Healthy	EJS
		6 7	123 77				161 69				Healthy Healthy	
		8	93 123				132 108				Healthy Healthy	

•No outlying data points were detected according to Grubbs Test (CETIS).

Test Data Reviewed By : _____ Date : _____2018-06-14_____

	SHOOT WEIGHT DATA - DAY 21									
Treatment	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation		
	1	0.9509	1.2258	274.9200	10	27.4920				
	2	0.8469	1.1554	308.5000	10	30.8500				
Control	3	0.8663	1.1313	265.0300	10	26.5030	29.5827	3.8155		
	4	0.9196	1.2411	321.5400	9	35.7267				
	5	0.9675	1.2410	273.4200	10	27.3420				
	1	0.9289	1.1418	212.9400	8	26.6175				
	2	0.9594	1.2588	299.3800	10	29.9380				
10.0 µg/g	3	0.8633	1.1092	245.8900	10	24.5890	28.6848	4.6684		
	4	0.8935	1.2198	326.3700	9	36.2633				
	5	0.9455	1.2057	260.1600	10	26.0160				

ROOT WEIGHT DATA - DAY 21

Treatment	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation
	1	1.2758	1.3211	45.2300	10	4.5230		
	2	1.2759	1.3301	54.1900	10	5.4190		
Control	3	1.2726	1.3074	34.7600	10	3.4760	5.4540	1.9947
	4	1.2889	1.3678	78.9300	9	8.7700 ¹		
	5	1.2670	1.3178	50.8200	10	5.0820		
	1	1.2689	1.3062	37.2900	8	4.6613		
	2	1.2763	1.3185	42.1500	10	4.2150		
10.0 µg/g	3	1.2894	1.3300	40.5800	10	4.0580	4.7528	0.7953
	4	1.2713	1.3260	54.6800	9	6.0756		
	5	1.2724	1.3199	47.5400	10	4.7540		

 \cdot^{1} Outlier according to Grubbs Test (CETIS³). Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

	DEFINITIONS							
ICx :	The concentration of test item estimated to cause x% inhibition compared to the Control.							
LC50 :	The concentration of test item estimated to cause mortality in 50% of the test organisms.							
WHC :	Water-holding capacity of the soil.							

REFERENCES

^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

192 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2JO Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Barley EPS 1/RM/45 REVISION 1 Page 1 of 7

	SAMPLE IDENTIFICATION							
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®					
Location :	Toronto ON	Chemical Batch :	MKBW7418V					
Test Item :	Rhodium (1000 µg/mL Rh in 5% HCl)	Date Received :	2017-11-03					
Test Item Type :	Chemical	Time Received :	Not recorded					
Storage Temperature :	Ambient room temp.	Initiation Date :	2018-02-13					
Test Item Description :	Dark pink liquid	Completion Date	: 2018-02-27					
Test Method :	Test for Measuring Emergence and Growth of Terrestr Soil. Environment Canada, Conservation and Protecti 1/RM/45, February 2005 (with June 2007 amendmen	on. Ottawa, Ontari	o. Report EPS					

14-DAY TEST RESULTS

Effect	Endpoint	Value	95% Confidence Limits	Calculation Method
Emergence	EC50	$>20.0~\mu g/g$	_	_
Shoot Length	IC25	$>20.0 \ \mu\text{g/g}$	-	-
Shoot Weight	IC25	$>20.0 \ \mu\text{g/g}$	-	-
Root Length	IC25	7.30 µg/g	5.55 - 9.18 μg/g	Non-Linear Regression ^{a,b}
Root Dry Weight	IC25	$>20.0 \ \mu\text{g/g}$	-	Non-Linear Regression ^a

Results are based on nominal concentrations of the test item ($\mu g/g$). The results reported relate only to the item tested and as received.

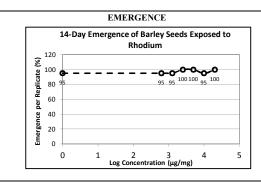
^bThe model was a 2P exponential: $\mu = \alpha \cdot \exp[\log[0.5] \cdot x/\delta]$ where $\alpha = 256.9$ and $\delta = 17.59$.

		TEST ORGANISM	
Species :	<i>Hordeum vulgare</i>	Seed Variety :	Dignity
Seed Source :	Rosebank Seed Farms Ltd. ¹	Lot Number :	Spring Six Row - Home Back

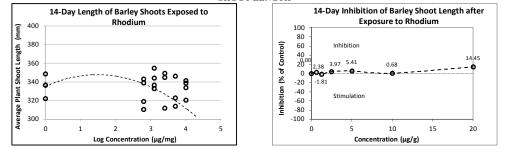
No seeds exhibiting unusual appearance or undergoing unusual treatment were used in the test.

