Nuclear Fuel Waste Projections in Canada – 2019 Update

NWMO-TR-2019-14

September 2019

M. Gobien and M. Ion Nuclear Waste Management Organization

NUCLEAR WASTE SOCIÉTÉ DE GESTION MANAGEMENT DES DÉCHETS ORGANIZATION NUCLÉAIRES

Nuclear Waste Management Organization 22 St. Clair Avenue East, 6th Floor

22 St. Clair Avenue East, 6th Floor Toronto, Ontario M4T 2S3 Canada

Tel: 416-934-9814 Web: www.nwmo.ca

Nuclear Fuel Waste Projections in Canada – 2019 Update

NWMO-TR-2019-14

September 2019

M. Gobien and M. Ion Nuclear Waste Management Organization

All copyright and intellectual property rights belong to NWMO.

Document History

Title:	Nuclear Fuel Waste Projections in Canada – 2019 Update				
Report Number:	NWMO-TR-2019-14				
Revision:	R000 Date: September 2019				
Nuclear Waste Management Organization					
Authored by:	M. Gobien and M. Ion				
Verified by:	U. Stahmer				
Reviewed by:	P. Gierszewski				
Approved by:	D. Wilson				

ABSTRACT

Title:Nuclear Fuel Waste Projections in Canada – 2019 UpdateReport No.:NWMO-TR-2019-14Author(s):M. Gobien and M. IonCompany:Nuclear Waste Management OrganizationDate:September 2019

Abstract

This report summarizes the existing inventory of used nuclear fuel wastes in Canada as of June 30, 2019 and forecasts the potential future nuclear fuel waste from the existing reactor fleet as well as from proposed new-build reactors. While the report focuses on power reactors, it also includes prototype, demonstration and research reactor fuel wastes held by AECL, which are included in the NWMO mandate.

As of June 30, 2019, a total of approximately 2.9 million used CANDU fuel bundles (approx. 56,500 tonnes of heavy metal (t-HM)) were in storage at the reactor sites, an increase of approximately 81,800 bundles since the 2018 NWMO Nuclear Fuel Waste Projections report.

For the existing reactor fleet, the total projected number of used fuel bundles produced to end of life of the reactors is approximately 5.5 million used CANDU fuel bundles (approx. 106,000 t-HM). The projection is based on the published plans to refurbish and life-extend all Darlington and Bruce reactors as well as continued operation of Pickering B until 2024.

Used fuel produced by potential new-build reactors will depend on the size and type of reactor and number of units deployed. New-build plans are at various stages of development and the decisions about whether to proceed with individual projects, reactor technology and number of units have not yet been made.

The impacts of any future decisions on reactor refurbishment, new nuclear build or advanced fuel cycle technologies made by the nuclear utilities in Canada on forecasted inventory of nuclear fuel waste will be incorporated into future updates of this report.

TABLE OF CONTENTS

Page

ABSTRACT	iii
1.	INTRODUCTION1
1.1	BACKGROUND1
1.2	SCOPE1
1.3	CHANGES SINCE THE 2018 REPORT1
2.	INVENTORY FROM EXISTING REACTORS
2.1	CURRENT INVENTORIES
2.2	PROJECTED NUCLEAR FUEL WASTE4
3.	INVENTORY FROM POTENTIAL NEW REACTORS7
3.1	PROJECTS WHICH HAVE RECEIVED OR CURRENTLY UNDERGOING REGULATORY APPROVALS7
3.1.1	Ontario Power Generation7
3.1.2	Global First Power
3.2	ADDITIONAL PROJECTS AND DEVELOPMENTS9
4.	SUMMARY OF PROJECTED USED FUEL INVENTORY10
REFERENCE	S12
APPENDIX A	: SUMMARY OF EXISTING CANADIAN REACTORS & FUEL STORAGE15
APPENDIX B	: DESCRIPTION OF FUEL TYPES21
B.1 FUEL	S FROM OPERATING REACTORS22
B.2 FUEL	S FROM DEMONSTRATION AND PROTOTYPE REACTORS26
APPENDIX C	POTENTIAL NEW BUILD FUEL CHARACTERISTICS AND QUANTITIES29
C.1 FUEL	S FROM POTENTIAL NEW-BUILD REACTORS

LIST OF TABLES

Page

Table 1: Summary of Nuclear Fuel Waste in Canada as of June 30, 2019	3
Table 2: Summary of Projected Nuclear Fuel Waste from Existing Reactors	6
Table 3: Summary of Proposed New Reactors	7

LIST OF FIGURES

Page

Figure 1: Summary of Used Fuel Wet and Dry Stora	ge History4
Figure 2: Summary of Projected Used Fuel Inventor	y10

1. INTRODUCTION

1.1 BACKGROUND

The Nuclear Waste Management Organization (NWMO) is responsible for the long-term management of Canada's nuclear fuel waste (Canada 2002).

The NWMO will continually review and adjust its implementation plans as appropriate consistent with the external environment. As part of this process, the NWMO annually publishes the current and future potential inventories of used fuel amounts and types (Ion 2018). This document provides an update as of June 2019.

Decisions on new nuclear reactors, advanced fuel cycles or other changes in energy choices will not be made by the NWMO. They will be made by the utilities in conjunction with government and regulators. However, it is important that NWMO is prepared for these potential changes so that the NWMO can plan for the long-term management of used fuel arising from such decisions. As part of this, the NWMO maintains a watching brief on alternative technologies (NWMO 2016, 2018).

1.2 SCOPE

This report summarizes the existing inventory of used nuclear fuel wastes in Canada as of June 30, 2019 and forecasts the potential future nuclear fuel waste from the existing reactor fleet as well as from proposed new reactors. The report focuses on power reactors, but also includes information on prototype, demonstration and research reactor fuel wastes held by AECL.

1.3 CHANGES SINCE THE 2018 REPORT

The primary changes to the Canadian nuclear landscape since the 2018 report are:

- a) An increase in the total amount of used fuel currently in storage, due to another year of reactor operation.
- b) OPG prepares for Unit 2 Fuel Load on the Darlington Refurbishment Project (OPG 2019a). Darlington Unit 2 is expected to return to service by June 2020, Unit 3 refurbishment planned to commence Q1 2020 (OPG 2019b).
- c) Bruce Power opened training facilities in Kincardine and a warehouse in Chesley in support of Major Component Replacement (Bruce Power 2019a, 2019b).
- d) Global First Power submitted an application for a licence to prepare site for a small modular reactor at Chalk River Laboratories (Global First Power 2019a, 2019b).
- e) The Federal government issued a Notice of Commencement of an Environmental Assessment for a small modular reactor at the Chalk River Laboratories (CNSC 2019a).