¹7340 Perth Line 24, RR #2, Staffa ON, CA N0K 1Y0

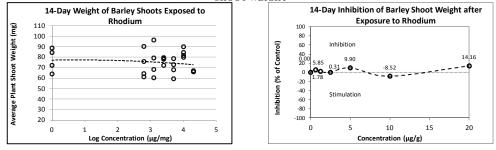
TEST CONDITIONS						
Test Type :	Static	Light Intensity (at soil surface) :	17860 - 18480 lux			
Test Duration :	14 days	Photoperiod (light/dark) :	16 h / 8 h			
Control/Test Soil :	Artificial Soil	Average Temperature (Range) :	23.9 °C (22 - 26 °C)			
Sample Type :	Chemical-Spiked Soil	Emergence Observations :	Days 7 and 14			
Samples per Treatment :	1	Shoot/Root Length Observations:	Day 14			
Replicates per Treatment :	4	Shoot/Root Weight Observations:	Day 14			
Number of Treatments :	6 + 1 (Negative) Control	Conductivity Measurements :	Days 0 and 14			
Soil per Replicate :	~350 mL (dry)	pH Measurements :	Days 0 and 14			
Seeds per Replicate :	5	Soil Moisture Determinations :	Days 0 and 14			
Seeds per Treatment :	20	Test Method Deviations :	Yes (see 'Comments')			

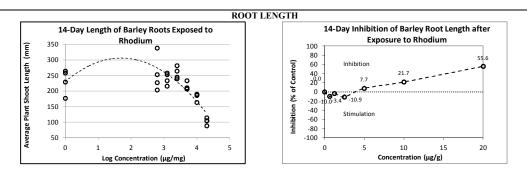


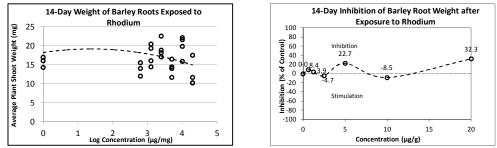
REVISION 1 Page 2 of 7


234748 Work Order : 52859 Sample Number :

AQUATOX


RESULTS (cont.)





SHOOT WEIGHT

•A negative value for inhibition (%) indicates stimulation compared to the control.

AQUATOX		194	ΤΟΧΙΟΙΤΥ Τ
Work Order :	234748		

52859

PREPARATION OF TEST MEDIUM

Artificial Soil was formulated in the laboratory following procedures described in AquaTox SOP #364 (AquaTox, 2015c). The ingredients of Artificial Soil included 70% silica sand, 20% kaolinite clay, 10% Sphagnum spp. fine grind peat, and calcium carbonate (CaCO₃). The Artificial Soil was allowed to stabilize for a minimum of three days prior to test initiation.

Testing followed the general conditions of the cited test method. Solutions used for soil spiking were prepared without the use of any solubilizing agent. A 991 μ g/L (nominal, w/v) stock solution was prepared by thoroughly mixing the test item with distilled water. Appropriate volumes of the stock solution were added to individual portions of Artificial Soil to achieve each desired nominal test concentration. The stock solution was added by pouring the solution over the soil surface. Each soil was mixed using a hand-held mechanical mixer for 10 minutes to ensure homogeneity. Additional distilled water was added to the each soil in order to achieve the required moisture content. The soil was then mixed with the hand-held mechanical mixer for 5 minutes. Once homogenized, the spiked soils were dispensed into the appropriate test vessels. Contrc treatments were prepared in the same manner, but without the addition of stock solution.

The lowest, middle and highest exposure concentrations were confirmed analytically, although test endpoints were generated using nominal test concentrations. The total Rh concentrations were measured at test start, day 7 and at test end (day 14). These results were provided separately to NWMO.

	SOIL CHARACTERISTICS								
Concentration (μg/g)	Initial pH ¹	Final pH ¹	Initial Conductivity ¹ (μS/cm)	Final Conductivity ¹ (μS/cm)	Initial Soil Moisture (% WHC)	Final Soil Moisture (% WHC)			
0.00	7.59	6.88	139	247	80	91			
0.625	7.41	6.97	185	219	76	73			
1.25	7.30	6.78	211	244	77	82			
2.50	7.07	6.59	293	304	79	78			
5.00	6.73	6.50	449	426	80	83			
10.0	6.08	6.05	768	668	80	85			
20.0	5.26	5.44	1364	1350	87	91			

¹ pH and conductivity were measured using a 2:1 water:soil slurry

	ARTIFICIAL SOIL COMPOSITION ²								
Sand (%)	Silt (%)	Clay (%)	Organic Matter (mg/kg)	Organic Carbon (mg/kg)	Nitrogen (%)	Plant Available Phosphoru (µg/g dry)			
76	3.8	21	27000	16000	0.080	150			

² Analysis conducted by Maxxam Analytics, 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700

COMMENTS

Noted Deviation(s) : •A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control as part of the terrestrial testing.