The combined effects of these changes on the current and projected used fuel inventory are:

a) An increase in the total amount of used fuel currently in storage from June 30, 2018 to June 30, 2019.

	June 30, 2018	June 30, 2019	Net ch	nange
Wet storage	1,460,854	1,448,284	-12,570	bundles*
Dry storage	1,392,276	1,486,638	94,362	bundles
TOTAL	2,853,130	2,934,922	81,792	bundles

^{*} Note: A negative number means more used fuel was transferred from wet to dry storage than was produced during the year.

b) An increase in the overall projected future total number of used fuel bundles produced by the existing reactors (approximately 5.5 million bundles) to align with the current refurbishment and operational plans (see Section 2.2). The forecast presented in this report is most similar to the high scenarios from the previous versions of this report.

2. INVENTORY FROM EXISTING REACTORS

2.1 CURRENT INVENTORIES

Table 1 summarizes the current inventory of nuclear fuel waste in Canada as of June 30, 2019. The inventory is expressed in terms of number of CANDU used fuel bundles and does not include fuel which is currently in the reactors (which is not considered to be "nuclear fuel waste" until it has been discharged from the reactors) or non-CANDU-like research fuels (see note 3).

As of June 30, 2019 there are approximately 2.9 million bundles in wet or dry storage. This is equivalent to approximately 56,500 tonnes of heavy metal (t-HM). Further details on the existing reactors can be found in Appendix A and fuel types in Appendix B.

Location	Waste Owner	Wet Storage (# bundles)	Dry Storage (# bundles)	TOTAL (# bundles)	Current Status
Bruce A	OPG ⁽²⁾	340,126	211,200	551,326	- 4 units operational
Bruce B	OPG ⁽²⁾	345,128	383,606	728,734	- 4 units operational
Darlington	OPG	321,528	245,300	566,828	- 3 units operational, 1 unit undergoing refurbishment. See Note (4).
Douglas Point	AECL	0	22,256	22,256	- permanently shut down 1984
Gentilly 1	AECL	0	3,213	3,213	 permanently shut down 1977
Gentilly 2	HQ	5,965	123,960	129,925	- permanently shut down 2012
Pickering A	OPG	400,597	372,738	773,335	 2 units operational, 2 units non- operational since 1997 (permanently shut down 2005)
Pickering B	OPG				- 4 units operational
Point Lepreau	NBPN	34,940	117,178	152,118	- operational
Whiteshell	AECL	0	2,301	2,301	 permanently shut down 1985. See Note (1).
Chalk River	AECL	0	4,886	4,886	 mostly fuel from NPD (permanently shut down 1987) with small amounts from other Canadian reactors and research activities.
		Note (3)	Note (3)	Note (3)	- currently under assessment
	Total	1,448,284	1,486,638	2,934,922	

 Table 1: Summary of Nuclear Fuel Waste in Canada as of June 30, 2019

Notes:

AECL = Atomic Energy of Canada Limited

= Hydro-Québec

NBPN = New Brunswick Power Nuclear

OPG = Ontario Power Generation Inc.

1) 360 bundles of Whiteshell fuel are standard CANDU bundles (from the Douglas Point reactor). The remaining bundles are various research, prototype and test fuel bundles, similar in size and shape to standard CANDU bundles, mainly from the research/prototype WR-1 reactor.

HQ

2) Bruce reactors are leased to Bruce Power for operation. OPG is responsible for the used fuel that is produced.

3) AECL also owns some ~22,000 components of research and development fuels such as fuel elements, fuel pellets and fuel debris in storage at Chalk River. While the total mass of these components is small compared to the overall quantity of CANDU fuel, their varied composition, storage form, dimensions, etc. requires special consideration for future handling. There are also small quantities (a few kg) of non-CANDU fuel associated with research reactors in Canada.

4) Darlington is currently undergoing refurbishment, unit-by-unit. The first unit (Unit 2) was shut down for refurbishment in October 2016.

Figure 1 summarizes the history of wet and dry storage of used fuel in Canada to the end of June 2019. Initially, all fuel was wet-stored in the station used fuel storage bays. Dry storage was initiated in the 1970s at shutdown AECL prototype reactors. Starting in the 1990s, older fuel in the wet bays at the operating power reactors has been transferred to dry storage on an ongoing basis. In the future, the inventory in wet storage will remain relatively constant (since wet bay space is fixed), while the inventory in dry storage will continue to grow over time.

Figure 1: Summary of Used Fuel Wet and Dry Storage History

2.2 PROJECTED NUCLEAR FUEL WASTE

The current forecast of future nuclear fuel waste, summarized in Table 2, is based on:

- Existing stations only (new-build not considered).
- [(June 2019 actuals) + (number of years from June 2019 to end-of-life) * (typical annual production of fuel bundles)] rounded to nearest 1000 bundles.
- Fuel in reactor core is removed prior to a refurbishment and not re-used. No fuel is generated during the 36 to 48 month refurbishment period.
- Units are assumed to operate until December 31 of the shutdown year.
- End-of-life total includes final reactor core fuel.
- For multi-unit stations, the station total forecast is the sum of the above calculated on a unit-by-unit basis.
- Total mass of heavy metals (e.g. uranium) in fuel is based on an average bundle mass of heavy metal specific to each reactor type.

End-of-life dates are based on currently announced life plans for the existing reactor fleet (OPG 2019b, Bruce Power and IESO 2015, NB Power 2018):

- Reactors that have been permanently shut down do not restart (Gentilly-2, Pickering Units 2 and 3);
- Reactors where a definite decision has been made not to refurbish will operate to the end of their current announced service life only (i.e., Pickering A Units 1 and 4 reactors will run until 2022 and Pickering B Units 5–8 will run until 2024).
- Reactors that have been refurbished (Bruce A Units 1 and 2 and Point Lepreau) will
 operate until the new pressure tubes have accumulated 25 effective full power years
 (EFPY); and
- Darlington, Bruce A Units 3 and 4 and Bruce B are all refurbished with a new set of pressure tubes and other major components, then operated for about 25 to 30 EFPY.

Note that the forecast in Table 2 is based on NWMO's assumptions used for planning purposes only and may differ from the business planning assumptions used by the reactor operators.