Date :

Sample Number :

2019-03-08

yyyy-mm-dd

Approved By :

Proiect Manager

Work Order :

Sample Number : 52859

234748

TOXICITY TEST REPORT Barley EPS 1/RM/45 REVISION 1

Page 4 of 7

1				EMERGE	NCE DATA -	DAY 7	
Concentration (µg/g)	Replicate	Emergence	Emergence (%)	Treatment Average (%)	Standard Deviation	Notes	Analyst(s)
	1	5	100			Healthy	EJS
Control	2	4	80	95.00	10.00	Healthy	EJS
Control	3	5	100	95.00		Healthy	EJS
	4	5	100			Healthy	EJS
	1	5	100			Healthy	EJS
0.625	2	5	100	95.00	10.00	Healthy	EJS
0.025	3	5	100	15.00	10.00	Healthy	EJS
	4	4	80			3 plants healthy, 1 plant bent over, slightly chlorotic.	EJS
	1	5	100			Healthy	EJS
1.25	2	5	100	95.00	10.00	Healthy	EJS
1.25	3	4	80	75.00		Healthy	EJS
	4	5	100			Healthy	EJS
	1	5	100	95.00	10.00	Healthy	EJS
2.50	2	5	100			Healthy, 1 short plant	EJS
2.50	3	5	100	95.00		Healthy	EJS
	4	4	80			Healthy	EJS
	1	5	100			Healthy, 1 short plant	EJS
5.00	2	5	100	100.00	0.00	4 healthy, 1 short (10mm) and chlorotic.	EJS
5.00	3	5	100	100.00	0.00	Healthy, 1 short plant	EJS
	4	5	100			Healthy	EJS
	1	5	100			Healthy	EJS
10.0	2	5	100	95.00	10.00	Healthy	EJS
10.0	3	5	100	95.00	10.00	Healthy, 1 short plant	EJS
	4	4	80			Healthy	EJS
	1	5	100			Healthy	EJS
20.0	2	4	80	0.5.00	10.00	Healthy	EJS
20.0	3	5	100	95.00	10.00	Healthy	EJS
	4	5	100			3 plants healthy, 2 plants short, 1 of the 2 short plants has a torn stem with some chlorosis.	EJS

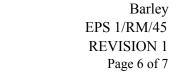
EMERGENCE DATA - DAY 14

Concentration	Replicate	Emergence	Emergence	Treatment	SD	Notes	Analyst(s)
	1	5	100			Healthy	EJS
Control	2	4	80	95.00	10.00	Healthy	EJS
Control	3	5	100	95.00	10.00	Healthy	EJS
	4	5	100			Healthy	EJS
	1	5	100			Healthy	EJS
0.625	2	5	100	95.00	10.00	Healthy	EJS
0.625	3	5	100	95.00	10.00	Healthy	EJS
	4	4	80			Healthy	EJS
	1	5	100			Healthy	EJS
1.25	2	5	100	95.00	10.00	Healthy	EJS
1.25	3	4	80	95.00	10.00	Healthy	EJS
	4	5	100			Healthy	EJS
	1	5	100			Healthy	EJS
2.50	2	5	100	100.00	0.00	Healthy	EJS
2.50	3	5	100	100.00		Healthy	EJS
	4	5	100			1 plant bent over, very short, the rest are healthy	EJS
	1	5	100			Healthy	EJS
5.00	2	5	100	100.00	0.00	Healthy, 1 short plant	EJS
5.00	3	5	100	100.00	0.00	Healthy	EJS
	4	5	100			Healthy	EJS
	1	5	100			Healthy	EJS
10.0	2	5	100	05.00	10.00	Healthy	EJS
10.0	3	5	100	95.00	10.00	Healthy	EJS
	4	4	80			Healthy	EJS
	1	5	100			Healthy	EJS
20.0	2	5	100	100.00	0.00	Healthy	EJS
20.0	3	5	100	100.00	0.00	Healthy	EJS
	4	5	100			Healthy	EJS

•No outlying data points were detected according to Grubbs Test (CETIS⁴).

1-		
AO	UAT	ΟX
112	0	2.

REVISION 1 Page 5 of 7


Work Order : 234748

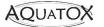
Sample Numbe

ber :	52859					
				SHOOT AND	ROOT LENGTH DA	TA - DAY 14
on	Replicate	Average Shoot Length per Plant (mm)	Treatment Average Shoot Length (mm)	Standard Deviation	Average Root Length (mm)	Treatment Average Roo Length (mm)
	1	322.00			264.40	
	2	336.50	335.88	10.88	177.00 ³	232.10
	3	348.60	333.88	10.88	229.20	232.10