Location Unit		Startup	Total to June 2019		Refurbishment Schedule	Forecast	
	•	p	(# bundles)	Production (bundles/a)	(Start-End) ⁽⁷⁾	Shutdown ⁽⁸⁾	(# bundles)
	1	1977			Complete	2043	
Bruco A	2	1977	551 226	20 500(1)	Complete	2043	1 224 000
Didce A	3	1978	551,520	20,300	01/2023 – 06/2026	2061	1,234,000
	4	1979			01/2025 – 12/2027	2062	
	5	1985			07/2026 – 06/2029	2062	
Bruco B	6	1984	720 724	22 500(1)	01/2020 – 12/2023	2058	1 696 000
DIUCE D	7	1986	720,734	23,300(*)	07/2028 – 06/2031	2063	1,000,000
	8	1987			07/2030 – 06/2033	2063	
	1	1992			07/2021 – 09/2024	2054	
Darlington	2	1990	FCC 909	22,000(1)	10/2016 – 06/2020	2049	1 274 000
Danington	3	1993	000,020	22,000(*)	02/2020 - 06/2023	2052	1,274,000
	4	1993			01/2023 – 02/2026	2055	
Douglas Point	-	1968	22,256	0(2)	-	1984	22,256
Gentilly 1	-	1972	3,213	0 ⁽²⁾	-	1977	3,213
Gentilly 2	-	1983	129,925	0 ⁽²⁾	-	2012	129,925
	1	1971			Complete	2022	
Dickoring A	2	1971		7 200(3)	-	2005	
FICKETING A	3	1972		7,200(*)	-	2005	
	4	1973	772 225		Complete	2022	006.000
	5	1983	113,330		-	2024	900,000
Dickoring P	6	1984		14 500(1)	-	2024	
FICKETING D	7	1985		14,500	-	2024	
	8	1986			-	2024	
Point Lepreau	1	1983	152,118	4,800	Complete	2040	260,000
Whiteshell	-	1965	2,301	0 ⁽²⁾	-	1985	2,301
Chalk River/ NPD/other	-	-	4,886	O ⁽⁴⁾	-	-	4,886
	Total (b	undles) ⁽⁵⁾	2,934,922	92,500			5,522,000
		(t-HM) ⁽⁶⁾	56,500	1,780			106,000

Table 2: Summary of Projected Nuclear Fuel Waste from Existing Reactors

Notes:

1) Based on 4 reactors operating.

2) Reactor is permanently shut down and not producing any more fuel.

3) Based on 2 reactors operating.

4) Future forecasts do not include research fuels. Chalk River does not produce any CANDU power reactor used fuel bundles. However, it may receive bundles from power reactor sites from time to time for testing. This will not affect overall total numbers of bundles, since they will be subtracted from the reactor site.

5) Totals may not add exactly due to rounding to nearest 1,000 bundles for future forecasts.

6) "tonnes of heavy metals" (t-HM) based on an average of bundle mass specific for each reactor type.

7) Assumes units under refurbishment do not produce fuel and annual fuel production rates are scaled accordingly.

8) Assumes units operate until December 31 of the shutdown year and the core is defueled in the following year.

3. INVENTORY FROM POTENTIAL NEW REACTORS

There are two categories of proposed new reactor projects:

- projects which have received or are currently undergoing regulatory approvals (see Table 3); and
- potential projects which have been discussed by various implementing organizations (proponents), but which do not have any regulatory approvals underway.

This report focuses on the first category. However, it does not assess the probability of any of these projects proceeding. Execution of the projects rests entirely with the proponent. In addition, the technologies for each project have not yet been selected. Until such decisions have been made by the proponents, the forecast regarding types and amounts of fuel resulting from new-build projects is speculative.

Proponent	Location	Reactor Type(s)	Status
OPG	Darlington, Ontario	4 x EC-6 or 4 x AP1000	Selected as site for first 2 reactors by Ontario Government, with in-service timing originally planned for first unit in 2018. Procurement process is currently suspended.
Global First Power	Chalk River, Ontario	Micro Modular Reactor	Plant operation estimated to start in 2023 (Global First Power 2019a). Notice of Commencement of an Environmental Assessment issued by the Federal government in July 2019.

Table 3: Summary of Proposed New Reactors

3.1 PROJECTS WHICH HAVE RECEIVED OR CURRENTLY UNDERGOING REGULATORY APPROVALS

3.1.1 Ontario Power Generation

In 2009, OPG submitted an Environmental Impact Statement (EIS) and supporting documentation for building up to 4 new reactors at its Darlington site, in Clarington east of Toronto (OPG 2007, 2009). The Darlington site had been selected by the Government of Ontario to host the first two new-build reactors in the province. A Joint Panel Review was completed in 2011. The Joint Review Panel report concluded that "the project is not likely to cause significant adverse environmental effects, provided the mitigation measures proposed and commitments made by OPG during the review, and the Panel's recommendations are implemented" (JRP 2011). A Site Preparation Licence was granted by the CNSC in 2012 (CNSC 2012). In 2014, a group of non-governmental organizations had the approval overturned in a court challenge (Federal Court of Canada 2014). This ruling was subsequently overturned itself by a Federal Court of Appeal ruling in 2015 which restored the original approval (Federal Court of Appeal 2015). The procurement process is currently suspended. However, the Ontario Government has stated that new nuclear remains an option for the future (Ontario 2017).

Four reactor types were considered in the EIS submission, all designs are considered to be "Generation III+", and are designed to operate for 60 years.

- a) CANDU ACR 1000 (Advanced CANDU reactor), a 1085 MW(e) net heavy water moderated, light water cooled pressure tube reactor. Up to 4 ACR 1000 reactors would be built on the site in two twin unit pairs. This would result in a total lifetime production of approximately 770,400 used fuel bundles (12,480 t-HM) over 60 years.
- b) CANDU EC-6 (Enhanced CANDU 600 reactor), a 686 MW(e) net heavy water reactor, similar to the existing CANDU 600 reactors at Gentilly-2, Point Lepreau and elsewhere in the world. Up to 4 EC-6 reactors would be built on the site in two twin unit pairs. This would result in a total lifetime production of approximately 1,572,000 used fuel bundles (30,000 t-HM) over 60 years.
- c) *Westinghouse AP1000*, a 1037 MW(e) net pressurized light water reactor (PWR). Up to 4 AP1000 reactors would be built on the site, which would result in a total lifetime production of approximately 10,800 PWR fuel assemblies (5,820 t-HM) over 60 years.
- d) AREVA EPR (Evolutionary Power Reactor), a 1580 MW(e) net PWR. Up to 3 EPR reactors would be built on the site, which would result in a total lifetime production of approximately 9,900 PWR fuel assemblies (5,220 t-HM) over 60 years.

The province, through its Infrastructure Ontario program, would select the preferred vendor. The selection process was suspended in 2009 (Infrastructure Ontario 2009). In 2012, OPG announced that they had contracted with Candu Inc. and Westinghouse to prepare detailed cost estimates for implementing the EC-6 and the AP1000, respectively, at the Darlington site (OPG 2012). The Nuclear Power Reactor Site Preparation Licence issued by the CNSC to OPG has a validity of 10 years (CNSC 2012). This timeframe allows a reactor vendor to be chosen prior to commencing the site preparation work. However, in 2013, the procurement process was again suspended (Ontario 2017).

The EC-6 uses standard CANDU fuel, with options for advanced fuel types (SEU, MOX, etc.). The other three reactor types operate with enriched uranium fuel. The ACR 1000 fuel is similar in size and shape to existing CANDU fuel bundles. The AP1000 and EPR fuel assemblies are considerably different from the CANDU fuels in terms of size and mass, but are very similar to conventional pressurized light water reactor fuels used in many other countries around the world.

Further details on fuel types and potential inventories of fuel wastes from new-build at Darlington are included in Appendix C.

3.1.2 Global First Power

Global First Power, Ultra Safe Nuclear Corporation, and OPG propose to construct and operate a 5 MWe "Micro Modular Reactor" (MMR) plant on Atomic Energy of Canada Limited's property at the Chalk River Laboratories.

In December 2018, the CNSC completed Phase 1 of the pre-licensing review of the MMR (CNSC 2019b). In April 2019, Global First Power submitted to the CNSC an application to prepare site for a small modular reactor at the Chalk River Laboratories (Global First Power, 2019b). In July 2019, the Federal government issued a Notice of Commencement of an environmental assessment for a small modular reactor project at the Chalk River Laboratories (CNSC 2019a).

At this stage there is limited information about the MMR fuel and its fuel waste characteristics. The MMR has a 30 year operation life (Global First Power 2019a) and quantities of potential fuel wastes are unknown at this time. The MMR fuel is substantially different than CANDU fuel. The fuel contains low-enriched uranium and is manufactured with Triple Coated Isotopic (TRISO) fuel particles, whose primary purpose is to retain fission products.

The NWMO continues to monitor the progress of the regulatory approval process of this project. As more information becomes available, additional details on TRISO fuel and potential fuel waste inventories from the proposed MMR will be included in future versions of this report.

3.2 ADDITIONAL PROJECTS AND DEVELOPMENTS

Feasibility studies and public discussions by provincial governments and potential proponents have been previously conducted for other new reactors in Ontario (Bruce Power 2008a, 2008b, 2009a), Alberta (Bruce Power 2009b), Saskatchewan (Saskatchewan 2011) and New Brunswick (MZConsulting 2008, AREVA 2010).

Other proposals include the introduction of small modular reactors (SMRs) of up to a few tens or hundreds of megawatts each in remote (i.e. off-grid) communities and resource extraction sites which currently rely on small-scale fossil fuel generating plants to provide heat and/or electricity (AECL 2012, HATCH 2016). The reactors are based on a variety of non-CANDU technologies, including liquid metal cooled, molten salt cooled and light water cooled.

The CNSC completed a Phase 1 and has recently started the Phase 2 of the pre-licensing review of a Canadian designed molten salt cooled SMR (CNSC 2019b). Three other SMR designs currently undergoing a CNSC Phase 1 assessment are a sodium-cooled reactor, a molten salt reactor, and a light water-cooled reactor. CNSC's Phase 1 assessment of the lead-cooled reactor is on hold at vendor's request. Several other vendors have indicated that they will be submitting pre-licensing review applications in the near future (CNSC 2019b).

Canadian Nuclear Laboratories (CNL) is looking to establish partnerships with vendors of SMR technology to develop, promote and demonstrate the technology in Canada (CNL 2017). At present, four proponents are in various stages of CNL's review (CNL 2019). Global First Power has started stage 3 for the proposed 5 MWe MMR (high-temperature gas reactor) and has submitted an application for a licence to prepare site (see Section 3.1.2). Three other proponents have completed CNL's pre-qualification stage and have been invited to enter CNL's next stage of detailed review; these are U-Battery Canada Ltd. (4 MWe high temperature gas reactor), StarCore Nuclear (14 MWe high-temperature gas reactor), and Terrestrial Energy (190 MWe integral molten salt reactor). No licensing activities have been initiated for these three proposals.

Some utilities have expressed interest in supporting the development of SMR technologies; for example, New Brunswick Power has recently committed to support to Moltex Energy and Advanced Reactor Concepts Nuclear for developing and demonstrating an advanced SMR nuclear energy research cluster (NB Power 2019). Bruce Power has also committed to the development of SMR technology including memorandums of understanding with NuScale Power (Bruce Power 2018a) as well as MIRARCO Mining Innovation and Laurentian University (2018b). No licensing activities have been initiated at this time.

Natural Resource Canada (NRCan) initiated the SMR Roadmap project with interested provinces, territories and power utilities to identify the opportunities for on and off-grid applications of SMRs in Canada. The Roadmap report was published in November 2018,

containing more than 50 recommendations in areas such as waste management, regulatory readiness and international engagement (SMR 2018).

The NWMO will continue to monitor these developments and the implications of new reactors as part of its Adaptive Phased Management approach.

4. SUMMARY OF PROJECTED USED FUEL INVENTORY

As of June 30, 2019 there are approximately 2.9 million used fuel bundles in wet or dry storage. Based on currently announced refurbishment and life extension plans for the existing nuclear reactor fleet in Canada, the current forecast projects a total of about 5.5 million bundles (see Section 2.2 for details). The existing and projected inventory from current reactor operations, reactor refurbishment, developed in previous sections, is summarized in Figure 2.

Notes:

- 1) The currently existing fuel (as of end of June 2019) is shown in the green shaded area
- 2) The "forecast" (orange shaded area) represents the additional fuel bundles that would be generated if all of the currently announced refurbishment and life extension projects for the existing Canadian reactor fleet are implemented

Figure 2: Summary of Projected Used Fuel Inventory

No definitive decisions on new nuclear build have been made by the nuclear utilities in Canada, any resulting changes in forecasted inventory of nuclear fuel waste will be incorporated into future updates of this report.