Concentration (µg/g)	Replicate	Average Shoot Length per Plant (mm)	Treatment Average Shoot Length (mm)	Standard Deviation	Average Root Length (mm)	Treatment Average Root Length (mm)	Standard Deviation	Notes	Analyst(s)	
1		322.00			264.40			_	CZN	
	2	336.50	225.00	10.00	177.00 ³	222.10	20.70	-	CZN	
Control	3	348.60	335.88	10.88	229.20	232.10	39.78	-	CZN	
	4	336.40			257.80			-	CZN	
	1	338.80			202.80			-	CZN	
0.625	2	319.00	227.00	15.65	338.20 ³	255.25	59.00	-	CZN	
0.625	3	343.20	327.88	15.65	253.00	255.25	58.98	-	CZN	
	4	310.50			227.00			-	CZN	
	1	332.60			257.80			_	CN	
	2	354.80			253.00			-	CN	
1.250	3	344.00	341.95	9.79	215.75	239.89	19.35	Healthy	EJS/CG	
	4	336.40			233.00			Healthy	CG	
	1	344.60			244.40			-	CZN	
	2	311.80			20.20	239.60			_	CZN
2.50	3	349.20	322.55	30.29	281.60	257.45	19.30	_	CN	
	4	284.60			264.20			Plant #5 shoot is chlorotic and wilting.	CZN	
	1	313.80			207.00			Healthy	CG	
5.00	2	288.20	217.70	22.00	206.60		10.51	Plant #4 appears limp and wilted.	EJS	
5.00	3	322.80	317.70	23.89	210.40	214.30	12.71	Healthy	CG	
	4	346.00			233.20			Healthy	EJS	
	1	341.40			186.20			Healthy	CG	
10.0	2	320.40	222 50	0.04	163.20	101.00	10.41	Plant #1 is healthy, but 1 leaf has necrotic tip	EJS	
10.0	3	333.80	333.59	9.34	189.80	181.68	12.41	Healthy	CG	
	4	338.75			187.50			Healthy	EJS	
	1	291.60			113.60			_	CZN	
20.0	2	283.20	207.25	6.60	105.00	102.10		Plant #5 has partial necrosis of shoot (~50%)	CG	
20.0	3	292.60	287.35	5.52	105.20	103.10	10.46	Healthy	EJS	
	4	282.00			88.60	1		Healthy	EJS	

³Outlier according to Grubbs Test (CETIS)^a. Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

TOXICITY TEST REPORT


1			
Δ	QU.	ΔΤ (JX C
10	20	411	ノバ
-	_		-

Work Order :234748Sample Number :52859

SHOOT WEIGHT DATA - DAY 14

Concentration (µg/g)	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation
	1	0.9558	1.2758	319.98	5	63.9960		
Control	2	0.9410	1.2790	337.97	4	84.4925	77.20	11.24
Control	3	0.9430	1.3868	443.87	5	88.7740	77.39	11.34
	4	0.9205	1.2819	361.43	5	72.2860		
	1	0.9608	1.4120	451.22	5	90.2440		
0.(25	2	0.9265	1.2320	305.53	5	61.1060	72.96	12.22
0.625	3	0.9509	1.2720	321.11	5	64.2220	72.86	13.22
	4	0.9114	1.2148	303.42	4	75.8550		
	1	0.9206	1.2623	341.74	5	68.3480		
1.250	2	0.9589	1.3543	395.43	5	79.0860	76.01	15.51
1.250	3	0.9306	1.3155	384.95	4	96.2375	76.01	
	4	0.9590	1.2609	301.83	5	60.3660		
	1	0.9310	1.3204	389.33	5	77.8660	77.15	3.37
2.50	2	0.9568	1.3540	397.23	5	79.4460		
2.50	3	0.9229	1.3182	395.36	5	79.0720		
	4	0.9566	1.3176	360.99	5	72.1980		
	1	0.9386	1.3031	364.54	5	72.9080		8.09
5.00	2	0.9753	1.3155	340.17	5	68.0340	(0.72	
5.00	3	0.9348	1.2320	297.11	5	59.4220	69.72	
	4	0.9634	1.3560	392.62	5	78.5240		
	1	0.9662	1.3751	408.86	5	81.7720		
10.0	2	0.9250	1.3752	450.14	5	90.0280	02.00	4 42
10.0	3	0.9582	1.3573	399.06	5	79.8120	83.98	4.43
	4	0.9239	1.2612	337.29	4	84.3225		
	1	0.9157	1.2466	330.96	5	66.1920		
20.0	2	0.9535	1.2849	331.44	5	66.2880	((1)	0 47
20.0	3	0.9224	1.2580	335.65	5	67.1300	66.43	0.47
	4	0.9550	1.2856	330.57	5	66.1140		

•No outlying data points were detected according to Grubbs Test (CETIS⁴)