Note that in addition to the CANDU fuel bundles described above, there are small quantities of other nuclear fuel waste, such as the AECL research fuels, pellets and elements mentioned in the footnotes to Table 1, as well as used fuels from other Canadian research reactors (as listed in the Appendix A, Table A3), which are included within the NWMO's mandate for implementing

the APM program, if requested by the waste owner. Some of these non-CANDU reactor fuels have been or will be returned to the country of origin, e.g. USA or France, under the terms of the original supply agreements or international agreements governing their usage.

There are also other heat-generating radioactive wastes in Canada (such as cobalt-60 sources produced in Canadian CANDU reactors and used in industrial and therapeutic radiation devices), again in relatively small quantities (on the order of 1,000 to 2,000 fuel bundle equivalents, i.e. less than 0.1% of the projected used fuel inventory). Note that these additional non-fuel, heat generating wastes are not within the NWMO's legislated mandate for nuclear fuel waste.

REFERENCES

- AECL. 2012. AECL Nuclear Review, Volume 1, Number 2, December 2012. Available at <u>http://publications.gc.ca/site/eng/454640/publication.html</u>.
- Areva. 2010. "AREVA signs agreement for third clean energy park project", Areva news release, July 8, 2010. Available at <u>www.areva.com</u>.
- Bruce Power. 2008a. Bruce New Nuclear Power Plant Project Environmental Assessment Environmental Impact Statement. Bruce Power. Available at <u>www.brucepower.com</u>.
- Bruce Power. 2008b. Bruce New Nuclear Power Plant Project Environmental Assessment Bounding Plant Envelope Technical Support Document. Bruce Power. Available at <u>www.brucepower.com</u>.
- Bruce Power. 2009a. "Bruce Power to Focus on Additional Refurbishments at Bruce A and B; Bruce C and Nanticoke new-build applications withdrawn", Bruce Power news release, July 23, 2009. Available at <u>www.brucepower.com</u>.
- Bruce Power. 2009b. Withdrawal of Application for Approval to Prepare a Site for the Future Construction of a Nuclear Power Generating Facility Municipal District of Northern Lights, Alberta. Bruce Power Alberta submission to the Canadian Nuclear Safety Commission, January 2009. Available at <u>www.nuclearsafety.gc.ca</u>.
- Bruce Power. 2018a. "Bruce and NuScale collaborate on Canadian SMR business case", Bruce Power news release, November 27, 2018. Available at <u>www.brucepower.com</u>
- Bruce Power. 2018b. "Bruce Power signs \$1 million MOU for sustainable energy research group", Bruce Power news release, April 6, 2018. Available at <u>www.brucepower.com</u>
- Bruce Power. 2019a. "Bruce Power Opens Major Component Replacement Training Facility in Kincardine", Bruce Power news release, April 26, 2019. Available at www.brucepower.com
- Bruce Power. 2019b. "Bruce Power Officially Opens Chesley Warehouse in Support of Major Component Replacement Project", Bruce Power news release, July 4, 2019. Available at <u>www.brucepower.com.</u>
- Bruce Power and Independent Electricity System Operator (IESO). 2015. Amended and Restated Bruce Power Refurbishment Implementation Agreement. Available at <u>www.brucepower.com.</u>
- Canada. 2002. Nuclear Fuel Waste Act, S.C. 2002, c. 23. Available at <u>laws-lois.justice.gc.ca/eng/acts/n-27.7/index.html</u>.
- CNL. 2017. Small Modular Reactor Technology. Available at <u>www.cnl.ca/en/home/facilities-</u> <u>and-expertise/smr/default.aspx</u>.
- CNL. 2019. "Technology developers advance in CNL's process to site a small modular reactor", CNL news release, July 29, 2019. Available at <u>https://www.cnl.ca/en/home/facilities-and-expertise/smr/update-on-cnl-s-smr-invitation-process.aspx</u>

- CNSC. 2012. Record of Proceedings, Including Reasons for Decision, in the Matter of Ontario Power Generation Inc. Application for the Issuance of a Licence to Prepare Site for a New Nuclear Power Plant at the Darlington Nuclear Site, August 2012. Available at www.nuclearsafety.gc.ca.
- CNSC. 2019a. Notice of Commencement of an Environmental Assessment. Available at <u>https://ceaa-acee.gc.ca/050/evaluations/document/130928?culture=en-CA</u>
- CNSC. 2019b. Pre-Licensing Vendor Design Review. Available at <u>https://nuclearsafety.gc.ca/eng/reactors/power-plants/pre-licensing-vendor-design-review/index.cfm</u>.
- Federal Court of Appeal. 2015. Ontario Power Generation Inc. (Appellant) and Greenpeace Canada, Lake Ontario Waterkeeper, Northwatch and Canadian Environmental Law Association (Respondents), 2015 FCA 186 - Reasons for Judgment and Judgment. Available at <u>www.nuclearsafety.gc.ca/eng/pdfs/2010-09-10-federal-court-of-appealreasons.pdf</u>.
- Federal Court of Canada. 2014. Greenpeace Canada v. Attorney General of Canada, 2014 FC 463 Reasons for Judgment and Judgment. Available at: www.canlii.org/en/ca/fct/doc/2014/2014fc463/2014fc463.pdf.
- Global First Power. 2019a. Project Description for the Micro Modular Reactor™ Project at Chalk River. Global First Energy Report CRP-LIC-01-001. Available at <u>www.globalfirstpower.com</u>.
- Global First Power. 2019b. Licence to Prepare Site Initial Application: MMR Nuclear Plant at Chalk River. Global First Energy Report CRP-LIC-01-002. Available at www.globalfirstpower.com.
- HATCH. 2016. Ontario Ministry of Energy SMR Deployment Feasibility Study, HATCH report H350381-00000-162-066-0001, prepared for the Ontario Ministry of Energy. Available at <u>ontarioenergyreport.ca/pdfs/MOE%20-%20Feasibility%20Study_SMRs%20-</u> <u>%20June%202016.pdf</u>.
- Infrastructure Ontario. 2009. "Ontario Suspends Nuclear Procurement", Infrastructure Ontario news release, June 29, 2009. Available at <u>www.infrastructureontario.ca</u>.
- International Atomic Energy Agency (IAEA). 2004. Status of advanced light water reactor designs. IAEA report IAEA-TECDOC-1391. Available at <u>www.iaea.org</u>.
- Ion, M. 2018. Nuclear Fuel Waste Projections in Canada 2018 Update. Nuclear Waste Management Organization report NWMO-TR-2018-18. Available at <u>www.nwmo.ca</u>.
- JRP. 2011. Joint Review Panel Environmental Assessment Report, Darlington New Nuclear Power Plant Project, August 2011. Available at <u>www.acee-ceaa.gc.ca</u>.
- MZConsulting. 2008. Viability Study for New Nuclear Facilities in New Brunswick. Report prepared for the Government of New Brunswick by MZConsulting. Available at <a href="https://www.leg.action.gov/le

- NB Power. 2018. NB Power's 10-Year Plan. Fiscal Years 2020 to 2029. Available at <u>www.nbpower.com.</u>
- NB Power. 2019. "NB Power Pleased with Progress on Small Modular Reactor Work", New Brunswick Power news release, July 25, 2019. Available at <u>www.nbpower.com</u>.
- NWMO. 2016. Implementing Adaptive Phased Management 2016 to 2020. Nuclear Waste Management Organization report APM-REP-06411-38810. Available at <u>www.nwmo.ca</u>.
- NWMO. 2018. Watching Brief on Advanced Fuel Cycles 2018 Update. Nuclear Waste Management Organization report NWMO-REF-06414-45764. Available at <u>www.nwmo.ca</u>.
- Ontario. 2017. Delivering Fairness and Choice: Ontario's Long-Term Energy Plan. Ontario Ministry of Energy. Available at: <u>https://files.ontario.ca/books/ltep2017_0.pdf</u>.
- OPG. 2007. Project Description for the Site Preparation, Construction and Operation of the Darlington B Nuclear Generating Station Environmental Assessment. Ontario Power Generation report submitted to the Canadian Nuclear Safety Commission. Available at <u>www.opg.com</u>.
- OPG. 2009. "OPG Submits Documents for the Federal Approvals Process in Support of New Nuclear at the Darlington Site", OPG news release, September 30, 2009. Available at <u>www.opg.com</u>.
- OPG. 2012. "OPG Signs Services Agreements for New Nuclear", OPG news release, June 22, 2012. Available at <u>www.opg.com</u>.
- OPG. 2019a. "OPG Prepares for Unit 2 Fuel Load on the Darlington Refurbishment Project", OPG news release, June 18, 2019. Available at <u>www.opg.com</u>.
- OPG. 2019b. "Darlington Refurbishment Performance Update Q2", OPG news release, August 15, 2019. Available at <u>www.opg.com</u>.
- SMR (Canadian Small Modular Reactor Roadmap Steering Committee). 2018. A Call to Action: A Canadian Roadmap for Small modular Reactors. Available at <u>https://smrroadmap.ca/wp-content/uploads/2018/11/SMRroadmap_EN_nov6_Web-1.pdf</u>
- Saskatchewan. 2011. "Saskatchewan and Hitachi sign nuclear R&D agreements", Government of Saskatchewan news release, August 25, 2011. Available at <u>saskatchewan.ca/news</u>.

APPENDIX A: SUMMARY OF EXISTING CANADIAN REACTORS & FUEL STORAGE

Appendix A presents a summary of commercial, demonstration and research reactors in Canada. Table A1 presents a summary of commercial power reactors in Canada and their status. Table A2 presents a summary of prototype and demonstration reactors in Canada and their status. Table A3 presents a summary of research reactors in Canada and their status.

Commercial, prototype and some research reactors have storage facilities for used nuclear fuel. Table A4 presents a summary of dry storage facilities for used nuclear fuel and Figure A1 shows the location of the major storage locations in Canada.

Location	Rating (MW(e) net)	Year In- service	Fuel Type*	Current Status (2019)			
Bruce Nuclear Power Development, Ontario							
Bruce A – 1	750	1977		Refurbished and operating			
Bruce A – 2	750	1977	37 element	Refurbished and operating			
Bruce A – 3	750	1978	bundle	Operating			
Bruce A – 4	750	1979		Operating			
Bruce B – 5	795	1985	07 clomont	Operating			
Bruce B – 6	822	1984	bundle;	Operating			
Bruce B – 7	822	1986	"long" bundle	Operating			
Bruce B – 8	795	1987	<u> </u>	Operating			
Darlington, Ontario	•						
Darlington 1	881	1992	37 element	Operating			
Darlington 2	881	1990	bundle; 37 element	Undergoing refurbishment			
Darlington 3	881	1993		Operating			
Darlington 4	881	1993		Operating			
Gentilly, Quebec							
Gentilly 2	635	1983	37 element bundle	Permanently shut down in 2012			
Pickering, Ontario							
Pickering A – 1	515	1971		Refurbished and operating			
Pickering A – 2	515	1971		Non-operational since 1997; Permanently shut down in 2005			
Pickering A – 3	515	1972	28 element	Non-operational since 1997; Permanently shut down in 2005			
Pickering A – 4	515	1973	bundle	Refurbished and operating			
Pickering B – 5	516	1983		Operating			
Pickering B – 6	516	1984		Operating			
Pickering B – 7	516	1985]	Operating			
Pickering B – 8	516	1986		Operating			
Point Lepreau, New	v Brunswick						
Point Lepreau	635	1983	37 element bundle	Refurbished and operating			

Table A1: Nuclear Power Reactors

*Note: refer to Appendix B for description of fuel types, and their current storage status.