Work Order :	234748
Sample Number :	52859

ROOT WEIGHT DATA - DAY 14	

Concentration (µg/g)	Replicate	Weigh Boat (g)	Weigh Boat + Dry (g)	Dry Weight (mg)	Number of Plants	Dry Weight/Individual Plant (mg)	Treatment Average Weight (mg)	Standard Deviation
	1	1.2672	1.3387	71.49	5	14.2980		
Control	2	1.2756	1.3436	67.93	4	16.9825	18.3236	5.2099
Control	3	1.2763	1.4061	129.79	5	25.9580	16.5250	5.2099
	4	1.2823	1.3625	80.28	5	16.0560		
	1	1.2755	1.4034	127.95	5	25.5900		
0.625	2	1.2729	1.3505	77.62	5	15.5240	16.7789	6.0483
0.025	3	1.2680	1.3280	60.02	5	12.0040	10.7789	0.0465
	4	1.3096	1.3655	55.99	4	13.9975		
	1	1.2824	1.3627	80.26	5	16.0520		
1.25	2	1.2690	1.3715	102.43	5	20.4860	17 6050	2.8041
1.25	3	1.2864	1.3640	77.56	4	19.3900	17.6050	
	4	1.2973	1.3698	72.46	5	14.4920		
	1	1.2816	1.3671	85.58	5	17.1160	- 19.1910	2.3686
2.50	2	1.2682	1.3592	91.01	5	18.2020		
2.50	3	1.2803	1.3932	112.87	5	22.5740		
	4	1.2777	1.3720	94.36	5	18.8720		
	1	1.2789	1.3510	72.09	5	14.4180		
5.00	2	1.2781	1.3364	58.33	5	11.6660	14 1725	1 0017
5.00	3	1.2711	1.3415	70.39	5	14.0780	14.1725	1.9917
	4	1.2907	1.3734	82.64	5	16.5280		
	1	1.3218	1.4300	108.18	5	21.6360		
10.0	2	1.2799	1.3907	110.79	5	22.1580	10.0074	2.9456
10.0	3	1.2780	1.3774	99.39	5	19.8780	19.8874	2.8456
	4	1.2941	1.3576	63.51	4	15.8775		
	1	1.2813	1.3689	87.58	5	17.5160		
20.0	2	1.2804	1.3386	58.27	5	11.6540	12 4055	2 4720
20.0	3	1.2713	1.3226	51.30	5	10.2600	12.4055	3.4730
	4	1.2805	1.3315	50.96	5	10.1920		

•No outlying data points were detected according to Grubbs Test (CETIS)^a.

	DEFINITIONS						
ICx :	The concentration of test item estimated to cause x% inhibition compared to the Control.						
EC50 :	The concentration of test item estimated to show an effect in 50% of the test organisms.						
WHC :	Water-holding capacity of the soil.						

REFERENCES

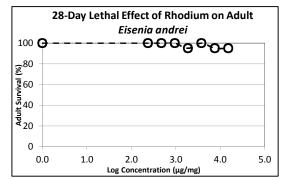
^a CETIS™, © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].

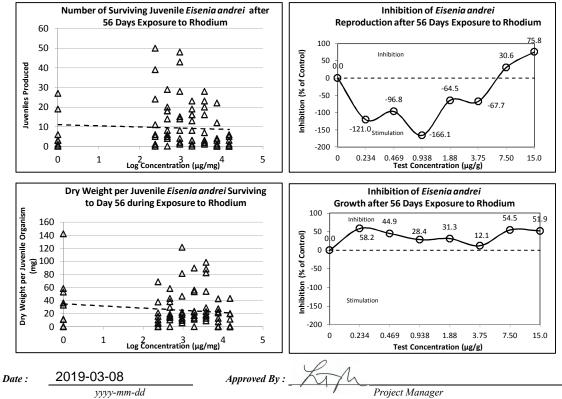
Test Data Reviewed By : JL Date : 2019-03-07

199 AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, ON NOB 2J0 Tel. (519) 763-4412 Fax. (519) 763-4419

TOXICITY TEST REPORT

Eisenia andrei EPS 1/RM/43 Page 1 of 6


Work Order :234748Sample Number :52859


SAMPLE IDENTIFICATION						
Company :	NWMO - Nuclear Waste Management Organization	Supplier :	Sigma-Aldrich®			
Location :	Toronto ON	Chemical Batch :	MKBW7418V			
Test Item :	Rhodium (1000 µg/mL Rh in 5% HCl)	Date Received :	2017-11-03			
Test Item Type :	Chemical	Time Received :	Not recorded			
Storage Temperature :	Ambient room temp.	Date Initiated :	2018-01-19			
Test Item Description :	Dark pink liquid	Date Completed :	2018-03-16			
Test Method :	Tests for Toxicity of Contaminated Soil to Earthworms (<i>Eis</i> Report EPS 1/RM/43, June 2004 with June 2007 amendme	, , , , , , , , , , , , , , , , , , , ,	Lumbricus terrestris			

TEST RESULTS							
Effect	Endpoint	Value	95% Confidence Limits	Calculation Method			
Survival	28-day LC50	>15.0 µg/g	_	-			
Reproductive Success	56-day IC25	6.64 μg/g	0.124* - 9.66 μg/g	Linear Interpolation (CETIS) ^a			
Growth	56-day IC25	<0.234 µg/g	-	Linear Interpolation (CETIS) ^a			

*The lower 95% confidence limit is less than the lowest concentration tested.

Results are based on nominal concentrations of the test item $(\mu g/g)$. The results reported relate only to the item tested and as received.