Location	Rating (MW(e) net)	Year In- service	Fuel Type	Current Status (2019)
Bruce Nuclear Pow	er Development	, Ontario		
Douglas Point (CANDU PHWR prototype)	206	1968	19 element bundle	Permanently shut down in 1984; All fuel is in dry storage on site
Gentilly, Quebec				
Gentilly 1 (CANDU-BLW boiling water reactor prototype)	250	1972	18 element CANDU-BLW bundle	Permanently shut down in 1977; All fuel is in dry storage on site
Rolphton, Ontario				
NPD (CANDU PHWR prototype)	22	1962	19 element bundle; various prototype fuel designs (e.g. 7 element bundle)	Permanently shut down in 1987; All fuel is in dry storage at Chalk River

Table A2:	Prototype and	Demonstration	Power	Reactors
-----------	---------------	---------------	-------	----------

Table A3: Research Reactors

Location	Rating (MW(th))	Year In- service	Fuel Type	Comments
Chalk River, Ontar	io			
NRU	135	1957	various driver fuel and target designs (U-metal, U- Al, UO ₂ , U ₃ Si-Al)	Permanently shut down on March 31, 2018. Fuel is transferred to wet storage on site as of June 30, 2019.
ZED-2	0.00025	1960	various uranium fuels	Operating
NRX	42	1947	various driver fuel and target designs (U-metal, U- Al, UO ₂)	Permanently shut down in 1992
MAPLE 1	10	-	U ₃ Si-Al driver fuel; U-metal	
MAPLE 2	10	-	targets	Never fully commissioned
Whiteshell, Manito	ba			
WR-1 (organic cooled reactor prototype)	60	1965	various research and prototype fuel bundle designs (similar size and shape to standard CANDU bundles; UO ₂ , UC)	Permanently shut down in 1985; All fuel is in dry storage on site
Hamilton, Ontario				
McMaster University	5	1959	U₃Si-Al fuel pins	MTR Pool type reactor; Operating
Kingston, Ontario				
Royal Military College	0.02	1985	UO ₂ SLOWPOKE fuel pins	SLOWPOKE-2 reactor; Operating.
Montreal, Quebec				
Ecole polytechnique	0.02	1976	UO ₂ SLOWPOKE fuel pins	SLOWPOKE-2 reactor; Operating
Edmonton, Alberta	3			
University of Alberta	0.02	1977	U-AI SLOWPOKE fuel pins	SLOWPOKE-2 reactor. Permanently shut down in 2017. Fuel was repatriated to US.
Saskatoon, Saskat	tchewan			
Saskatchewan Research Council	0.02	1981	U-AI SLOWPOKE fuel pins	SLOWPOKE-2 reactor. Licensed to operate until June 2023. Defueled and fuel repatriated to US in 2019. A proposed licence amendment will authorize full decommissioning of the facility by 2021

Note: the SLOWPOKE reactors can operate on one fuel charge for 20 to 40 years. Other former research reactors include the 2 MW(th) SLOWPOKE Demonstration Reactor at Whiteshell, the low power PTR and ZEEP reactors at Chalk River, and shut down / decommissioned SLOWPOKE reactors at University of Toronto, Dalhousie University and Nordion Kanata. Used fuel from these shut down research reactors is stored at the Chalk River site, Whiteshell site or has been returned to the country of origin (e.g. US).

Facility	Owner	Technology	Fuel Type	Year In- service
Chalk River	AECL	AECL Concrete Canister/Silo	CANDU & CANDU-like (mainly 19 element)	1992
Darlington Waste Management Facility (DWMF)	OPG	OPG Dry Storage Container (DSC)	CANDU (37 element)	2008
Douglas Point Waste Management Facility	AECL	AECL Concrete Canister/Silo	CANDU (19 element)	1987
Gentilly 1	AECL	AECL Concrete Canister/Silo	CANDU-BLW (18 element)	1984
Gentilly 2	HQ	AECL CANSTOR/MACSTOR modular concrete vault	CANDU (37 element)	1995
Pickering Waste Management Facility (PWMF)	OPG	OPG Dry Storage Container (DSC)	CANDU (28 element)	1996
Point Lepreau	NBPN	AECL Concrete Canister/Silo	CANDU (37 element)	1990
Western (Bruce) Waste Management Facility (WWMF)	OPG	OPG Dry Storage Container (DSC)	CANDU (37 element)	2003
Whiteshell	AECL	AECL Concrete Canister/Silo	CANDU & CANDU-like (various sizes)	1977

Table A4: Summary of Dry Storage Facilities for Used Nuclear Fuel

Figure A1: Current Nuclear Fuel Waste Major Storage Location in Canada

APPENDIX B: DESCRIPTION OF FUEL TYPES

Table B1 summarizes the inventory of the various bundles types in Canada as of June 2019.

Section B.1 details the physical characteristics and usage of the bundles in operating reactors. Section B.2 details the physical characteristics and usage of the bundles in demonstration and prototype reactors. Note that the physical characteristics of the bundles described in this appendix are intended to be nominal and other sources may quote different numbers.

CANDU Bundle Type	Where Used	Wet Storage (# bundles)	Dry Storage (# bundles)	Total (# bundles)
18 Element	Gentilly 1, Whiteshell	-	4,417	4,417
7 Element / 19 Element	NPD, Douglas Point	-	26,296	26,296
28 Element	Pickering	400,597	372,738	773,335
37R	Bruce, Darlington, Gentilly 2, Pt Lepreau	626,618	992,670	1,619,288
37R Long	Bruce, Darlington	147,442	88,574	236,016
37M	Bruce, Darlington	201,601	-	201,601
37M Long	Bruce, Darlington	72,002	-	72,002
43 Element LVRF	Bruce	24	-	24
Other	AECL (various)	-	1,943	1,943
	Total	1,448,284	1,486,638	2,934,922

Table B1: Summary of Inventory by Bundle Type (June 2019)

B.1 FUELS FROM OPERATING REACTORS

28 element CANDU bundle		
	Physical dimensions:	
	102.5 mm OD x 497.1 mm OL	
	Mass:	
	20.1 kg U (22.8 kg as UO ₂)	
	2.0 kg Zircaloy (e.g., cladding, spacers)	
	24.8 kg total bundle weight	
	Fissionable material:	
	Sintered pellets of natural UO ₂	
Pickering-28 Element	Typical burnup:	
TANK -	8,300 MW day / tonne U	
	(200 MWh/kg U)	
	Cladding material:	
	Zircaloy-4	
Construction:		
- Bundle is composed of 28 elements (fuel pins), arran	ged in 3 concentric rings with 4 elements in	
the inner most ring, 8 elements in the second ring and	16 elements in the outer ring.	
 Construction includes end plates, spacers and bearing 	g pads to improve flow characteristics and	
maintain structural integrity.		
Comments:		
 Used in Pickering A and B reactors 		

Comments:

- Used in Bruce A and B, Darlington, Gentilly-2, Point Lepreau and EC-6 reactors (Gentilly-2 and Point Lepreau have minor construction differences on the end plates and spacers compared to the Bruce and Darlington designs).

- Two variants, designated 37R (regular) and 37M (modified), have slightly different center pin configurations and uranium masses (19.2 kg U for 37R vs 19.1 kg U for 37M). 37M is presently in use in Bruce and Darlington stations replacing prior 37R.

Comments:

- Similar to 37 element "standard" bundle, but is 13 mm longer.

- Used in Bruce B, and Darlington reactors.

- Two variants, designated 37R-long and 37M-long, have slightly different center pin configurations and uranium masses (19.7 kg U for 37R-long vs 19.6 kg U for 37M-long). 37M-long is presently in use in Bruce stations, replacing prior 37R-long.

- The inner central element uses Dysprosium (an element that absorbs neutrons and reduces the bundle power maintaining a flat neutronic field profile across the bundle during operation).

- Diameter and composition of fuel pins varies by ring.

- Construction includes end plates, spacers and bearing pads to improve flow characteristics and maintain structural integrity.

Comments:

- Has been used in Bruce B reactors in limited quantities, option for use in EC-6 reactors

7 element CANDU bundle		
	Physical dimensions: 82.0 mm OD x 495.3 mm OL	
	Mass: 13.4 – 13.5 kg U (15.2 – 15.3 kg as UO ₂) 1.4 – 1.5 kg Zircaloy (e.g., cladding) 16.7 kg total bundle weight	
	Fissionable material: Sintered pellets of natural UO ₂ Some low-enriched 7 element bundles exists at 1.4% wt ²³⁵ U and 2.5% wt ²³⁵ U enrichment	
NPD-7 Element T.I.G. Welded	Typical burnup: 6474 MW day / tonne U (156 MWh/kg U)	
	Cladding material: Zircaloy-2 Nickel-free Zircaloy-2 Zircaloy-4	
Construction:		
 Bundle is composed of 7 elements (fuel pins), arrange elements. 	ed as 1 element surrounded by a ring of 6	
 construction included wire-wrap and split-spacer fuel one bundle model had riveted end plates, all others ha thick walled cladding 	elements; riveted or welded end plates (only d welded end plates) and thin, medium and	
Comments: - Used in NPD		

B.2 FUELS FROM DEMONSTRATION AND PROTOTYPE REACTORS

APPENDIX C: POTENTIAL NEW BUILD FUEL CHARACTERISTICS AND QUANTITIES

Table C1 presents a summary of the major characteristics and quantities of nuclear fuels that are used in the new reactors that have been proposed in various projects. The data have been extracted from references (Bruce Power 2008a, 2008b; IAEA 2004; JRP 2011).

Table C2 summarizes the total quantity of used fuel that might be produced for the proposed new-build reactors at Darlington. As mentioned in Section 3.1.1, until decisions on reactor types, number of units and operating conditions are taken by the proponents, these forecasts remain highly speculative.

The total additional quantity of used fuel from the Darlington New Nuclear Project could be up to 1.6 million CANDU fuel bundles (30,000 t-HM), or 10,800 PWR fuel assemblies, depending on the selected reactor type.

Section C.1 details the physical characteristics and usage of the bundles in potential new-build reactors. Note that other sources may quote different numbers for fuel properties and used fuel production rates. This is generally due to the preliminary nature of some of the designs combined with the various ways some of the reactors can be operated (e.g. enrichment level and burnup, assumed capacity factors, length of operating period between re-fuelling outages for light water reactors, conservative assumptions used for environmental assessment purposes). The quantities and characteristics used for forecasting in this report will be updated as reactor types are selected and their designs are further defined.

Table C1: Summary of Fuel Types for Proposed New Reactors

Parameter	ACR 1000	EC-6	AP1000	EPR
Reactor Type	Horizontal pressure tube, heavy water moderated, light water cooled	Horizontal pressure tube, heavy water moderated and cooled	Pressurized light water reactor (PWR)	Pressurized light water reactor (PWR)
Net / Gross Power [MW(e)]	1085 / 1165	686 / 745	1037 / 1117	1580 / 1770
Design Life	60 years	60 years	60 years	60 years
Fuel type	CANFLEX ACR fuel bundle	37 element CANDU bundle	Conventional 17x17 PWR fuel design	Conventional 17x17 PWR fuel design
Fueling method	On power	On power	Refueling shutdown every 12 to 24 months and replace portion of the core	Refueling shutdown every 12 to 24 months and replace portion of the core
Fuel enrichment	Up to 2.5% for equilibrium core	Natural U, with options for SEU (1.2%) and MOX	2.4-4.5% avg initial core 4.8% avg for reloads	Up to 5% for equilibrium core
Fuel dimensions	102.5 mm OD x 495.3 mm OL	102.5 mm OD x 495.3 mm OL	214 mm square x 4795 mm OL	214 mm square x 4805 mm OL
Fuel assembly U mass [kg initial U]	16.2	19.2	538.3	527.5
Fuel assembly total mass [kg]	21.5	24.0	789	780
# of fuel assemblies per core	6,240	4,560	157	241
Fuel load per core [kg initial U]	101,088	87,552	84,513	127,128
Annual used fuel production [t-HM/yr per reactor]	52	126	24	29
Annual used fuel production [number of fuel assemblies/yr per reactor]	3,210	6,550	45	55
Lifetime used fuel production [t-HM per reactor]	3,120	7,500	1,455	1,740
Lifetime used fuel production [number of fuel assemblies per reactor]	192,600	393,000	2,700	3,300

Note: Data extracted from references (Bruce Power, 2008a; IAEA 2004; JRP 2011). Annual and lifetime data have been rounded.

Reactor	Darlington New Nuclear	
Assumed operation	60 years	
EC-6		
# of reactor units	4	
Quantity of fuel (# bundles)	1,572,000	
(t-HM)	30,000	
AP 1000		
# of reactor units	4	
Quantity of fuel (# assemblies)	10,800	
(t-HM)	5,820	

Table C2: Summary of Potential Nuclear Fuel Waste from New Reactors at Darlington

C.1 FUELS FROM POTENTIAL NEW-BUILD REACTORS

- Each fuel assembly consists of 264 fuel rods, 24 guide thimbles, and 1 instrumentation tube arranged within a 17 x 17 matrix supporting structure. The instrumentation thimble is located in the center position and provides a channel for insertion of an in-core neutron detector, if the fuel assembly is located in an instrumented core position. The guide thimbles provide channels for insertion of either a rod cluster control assembly, a gray rod cluster assembly, a neutron source assembly, a burnable absorber assembly, or a thimble plug, depending on the position of the particular fuel assembly in the core.

Comments:

- Used in Westinghouse AP1000 reactors

- Used in Areva EPR reactors