Work Order :	234748
Sample Number :	52859

Test Organism :	Eisenia andrei
Culture Origin :	Environment Canada (Ottawa, ON)
Test Organism Source :	In-house culture
Average Wet Weight (±SD) :	440.2 mg (\pm 62.9) at start of test

•No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

TEST CONDITIONS					
Test Type :	Prolonged exposure (static)	Soil Type :	Artificial Soil		
Test Duration :	56 days	Test Chamber :	500 mL glass jar		
Number of Treatments :	7 + 1 Control	Test Chamber Covering :	Perforated cover		
Discrete Samples per Treatment :	1	Soil per Replicate :	270 g wet weight		
Replicates per Treatment :	10	Test Temperature :	20 ± 2 °C		
Test Organisms per Replicate :	2	Test Photoperiod :	16 h light : 8 h dark		
Test Organisms per Treatment :	20	Light Quality :	Cool white fluorescent		
Test/Dilution/Misting Water :	Autoclaved dilution water	Test Method Deviation(s) :	Yes (see 'Comments')		

FOOD PREPARATION AND FEEDING

Date	Test Day	Food Type	Ration (per Replicate)
2018-01-19	0	Un-cooked oatmeal + Magic® Worm Food	~4 mL
2018-02-02	14	Un-cooked oatmeal + Magic® Worm Food	~4 mL
2018-02-16	28	Un-cooked oatmeal + Magic® Worm Food	~4 mL
2018-03-02	42	Un-cooked oatmeal + Magic® Worm Food	~4 mL

For each feeding event, a fresh batch of food was prepared. Dry un-cooked oatmeal (250 mL) was mixed thoroughly with 75 mL of Magic® Worm Food. The food mixture was added to each test replicate, and hydrated by spraying 10 times with distilled water.

PREPARATION OF TEST MEDIUM

Artificial Soil was formulated in the laboratory following procedures described in AquaTox SOP #364 (AquaTox, 2015c). The ingredients of Artificial Soil included 70% silica sand, 20% kaolinite clay, 10% Sphagnum spp. fine grind peat, and calcium carbonate (CaCO₃). The Artificial Soil was allowed to stabilize for a minimum of three days prior to test initiation.

Testing followed the general conditions of the cited test method. Solutions used for soil spiking were prepared without the use of any solubilizing agent. A 991 μ g/L (nominal, w/v) stock solution was prepared by thoroughly mixing the test item with distilled water. Appropriate volumes of the stock solution were added to individual portions of Artificial Soil to achieve each desired nominal test concentration. The stock solution was added by pouring the solution over the soil surface. Each soil was mixed using a hand-held mechanical mixer for 10 minutes to ensure homogeneity. Additional distilled water was added to the each soil in order to achieve the required moisture content. The soil was then mixed with the hand-held mechanical mixer for 5 minutes. Once homogenized, the spiked soils were dispensed into the appropriate test vessels. Control treatments were prepared in the same manner, but without the addition of stock solution.

The lowest, middle and highest exposure concentrations were confirmed analytically, although test endpoints were generated using nominal test concentrations. The total Rh concentrations were measured at test start, day 14, 28, 42 and at test end (day 56). These results were provided separately to NWMO.

TEST ORGANISM

Eisenia andrei

EPS 1/RM/43

Page 3 of 6

Work Order : 234748 Sample Number : 52859

ADULT SURVIVAL (DAY 28)

Date : Analyst(s) :	2018-02-16 EJS, RD, AS	3					
Concentration (µg/g)	-	Number of Live Adults	Number of Healthy Adults	Comments	Adult Survival (%)	Average Survival (%)	Standard Deviation
	1 2	2 2	2 2	-	100 100		
	3	2 2	2 2	One test organism only slightly clitellated	100 100		
Control	5	2	2	_	100	100	0.00
Control	6 7	$\frac{2}{2}$	2 2	_	100	100	0.00
	8	$\frac{2}{2}$	2	_	100 100		
	9	2	2	-	100		
	10	2	2 2	-	100		
	2	2	2	_	100		
	3 4	2 2	2 2		100 100		
0.234	5	2	2	_	100	100	0.00
0.234	6 7	2 2	2 2	_	100 100	100	0.00
	8	$\frac{2}{2}$	2	_	100		
	9	2	2	-	100		
	10	2 2	2 2		100		
	2	2	2	_	100		
	3 4	2 2	2 2	_	100 100		
0.460	4 5	2 2	2	_	100	100	0.00
0.469	6	2	2	-	100	100	0.00
	7 8	2 2	2 2		100 100		
	9	2	2	_	100		
	10	2	2	-	100		
	1 2	2 2	2 2	_	100 100		
	3	2	2	_	100		
	4 5	2 2	2 2	_	100 100		
0.938	6	2 2	2	_	100	100	0.00
	7	2	2	-	100		
	8 9	2 2	2 2		100 100		
	10	2	2	_	100		
	1 2	1 2	1 2	-	50 100		
	23	$\frac{2}{2}$	2	_	100		
	4	2	2	-	100		
1.88	5 6	2 2	2 2	_	100 100	95	15.81
	7	2	2	_	100		
	8 9	2	2 2	-	100		
	10	2 2	2	_	100 100		
	1	2	2	_	100		
	2 3	2 2	2 2	-	100 100		
	4	2	2	_	100		
3.75	5	2	2	Test organisms mating	100	100	0.00
	6 7	2 2	2 2		100 100		
	8	2	2	-	100		
	9 10	2 2	2 2		100 100		
	1	2	2	_	100		
	2	2	2		100		
	3 4	2 2	2 2		100 100		
7.50	5	2	2	-	100	95	15.81
1.00	6 7	1 2	1 2	_	50 100	,,,	10.01
	8	2	2	_	100		
	9	2	2	-	100		
	10	2 2	2 2	One test organism partially discoloured	100		
	2	2	2		100		
	3 4	2	2	One test organism discoloured	100		
	4 5	1 2	1 0	Test organisms lethargic	50 100	<u> </u>	10.00
15.0	6	2	0	Test organisms pale and lethargic	100	95	15.81
	7 8	2 2	2 0	– Test organisms lethargic	100 100		
	8 9	2 2	0	Test organisms lethargic	100		
	10	2	0	Test organisms lethargic	100		

Test Data Reviewed By : JL Date : 2018-06-27

TOXICITY TEST REPORT

Eisenia andrei

EPS 1/RM/43

Page 4 of 6

		SURVIVING JUVE	NILES (DAY 56)	
Date : Analyst(s) :	2018-03-16 EJS, MR, RI	D, AS, CG, CZN			
Concentration (µg/g)	Replicate	Comments	Surviving Juveniles	Average Surviving Juveniles	Standard Deviation
	1 2	-	3 3		
	3	_	0		
	4		27		
Control	5 6		0 0	6.2	9.25
	7	-	19		
	8 9	_	3 6		
	10	-	1		
	1	-	11		
	2 3	- Large amount of uneaten food	0 1		
	4	–	0		
0.234	5	-	50 ¹	13.7	17.96
	6 7	Many very small juveniles Large amount of uneaten food	39 5	-2.,	- 7.20
	8	-	24		
	9	-	1		
	10	-	6		
	2	_	29		
	3 4	-	0 18		
0.170	4 5	-	18 5	10.0	o c -
0.469	6	-	20	12.2	9.05
	7 8	-	8 4		
	9	-	4		
	10	-	18		
	1 2	Large amount of uneaten food	4 2		
	3	-	48		
	4	Large amount of uneaten food	1		
0.938	5 6		43 14	16.5	17.40
	7	-	2		
	8 9	-	28		
	10	-	15 8		
	1	Large amount of uneaten food	3		
	2 3	-	16 19		
	4	-	3		
1.88	5		23	10.2	8.26
	6 7		8 13		
	8	-	16		
	9 10	-	0 1		
	10	-	16		
	2	-	2		
	3 4 5 6	-	3 1		
3 75	5	-	2 23	10.4	10.22
3.75	6	-	23	10.4	10.32
	7 8	-	7 28		
	9	_	20		
	10	-	2 22		
	1 2	-	0		
	2 3	-	4		
	4 5	-	0 0		
7.50	6	- Large amount of uneaten food	0	4.3	7.23
	7	-	1		
	8 9	-	3 1		
	10		12		
	1	-	0		
	2 3	-	1 0		
	4	-	0		
15.0	5	-	3	1.5	2.32
	6 7	-	6 5		=
	8	-	0		
	9	-	0		
	10	-	0		

 \cdot^1 Outlier according to Grubbs Test (CETIS)^a. Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

Eisenia andrei

EPS 1/RM/43

Page 5 of 6

Work Order :	234748
Sample Number :	52859

SURVIVING JUVENILE WEIGHT DATA (DAY 56)	
---	--

nalyst(s) :	EJS, MR, RE	D, AS, CZN, CG					
Concentration (µg/g)	Replicate	Number of Surviving Juveniles	Total Wet Weight of Juveniles (mg)	Total Dry Weight of Juveniles (mg)	Dry Weight per Juvenile (mg)	Average Dry Weight per Juvenile (mg)	Standard Deviation
	1 2	3 3	753.45 535.61	158.85 109.17	52.95 36.39		
	3	0	-	-	-		
	4	27	1558.33	310.77	11.51		
Control	5 6	0	_	-	_	49.28	44.71
control	6 7	0 19	1052.35	209.41	11.02	19.20	
	8	3	813.68	175.60	58.53		
	9	6	1113.88	196.50	32.75		
	10	1	702.78	141.82	141.82 ¹		
	1 2	11 0	814.16	171.96	15.63		
	3	1	2.07	0.42	0.42		
	4	0	_	-	-		
0.234	5 6	50 39	1164.83 1287.21	241.79 245.49	4.84 6.29	20.61	22.66
	7	5	529.65	105.69	21.14		
	8	24	1163.48	246.13	10.26		
	9	1	368.49	68.67	68.67		
	10	6	1046.45 1033.96	225.93 230.34	37.66 38.39		
	2	29	1549.20	305.47	10.53		
	3	0	-	-	-		
	4 5	18 5	1467.19 828.35	267.24 215.11	14.85 43.02		
0.469	6	20	1569.48	328.90	16.45	27.15	16.38
	7	8	1171.86	235.87	29.48		
	8	4	1258.45	233.88	58.47		
	9 10	14 18	1421.39 1241.72	269.46 249.82	19.25 13.88		
	1	4	454.24	84.86	21.22		
	2	2	513.16	93.30	46.65		
	3	48	1434.94	293.04	6.11		
	4 5	1 43	612.75 2014.42	121.40 419.01	121.4 ¹ 9.74		
0.938	6	14	1226.28	260.28	18.59	35.31	37.77
	7	2	819.00	162.92	81.46		
	8 9	28 15	1556.28	331.48	11.84		
	10	8	1495.97 838.38	335.24 109.90	22.35 13.74		
	1	3	792.70	168.01	56.00		
	2	16	1343.10	266.83	16.68		
	3 4	19 3	1231.30 903.98	259.04 160.45	13.63 53.48		
1.00	5	23	1484.65	269.29	11.71	22.05	24.40
1.88	6	8	1004.72	191.42	23.93	33.85	26.60
	7 8	13	1009.96	228.27	17.56		
	8	16 0	1811.02	355.81	22.24		
	10	1	429.23	89.45	89.45		
	1	16	1892.43	299.26	18.70		
	2 3	2 3	322.02 880.75	58.30 161.98	29.15 53.99		
	4	1	486.45	82.58	82.58		
3.75	5	2	123.22	176.49	88.25	43.31	34.54
	6 7	23 7	1628.51 740.40	301.56 164.02	13.11 23.43	10.01	54.54
	8	28	1249.57	250.96	23.43 8.96		
	9	20	1629.46	328.21	16.41		
	10	2	1021.09	196.96	98.48		
	1 2	22 0	1433.68	281.31	12.79		
	3	4	834.66	170.93	42.73		
	4	0			-		
7.50	5	0	_	-		22.43	12.25
	6 7	0 1	105.50	21.08	21.08		
	8	3	459.83	82.96	27.65		
	9	1	63.46	7.72	7.72		
	10	12 0	1337.02	271.12	22.59		
	2	1	273.46	43.44	43.44		
	3	0		-			
	4	0					
	5	3	295.98 344.60	60.51 69.60	20.17 11.60	23.69	13.73
15.0	6						
15.0	6 7	6 5	564.03	97.79	19.56		
15.0							

•¹ Outlier according to Grubbs Test (CETIS)^a. Outlying data points were not excluded from statistical analysis, since they could not be attributed to error.

Eisenia andrei

Page 6 of 6

QUATOX

Work Order :	234748
Sample Number :	52859

SOIL CHARACTERISTICS							
Concentration (µg/g)	Initial pH ²	Final pH ²	Initial Conductivity ² (µS/cm)	Final Conductivity ² (µS/cm)	Initial Soil Moisture (% WHC)	Final Soil Moisture (% WHC)	
Control	7.62	7.19	237	454	76	90	
0.234	7.58	7.09	203	512	77	90	
0.469	7.55	7.11	216	471	76	93	
0.938	7.52	7.08	244	536	78	85	
1.88	7.48	7.27	306	604	75	87	
3.75	7.32	7.13	427	721	77	83	
7.50	7.14	6.84	672	940	78	76	
15.0	6.84	6.48	1116	1535	81	82	

² pH and conductivity were measured using a 2:1 water:soil slurry

ARTIFICIAL SOIL COMPOSITION ³						
Sand (%)	Silt (%)	Clay (%)	Organic Matter (mg/kg)	Organic Carbon (mg/kg)	Nitrogen (%)	Plant Available Phosphorus (µg/g dry)
76	3.8	21	27000	16000	0.080	150

³ Analysis conducted by Maxxam Analytics, 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700

COMMENTS

Noted Deviation(s): A reference toxicant test was not conducted in conjunction with this test, as required by the test method. The client has declined the option to include a positive control as part of the terrestrial testing.

•Statistical analyses for IC25 endpoints could not be conducted using Non-Linear Regression, since none of the available models were able to successfully describe the concentration - response relationships. Therefore, test results were calculated using Linear Interpolation (CETIS)^a. Data for test concentrations where reproduction/growth was stimulated (greater than the control), data were replaced with the control values for the purposes of statistical analysis, as recommended by Environment Canada (2005).

•All test validity criteria as specified in the test method were satisfied.

DEFINITIONS

ICx : The concentration of test item estimated to cause x% inhibition compared to the Control.

LC50: The concentration of test item estimated to cause mortality in 50% of the test organisms.

WHC : water-holding capacity of the soil

REFERENCES

- ^a CETIS[™], © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Softwar LLC, McKinleyville, CA 95519 [Program on disk and printed User's Guide].
- Environment Canada, 2005. Guidance Document on Statistical Methods for Environmental Toxicity Tests. Environmental Protection Series, Ottawa, Ont., Rept. EPS 1/RM/46.